Stacked Capacitor Patents (Class 438/396)
  • Patent number: 8841749
    Abstract: A main blind hole is formed in a front face of a wafer having a rear face. A through capacitor is formed in the main blind hole including a conductive outer electrode, a dielectric intermediate layer, and a filling conductive material forming an inner electrode. Cylindrical portions of the outer electrode, the dielectric intermediate layer and the inner electrode have front ends situated in a plane of the front face of the wafer. A secondary rear hole is formed in the rear face of the wafer to reveal a bottom of the outer electrode. A rear electrical connection is made to contact the bottom of the outer electrode through the secondary rear hole. A through hole via filled with a conductive material is provided adjacent the through capacitor. An electrical connection is made on the rear face between the rear electrical connection and the through hole via.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: September 23, 2014
    Assignees: STMicroelectronics SA, STMicroelectronics (Crolles 2) SAS
    Inventors: Sylvain Joblot, Alexy Farcy, Jean-Francois Carpentier, Pierre Bar
  • Publication number: 20140264747
    Abstract: A dielectric layer can achieve a crystallography orientation similar to a base dielectric layer with a conductive layer disposed between the two dielectric layers. By providing a conductive layer having similar crystal structure and lattice parameters with the base dielectric layer, the crystallography orientation can be carried from the base dielectric layer, across the conductive layer to affect the dielectric layer. The process can be used to form capacitor structure for anisotropic dielectric materials, along the direction of high dielectric constant.
    Type: Application
    Filed: December 20, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Sergey Barabash, Dipankar Pramanik
  • Publication number: 20140273396
    Abstract: A method comprises forming a first layer of an electrically insulating material over a semiconductor structure. A recess is formed in the first layer of electrically insulating material. A capacitor layer stack is deposited over the first layer of electrically insulating material. The capacitor layer stack includes one or more bottom electrode layers, a dielectric layer and a top electrode layer, wherein a first portion of the capacitor layer stack is arranged in the recess and a second portion of the capacitor layer stack is arranged over a portion of the first layer of electrically insulating material adjacent the recess. A chemical mechanical polishing process is performed. The chemical mechanical polishing process removes the second portion of the capacitor layer stack, wherein the first portion of the capacitor layer stack is not removed.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Maik Liebau, Ronny Pfuetzner
  • Publication number: 20140273394
    Abstract: In one embodiment, a capacitor includes a first row including a first capacitor element and a second capacitor element coupled in parallel, and a second row including a third capacitor element and a fourth capacitor element coupled in parallel. The first row is coupled in series with the second row. In a metallization level over a workpiece, the second capacitor element is disposed between the first capacitor element and the third capacitor element. In the metallization level, the third capacitor element is disposed between the second capacitor element and the fourth capacitor element. The first, the second, the third, and the fourth capacitor elements are disposed in the metallization level.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Michael Roehner, Stefano Aresu
  • Publication number: 20140264742
    Abstract: A structure includes first, second, and third conductive leaf structures. The first conductive leaf structure includes a first conductive midrib and conductive veins. The second conductive leaf structure is electrically connected to the first conductive leaf structure, and includes a second conductive midrib, conductive veins extending toward the first conductive midrib, and conductive veins extending away from the first conductive midrib. The third conductive leaf structure includes a third conductive midrib between the first conductive midrib and the second conductive midrib, conductive veins extending toward the first conductive midrib, and conductive veins extending toward the second conductive midrib.
    Type: Application
    Filed: May 24, 2013
    Publication date: September 18, 2014
    Inventors: Hsiao-Tsung Yen, Cheng-Wei Luo, Jun-Cheng Huang, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20140264744
    Abstract: A stacked semiconductor device includes a first substrate. A multilayer interconnect is disposed over the first substrate. Metal sections are disposed over the multilayer interconnect. First bonding features are over the metal sections. A second substrate has a front surface. A cavity extends from the front surface into a depth D in the second substrate. The cavity has an interior surface. A stop layer is disposed over the interior surface of the cavity. A movable structure is disposed over the front surface of the second substrate and suspending over the cavity. The movable structure includes a dielectric membrane, metal units over the dielectric membrane and a cap dielectric layer over the metal units. Second bonding features are over the cap dielectric layer and bonded to the first bonding features. The second bonding features extend through the cap dielectric layer and electrically coupled to the metal units.
    Type: Application
    Filed: June 12, 2013
    Publication date: September 18, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hua Chu, Chun-Wen Cheng
  • Publication number: 20140264727
    Abstract: A semiconductor device includes a substrate with an active pattern, the active pattern having a first extension portion extending in a first direction substantially parallel to a top surface of the substrate, a second extension portion extending from a first end of the first extension portion in a third direction oriented obliquely to the first direction, a third extension portion extending from a second end of the first extension portion in a direction opposed to the third direction, a first projection portion protruding from the second extension portion in a direction opposed to the first direction, the first projection portion being spaced apart from the first extension portion, and a second projection portion protruding from the third extension portion in the first direction, the second projection portion being spaced apart from the first extension portion.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jea-Hyun KIM, Kyong-Seok SONG, Sung-Hee HAN
  • Patent number: 8835273
    Abstract: A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive metal oxide formed using a high temperature, low pressure ALD process. The high temperature ALD process results in a layer with enhanced crystallinity, higher density, reduced shrinkage, and lower carbon contamination. The high temperature ALD process can be used for either or both the bottom electrode and the top electrode layers.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 16, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Edward L Haywood, Sandra G Malhotra, Hiroyuki Ode
  • Patent number: 8835252
    Abstract: Methods of fabricating semiconductor device are provided including forming first through third silicon crystalline layers on first through third surfaces of an active region; removing the first silicon crystalline layer to expose the first surface; forming a bit line stack on the exposed first surface; forming bit line sidewall spacers on both side surfaces of the bit line stack to be vertically aligned with portions of the second and third silicon crystalline layers of the active region; removing the second and third silicon crystalline layers disposed under the bit line sidewall spacers to expose the second and third surfaces of the active region; and forming storage contact plugs in contact with the second and third surfaces of the active region.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: September 16, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Joon-Seok Moon, Jae-Rok Kahng, Hyun-Seung Song, Dong-Soo Woo, Sang-Hyun Lee, Hyun-Jung Lee
  • Patent number: 8835274
    Abstract: Metal-insulator-metal capacitors with a bottom electrode including at least two portions of a metal nitride material. At least one of the portions of the metal nitride material includes a different material than another portion. Interconnects including at least two portions of a metal nitride material are also disclosed, at least one of the portions of the metal nitride material are formed from a different material than another portion of the metal nitride material. Methods for fabricating such MIM capacitors and interconnects are also disclosed, as are semiconductor devices including such MIM capacitors and interconnects.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: September 16, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Jeff Hu
  • Publication number: 20140252543
    Abstract: A particular metal-oxide-metal (MOM) capacitor device includes a conductive gate material coupled to a substrate. The MOM capacitor device further includes a first metal structure coupled to the conductive gate material. The MOM capacitor device further includes a second metal structure coupled to the substrate and proximate to the first metal structure.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Xia Li, Bin Yang
  • Publication number: 20140252549
    Abstract: An embodiment metal-insulator-metal (MiM) capacitor includes a gate stack disposed upon an insulation layer, the gate stack including a gate metal, the gate metal serving as a bottom electrode, a dielectric layer disposed upon the gate stack, and a top metal layer disposed upon the dielectric layer, the top metal serving as a top electrode.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Inventors: Yu-Hong Pan, Jen-Pan Wang
  • Publication number: 20140252551
    Abstract: At least one high voltage rated isolation capacitor is formed on a face of a primary integrated circuit die. The isolation capacitor AC couples the primary integrated circuit in a first voltage domain to a second integrated circuit in a second voltage domain. The isolation capacitor DC isolates the primary integrated circuit from the second integrated circuit die.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Inventors: Gregory Dix, Randy Yach
  • Patent number: 8829356
    Abstract: A packaging substrate includes: a dielectric layer unit having top and bottom surfaces; a positioning pad embedded in the bottom surface of the dielectric layer unit; at least a passive element having a plurality of electrode pads disposed on upper and lower surfaces thereof, the passive element being embedded in the dielectric layer unit and corresponding to the positioning pad; a first circuit layer disposed on the top surface of the dielectric layer unit, the first circuit layer having first conductive vias electrically connected to the electrode pads disposed on the upper surface of the passive element; and a second circuit layer disposed on the bottom surface of the dielectric layer unit, the second circuit layer having second conductive vias electrically connected to the electrode pads disposed on the lower surface of the passive element. Through the embedding of the passive element, the overall structure may have a reduced height.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: September 9, 2014
    Assignee: Unimicron Technology Corporation
    Inventors: Shih-Ping Hsu, Zhao-Chong Zeng
  • Patent number: 8828821
    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device such as a capacitor and DRAM cell. In particular, a bottom electrode upon which a dielectric layer is to be grown may have a ruthenium-based surface. Lattice matching of the ruthenium surface with the dielectric layer (e.g., titanium oxide, strontium titanate or barium strontium titanate) helps promote the growth of rutile-phase titanium oxide, thereby leading to higher dielectric constant and lower effective oxide thickness. The ruthenium-based material also provides a high work function material, leading to lower leakage. To mitigate nucleation delay associated with the use of ruthenium, an adherence or glue layer based in titanium may be employed. A pretreatment process may be further employed so as to increase effective capacitor plate area, and thus promote even further improvements in dielectric constant and effective oxide thickness (“EOT”).
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: September 9, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Nobumichi Fuchigami, Imran Hashim, Pragati Kumar, Sandra Malhotra, Sunil Shanker
  • Publication number: 20140246754
    Abstract: Provided is a capacitor of a semiconductor device. The capacitor can includes a plurality of parallel lower conductive lines in parallel and a plurality of upper conductive lines on the lower conductive lines. Each lower conductive line can have a line width that is different than that of the upper conductive line adjacent to it.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 4, 2014
    Applicant: DONGBU HITEK CO., LTD.
    Inventor: Su Tae KIM
  • Publication number: 20140242774
    Abstract: A metal-insulator-metal (MIM) capacitor and a method for forming the same are provided. The MIM capacitor includes an insulator on a bottom metal plate, a top metal plate on the insulator, a dielectric layer on the top metal plate and on at least sidewalls of the top metal plate and the insulator, and an anti-reflective coating (ARC) layer over the top metal plate and the bottom metal plate. The dielectric layer preferably extends on an exposed portion of the bottom metal plate not covered by the top metal plate and the insulator.
    Type: Application
    Filed: May 5, 2014
    Publication date: August 28, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Yao Hsiang Liang
  • Patent number: 8815697
    Abstract: Provided is a method of manufacturing a semiconductor device having a capacitor. The method includes forming a composite layer, including sequentially stacking on a substrate alternating layers of first through nth sacrificial layers and first through nth supporting layers. A plurality of openings that penetrate the composite layer are formed. A lower electrode is formed in the plurality of openings. At least portions of the first through nth sacrificial layers are removed to define a support structure for the lower electrode extending between adjacent ones of the plurality of openings and the lower electrode formed therein, the support structure including the first through nth supporting layers and a gap region between adjacent ones of the first through nth supporting layers where the first through nth sacrificial layers have been removed. A dielectric layer is formed on the lower electrode and an upper electrode is formed on the dielectric layer.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: August 26, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-Ho Yoon, Bong-Jin Kuh, Ki-Chul Kim, Gyung-Jin Min, Tae-Jin Park, Sang-Ryol Yang, Jung-Min Oh, Sang-Yoon Woo, Young-Sub Yoo, Ji-Eun Lee, Jong-Sung Lim, Yong-Moon Jang, Han-Mei Choi, Je-Woo Han
  • Patent number: 8815677
    Abstract: A method for processing dielectric materials and electrodes to decrease leakage current is disclosed. The method includes a post dielectric anneal treatment in an oxidizing atmosphere to reduce the concentration of oxygen vacancies in the dielectric material. The method further includes a post metallization anneal treatment in an oxidizing atmosphere to reduce the concentration of interface states at the electrode/dielectric interface and to further reduce the concentration of oxygen vacancies in the dielectric material.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: August 26, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Wim Deweerd, Xiangxin Rui, Sandra Malhotra, Hiroyuki Ode
  • Patent number: 8816475
    Abstract: Semiconductor devices having capacitors are provided. The semiconductor device includes spiral storage nodes disposed on a semiconductor substrate to vertically extend along spiral lines, a dielectric layer on the spiral storage nodes, and a plate node formed on the dielectric layer of the spiral storage nodes.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: August 26, 2014
    Assignee: SK Hynix Inc.
    Inventor: Hyung Ju Jin
  • Patent number: 8815678
    Abstract: In a thin film transistor, each of an upper electrode and a lower electrode is formed of at least one material selected from the group consisting of a metal and a metal nitride, represented by TiN, Ti, W, WN, Pt, Ir, Ru. A capacitor dielectric film is formed of at least one material selected from the group consisting of ZrO2, HfO2, (Zrx, Hf1-x)O2 (0<x<1), (Zry, Ti1-y)O2 (0<y<1), (Hfz, Ti1-z)O2 (0<z<1), (Zrk, Til, Hfm)O2 (0<k, l, m<1, k+l+m=1), by an atomic layer deposition process. The thin film transistor thus formed has a minimized leakage current and an increased capacitance.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: August 26, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Toshihiro Iizuka, Tomoe Yamamoto, Mami Toda, Shintaro Yamamichi
  • Patent number: 8815679
    Abstract: First and second multi-layer structures are formed within respective openings in at least one dielectric layer formed over a semiconductor substrate. The first multi-layer structure comprises a gate electrode, and the second multi-layer structure comprises a resistor and a first electrode of a metal-insulator-metal (MIM) capacitor structure. The MIM capacitor structure is completed by forming a dielectric film on the at least one dielectric layer and forming a second electrode on the dielectric film.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: August 26, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiu-Jung Yen, Jen-Pan Wang
  • Publication number: 20140231893
    Abstract: A capacitor and a method of fabricating thereof are provided. A structure of low pressure tetraethyl orthosilicate-low pressure silicon nitride-low pressure tetraethyl orthosilicate is used in the capacitor to replace the oxide-nitride-oxide structure of the existing capacitor; the capacitor has a relatively high unit capacitance value. Furthermore, the structure of low pressure tetraethyl orthosilicate—low pressure silicon nitride—low pressure tetraethyl orthosilicate is fabricaited by low pressure chemical vapor deposition method at relatively low temperature; thus the heat produced in the whole process is relatively low, which is insufficient to make the semiconductor device shift or make the gate metal layer or the metallized silicon layer peel off. Accordingly, the capacitor and the method of fabricating the capacitor of the present invention can be well applied in the process of the 0.5 ?m PIP capacitor or below 0.5 ?m.
    Type: Application
    Filed: August 2, 2012
    Publication date: August 21, 2014
    Applicant: CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Rengang Qin, Dejin Wang, Boyong He
  • Patent number: 8809160
    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor or DRAM cell. In such a device, a high-K zirconia-based layer may be used as the primary dielectric together with a relatively inexpensive metal electrode based on titanium nitride. To prevent corruption of the electrode during device formation, a thin barrier layer can be used seal the electrode prior to the use of a high temperature process and a (high-concentration or dosage) ozone reagent (i.e., to create a high-K zirconia-based layer). In some embodiments, the barrier layer can also be zirconia-based, for example, a thin layer of doped or un-doped amorphous zirconia. Fabrication of a device in this manner facilitates formation of a device with dielectric constant of greater than 40 based on zirconia and titanium nitride, and generally helps produce less costly, increasingly dense DRAM cells and other semiconductor structures.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 19, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Edward Haywood, Pragati Kumar, Sandra G Malhotra, Xiangxin Rui
  • Publication number: 20140225223
    Abstract: A method of fabricating a metal-insulator-metal (MIM) capacitor reduces the number of masks and processing steps compared to conventional techniques. A conductive redistribution layer (RDL) is patterned on a semiconductor chip. A MIM dielectric layer is deposited over the RDL. A first conductive layer of a MIM capacitor is deposited over the MIM dielectric layer. The MIM dielectric layer is patterned using a MIM conductive layer mask. The conductive redistribution layer includes two RDL nodes that extend under the first conductive layer of the MIM capacitor. A conductive via or bump extends through the MIM dielectric layer and couples one of the RDL nodes to the first conductive layer of the MIM capacitor.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 14, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: John J. Zhu, PR Chidambaram, Giridhar Nallapati, Choh fei Yeap
  • Publication number: 20140225224
    Abstract: A metal-insulator-metal (MIM) capacitor reduces a number of masks and processing steps compared to conventional techniques. A first conductive layer of a MIM capacitor is deposited on a semiconductor chip and patterned using a MIM conductive layer mask. A conductive redistribution layer (RDL) is patterned over the MIM dielectric layer. The conductive redistribution layer includes two RDL nodes that overlap the first conductive layer of the MIM capacitor. A conductive via or bump extends through the MIM dielectric layer and couples one of the RDL nodes to the first conductive layer of the MIM capacitor.
    Type: Application
    Filed: February 12, 2013
    Publication date: August 14, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: John J. Zhu, PR Chidambaram, Giridhar Nallapati, Choh fei Yeap
  • Publication number: 20140225227
    Abstract: With a microwave FET, an incorporated Schottky junction capacitance or PN junction capacitance is small and such a junction is weak against static electricity. However, with a microwave device, the method of connecting a protecting diode cannot be used since this method increases the parasitic capacitance and causes degradation of the high-frequency characteristics. In order to solve the above problems, a protecting element, having a first n+-type region—insulating region—second n+-type region arrangement is connected in parallel between two terminals of a protected element having a PN junction, Schottky junction, or capacitor. Since discharge can be performed between the first and second n+ regions that are adjacent each other, electrostatic energy that would reach the operating region of an FET can be attenuated without increasing the parasitic capacitance.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Applicant: Semiconductor Components Industries, LLC
    Inventors: Tetsuro Asano, Mikito Sakakibara, Toshikazu Hirai
  • Patent number: 8802532
    Abstract: Disclosed are example bipolar transistors capable of reducing the area of a collector, reducing the distance between a base and a collector, and/or reducing the number of ion implantation processes. A bipolar transistor may includes a trench formed by etching a portion of a semiconductor substrate. A first collector may be formed on the inner wall of the trench. A second collector may be formed inside the semiconductor substrate in the inner wall of the trench. A first isolation film may be formed on the sidewall of the first collector. An intrinsic base may be connected to the third collector. An extrinsic base may be formed on the intrinsic base and inside the first isolation film. A second isolation film may be formed on the inner wall of the extrinsic base. An emitter may be formed by burying a conductive material inside the second isolation film.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: August 12, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Nam Joo Kim
  • Patent number: 8796044
    Abstract: Device structures, fabrication methods, and design structures for a capacitor of a memory cell of ferroelectric random access memory device. The capacitor may include a first electrode comprised of a first conductor, a ferroelectric layer on the first electrode, a second electrode on the ferroelectric layer, and a cap layer on an upper surface of the second electrode. The second electrode may be comprised of a second conductor, and the cap layer may have a composition that is free of titanium. The second electrode may be formed by etching a layer of a material formed on a layer of the second conductor to define a hardmask and then modifying the remaining portion of that material in the hardmask to have a comparatively less etch rate, when exposed to a chlorine-based reactive ion etch chemistry, than when initially formed.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: August 5, 2014
    Assignee: International Business Machines Corporation
    Inventors: James E. Beecher, William J. Murphy, James S. Nakos, Bruce W. Porth
  • Publication number: 20140210048
    Abstract: A semiconductor ceramic having a compounding molar ratio m between a Sr site and a Ti site that satisfies 1.000?m?1.020, has a donor element present as a solid solution in crystal grains, has an acceptor element present in a grain boundary layer in the range of 0.5 mol or less with respect to 100 mol of the Ti element, contains a Zr element in the range of 0.15 mol or more and 3.0 mol or less with respect to 100 mol of the Ti element, and has the crystal grains of 1.5 ?m or less in average grain size.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Mitsutoshi Kawamoto
  • Patent number: 8790986
    Abstract: A method of manufacturing a semiconductor device, the method including: preparing a semiconductor substrate including a mold layer and a support layer disposed on the mold layer; forming multiple holes that pass through the mold layer and the support layer; forming multiple bottom electrodes in the holes; exposing at least a portion of the bottom electrodes by removing at least a portion of the mold layer; removing a portion of the bottom electrodes from an exposed surface of the bottom electrodes; and sequentially forming a dielectric layer and a top electrode layer on the bottom electrodes.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: July 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae Hyoung Choi, Ki Yeon Park, Joon Kim, Cha Young Yoo, Youn Soo Kim, Ho Jun Kwon, Sang Yeol Kang
  • Patent number: 8790989
    Abstract: A modularized capacitor array includes a plurality of capacitor modules. Each capacitor module includes a capacitor and a switching device that is configured to electrically disconnect the capacitor. The switching device includes a sensing unit configured to detect the level of leakage of the capacitor so that the switching device disconnects the capacitor electrically if the leakage current exceeds a predetermined level. Each capacitor module can include a single capacitor plate, two capacitor plates, or more than two capacitor plates. The leakage sensors and switching devices are employed to electrically disconnect any capacitor module of the capacitor array that becomes leaky, thereby protecting the capacitor array from excessive electrical leakage.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: July 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, Xu Ouyang, Chih-Chao Yang
  • Publication number: 20140203401
    Abstract: Metal-on-Metal (MoM) capacitors having laterally displaced layers and related systems and methods are disclosed. In one embodiment, a MoM capacitor includes a plurality of vertically stacked layers that are laterally displaced relative to one another. Lateral displacement of the layers minimizes cumulative surface process variations making a more reliable and uniform capacitor.
    Type: Application
    Filed: January 24, 2013
    Publication date: July 24, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Xia Li, Bin Yang
  • Publication number: 20140203400
    Abstract: Techniques and structure are disclosed for providing a MIM capacitor having a generally corrugated profile. The corrugated topography is provisioned using sacrificial, self-organizing materials that effectively create a pattern in response to treatment (heat or other suitable stimulus), which is transferred to a dielectric material in which the MIM capacitor is formed. The self-organizing material may be, for example, a layer of directed self-assembly material that segregates into two alternating phases in response to heat or other stimulus, wherein one of the phases then can be selectively etched with respect to the other phase to provide the desired pattern. In another example case, the self-organizing material is a layer of material that coalesces into isolated islands when heated. As will be appreciated in light of this disclosure, the disclosed techniques can be used, for example, to increase capacitance per unit area, which can be scaled by etching deeper capacitor trenches/holes.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Inventors: Mauro J. Kobrinsky, Robert L. Bristol, Michael C. Mayberry
  • Patent number: 8785239
    Abstract: A method of depositing an antimony-comprising phase change material onto a substrate includes providing a reducing agent and vaporized Sb(OR)3 to a substrate, where R is alkyl, and forming there-from antimony-comprising phase change material on the substrate. The phase change material has no greater than 10 atomic percent oxygen, and includes another metal in addition to antimony.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: July 22, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Timothy A. Quick, Eugene P. Marsh
  • Patent number: 8779548
    Abstract: Disclosed is an integrated circuit (IC) comprising a substrate (10) including a plurality of circuit elements and a metallization stack (20) covering said substrate for providing interconnections between the circuit elements, wherein the top metallization layer of said stack carries a plurality of metal portions (30) embedded in an exposed porous material (40) for retaining a liquid, said porous material laterally separating said plurality of metal portions. An electronic device comprising such an IC and a method of manufacturing such an IC are also disclosed.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: July 15, 2014
    Assignee: NXP, B.V.
    Inventors: Youri Victorovitch Ponomarev, Aurelie Humbert, Roel Daamen
  • Patent number: 8779549
    Abstract: An example embodiment relates to a semiconductor memory device including a plurality of cylindrical bottom electrodes arranged in a first direction and in a second direction. The device includes a supporting base configured to support the plurality of cylindrical bottom electrodes by contacting side surfaces of the plurality of cylindrical bottom electrodes. The supporting base includes first patterns in which first open areas are formed, and second patterns in which second open areas are formed. The first patterns and the second patterns have different oriented shapes.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: July 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-mo Kim, Ji-woong Sue, Jin-kyu Park, Young-kwan Park
  • Publication number: 20140193961
    Abstract: Embodiments of MIM capacitors may be embedded into a thick IMD layer with enough thickness (e.g., 10 K?˜30 K?) to get high capacitance, which may be on top of a thinner IMD layer. MIM capacitors may be formed among three adjacent metal layers which have two thick IMD layers separating the three adjacent metal layers. Materials such as TaN or TiN are used as bottom/top electrodes & Cu barrier. The metal layer above the thick IMD layer may act as the top electrode connection. The metal layer under the thick IMD layer may act as the bottom electrode connection. The capacitor may be of different shapes such as cylindrical shape, or a concave shape. Many kinds of materials (Si3N4, ZrO2, HfO2, BST . . . etc.) can be used as the dielectric material. The MIM capacitors are formed by one or two extra masks while forming other non-capacitor logic of the circuit.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuo-Chyuan Tzeng, Luan C. Tran, Chen-Jong Wang, Kuo-Chi Tu, Hsiang-Fan Lee
  • Patent number: 8772123
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current and low EOT involves the use of an compound high k dielectric material. The dielectric material further comprises a dopant. One component of the compound high k dielectric material is present in a concentration between about 30 atomic % and about 80 atomic % and more preferably between about 40 atomic % and about 60 atomic %. In some embodiments, the compound high k dielectric material comprises an alloy of TiO2 and ZrO2 and further comprises a dopant of Al2O3. In some embodiments, the compound high k dielectric material comprises an admixture of TiO2 and HfO2 and further comprises a dopant of Al2O3.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: July 8, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Sandra G. Malhotra, Wim Deweerd, Hiroyuki Ode
  • Publication number: 20140187018
    Abstract: A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a flash layer between the dielectric layer and the first electrode layer. A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capping layer between the dielectric layer and the second electrode layer. The flash layer and the capping layer can be formed using an atomic layer deposition (ALD) technique. The precursor materials used for forming the flash layer and the capping layer are selected such they include at least one metal-oxygen bond. Additionally, the precursor materials are selected to also include “bulky” ligands.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicants: ELPIDA MEMORY, INC, INTERMOLECULAR, INC.
    Inventors: Sandra G. Malhotra, Hiroyuki Ode, Xiangxin Rui
  • Publication number: 20140183693
    Abstract: A device includes a metal pad and a passivation layer having a portion overlapping the metal pad. A capacitor includes a bottom capacitor electrode underlying the passivation layer, wherein the bottom capacitor includes the metal pad. The capacitor further includes a top capacitor electrode over the portion of the passivation layer; and a capacitor insulator including the portion of the passivation layer.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Yi Tsai, Hsien-Wei Chen, Hung-Yi Kuo, Tung-Liang Shao, Ying-Ju Chen, Tsung-Yuan Yu, Jie Chen
  • Patent number: 8765570
    Abstract: A method for forming a capacitor stack is described. In some embodiments of the present invention, a first dielectric material is formed above a first electrode material. The first electrode material is rigid and has good mechanical strength and serves as a robust frame for the capacitor stack. The first dielectric material is sufficiently thin (<2 nm) or highly doped so that it remains amorphous after subsequent anneal treatments. A second dielectric material is formed above the first dielectric material. The second dielectric material is sufficiently thick (>3 nm) or lightly doped or non-doped so that it crystallizes after subsequent anneal treatments. A second electrode material is formed adjacent to the second dielectric material. The second electrode material has a high work function and a crystal structure that serves to promote the formation of the high k-value crystal structure of the second dielectric material.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: July 1, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Sandra Malhotra, Wim Deweerd, Hiroyuki Ode
  • Patent number: 8766400
    Abstract: An electronic device and fabrication method thereof are provided. The electronic device contains a glass substrate, a patterned semiconductor substrate, having at least one opening, disposed on the glass substrate and at least one passive component having a first conductive layer and a second conductive layer, wherein the first conductive layer is disposed between the patterned semiconductor substrate and the glass substrate.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: July 1, 2014
    Inventor: Ching-Yu Ni
  • Patent number: 8765592
    Abstract: A method for contacting MOS devices. First openings in a photosensitive material are formed over a substrate having a top dielectric in a first die area and a second opening over a gate stack in a second die area having the top dielectric, a hard mask, and a gate electrode. The top dielectric layer is etched to form a semiconductor contact while etching at least a portion the hard mask layer thickness over a gate contact area exposed by the second opening. An inter-layer dielectric (ILD) is deposited. A photosensitive material is patterned to generate a third opening in the photosensitive material over the semiconductor contact and a fourth opening inside the gate contact area. The ILD is etched through to reopen the semiconductor contact while etching through the ILD and residual hard mask if present to provide a gate contact to the gate electrode.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: July 1, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Fei Xie, Wen Cheng Tien, Ya Ping Chen, Li Bin Man, Kuo Jung Chen, Yu Liu, Tian Yi Zhang, Sisi Xie
  • Publication number: 20140175603
    Abstract: MIMCAP devices are provided that can be suitable for memory device applications, such as current selector devices for cross point memory array. The MIMCAP devices can have lower thermal budget as compared to Schottky diodes and controllable lower barrier height and lower series resistance as compared to MIMCAP tunneling diodes. The MIMCAP diode can include a low defect dielectric layer, a high defect dielectric layer, sandwiched between two electrodes having different work function values.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: INTERMOLECULAR, INC.
    Inventors: Venkat Ananthan, Imran Hashim, Prashant B. Phatak
  • Publication number: 20140175604
    Abstract: Electrodes, which contain molybdenum dioxide (MoO2) can be used in electronic components, such as memory or logic devices. The molybdenum-dioxide containing electrodes can also have little or no molybdenum element, together with a portion of molybdenum oxide, e.g., MoOx with x between 2 and 3. The molybdenum oxide can be present as molybdenum trioxide MoO3, or in Magneli phases, such as Mo4O11, MO8O23, or Mo9O26. The molybdenum-dioxide containing electrodes can be formed by annealing a multilayer including a layer of molybdenum and a layer of molybdenum oxide. The oxygen content of the multilayer can be configured to completely, or substantially completely, react with molybdenum to form molybdenum dioxide, together with leaving a small excess amount of molybdenum oxide MoOx with x>2.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Sergey Barabash, Dipankar Pramanik, Xuena Zhang
  • Publication number: 20140170833
    Abstract: A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capacitor stack including an oxygen donor dopant incorporated within the dielectric layer. The oxygen donor dopants may be incorporated within the dielectric layer during the formation of the dielectric layer. The oxygen donor materials provide oxygen to the dielectric layer and reduce the concentration of oxygen vacancies, thus reducing the leakage current.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicants: ELPIDA MEMORY, INC, INTERMOLECULAR, INC.
    Inventors: Xiangxin Rui, Sergey Barabash
  • Publication number: 20140167220
    Abstract: Integrated capacitor structures and methods for fabricating same are provided. In an embodiment, the integrated capacitor structures exploit the capacitance that can be formed in a plane that is perpendicular to that of the substrate, resulting in three-dimensional capacitor structures. This allows for integrated capacitor structures with higher capacitance to be formed over relatively small substrate areas. Embodiments are suitable for use by charge pumps and can be fabricated to have more or less capacitance as desired by the application.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Applicant: Spansion LLC
    Inventors: Mark RAMSBEY, Unsoon KIM, Shenqing FANG, Chun CHEN, Kuo Tung CHANG
  • Patent number: 8753952
    Abstract: Ferroelectric capacitor structures for integrated decoupling capacitors and the like. The ferroelectric capacitor structure includes two or more ferroelectric capacitors connected in series with one another between voltage nodes. The series connection of the ferroelectric capacitors reduces the applied voltage across each, enabling the use of rough ferroelectric dielectric material, such as PZT deposited by MOCVD. Matched construction of the series-connected capacitors, as well as uniform polarity of the applied voltage across each, is beneficial in reducing the maximum voltage across any one of the capacitors, reducing the vulnerability to dielectric breakdown.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: June 17, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Scott Robert Summerfelt, John A. Rodriguez, Huang-Chun Wen, Steven Craig Bartling
  • Patent number: 8754525
    Abstract: A semiconductor construct includes a semiconductor substrate and connection pads provided on the semiconductor substrate. Some of the connection pads are connected to a common wiring and at least one of the remaining of the connection pads are connected to a wiring. The construct also includes a first columnar electrode provided to be connected to the common wiring and a second columnar electrode provided to be connected to a connection pad portion of the wiring.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: June 17, 2014
    Assignee: Tera Probe, Inc.
    Inventors: Shinji Wakisaka, Takeshi Wakabayashi