Making Multiple Wavelength Emissive Device Patents (Class 438/956)
  • Patent number: 11749778
    Abstract: A semiconductor device according to an embodiment may include: a light emitting structure; a light transmitting electrode layer disposed on the light emitting structure; and a reflective layer disposed on the light transmitting electrode layer and including a plurality of first openings and a plurality of second openings. The semiconductor device according to the embodiment may include: a first electrode in contact with a first conductivity type semiconductor layer of the light emitting structure; and a second electrode in contact with the light transmitting electrode layer through the plurality of first openings.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: September 5, 2023
    Assignee: SUZHOU LEKIN SEMICONDUCTOR CO., LTD.
    Inventors: Chang Hyeong Lee, June O Song, Tae Sung Lee, Chang Man Lim, Se Yeon Jung, Byung Yeon Choi, Sung Min Hwang
  • Patent number: 8803187
    Abstract: A light emitting device, includes a light emitting diode unit on a substrate; a gas-generating species; an inert gas; a barrier; and a sealant; wherein: the sealant, barrier, and substrate define a protective chamber; and the light emitting diode unit, the gas generating species, and the inert gas are disposed within the chamber.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 12, 2014
    Assignee: Empire Technology Development LLC
    Inventors: William Brenden Carlson, Georgius Abidal Adam, Christopher John Buntel, Kenichi Hashizume, Vincenzo Casasanta, III
  • Patent number: 8772819
    Abstract: A multi-layer array type LED device is provided, which includes a substrate, an encapsulation body, two lead frames, a plurality of LED dices, and a set of optical lens. The outer circumferential edge and the upper and lower periphery of the substrate are completely encapsulated by the encapsulation body so that the multi-layer array type LED device can be tightly packaged. In the present invention, a fluorescent layer is disposed between an optical grease layer and a silica gel protection layer, and thereby the fluorescent layer is protected, and is capable of preventing moisture from permeating therein. On the other hand, in the present invention, the reflection coefficient of the optical grease layer is at least larger than a certain value so that the probability of the light emitted out of the optical chamber can be increased.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: July 8, 2014
    Assignee: Gem Weltronics TWN Corporation
    Inventors: Jon-Fwu Hwu, Yung-Fu Wu, Kui-Chiang Liu
  • Patent number: 8765500
    Abstract: The present disclosure involves a method of packaging a light-emitting diode (LED). According to the method, a group of metal pads and a group of LEDs are provided. The group of LEDs is attached to the group of metal pads, for example through a bonding process. After the LEDs are attached to the metal pads, each LED is spaced apart from adjacent LEDs. Also according to the method, a phosphor film is coated around the group of LEDs collectively. The phosphor film is coated on top and side surfaces of each LED and between adjacent LEDs. A dicing process is then performed to slice through portions of the phosphor film located between adjacent LEDs. The dicing process divides the group of LEDs into a plurality of individual phosphor-coated LEDs.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: July 1, 2014
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Chi-Xiang Tseng, Hsiao-Wen Lee, Min-Sheng Wu, Tien-Ming Lin
  • Patent number: 8703513
    Abstract: A metal plate is prepared, on which at least one joint slit made up of a joint and an opening is formed in a predetermined direction for integrating multiple mounting plates of the light emitting apparatuses. Multiple light emitting elements set in array are mounted on the metal plate. An aperture is provided at a position corresponding to a position for mounting the light emitting element on the metal plate, and a plate-like reflector made of resin, on which a first reflector splitting groove is formed at a position coinciding with the joint slit of the metal plate, is mounted and fixed on the metal plate in such a manner as superimposed thereon. The metal plate and the resinous reflector are superimposed one on another and broken together, whereby the metal plate can be split successfully.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: April 22, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Takaaki Sakai, Shinichi Katano
  • Patent number: 8647905
    Abstract: According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, and a light emitting part provided therebetween. The light emitting part includes a plurality of light emitting layers. Each of the light emitting layers includes a well layer region and a non-well layer region which is juxtaposed with the well layer region in a plane perpendicular to a first direction from the n-type semiconductor layer towards the p-type semiconductor layer. Each of the well layer regions has a common An In composition ratio. Each of the well layer regions includes a portion having a width in a direction perpendicular to the first direction of 50 nanometers or more.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: February 11, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiyuki Harada, Toshiki Hikosaka, Tomonari Shioda, Koichi Tachibana, Hajime Nago, Shinya Nunoue
  • Patent number: 8637876
    Abstract: Disclosed are a light emitting device and a light emitting device package having the same. The light emitting device includes a plurality of light emitting cells including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer; a first electrode layer connected to the first conductive semiconductor layer of a first light emitting cell of the plural light emitting cells; a plurality of second electrode layers under the light emitting cells, a portion of the second electrode layers being connected to the first conductive semiconductor layer of an adjacent light emitting cells; a third electrode layer disposed under a last light emitting cell of the plural light emitting cells; a first electrode connected to the first electrode layer; a second electrode connected to the third electrode layer; an insulating layer around the first to third electrode layers; and a support member under the insulating layer.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: January 28, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Sang Youl Lee, Jung Hyeok Bae, Ji Hyung Moon, Juno Song
  • Patent number: 8598619
    Abstract: A semiconductor light emitting device includes a substrate and a plurality of light emitting cells arranged on the substrate. Each of the light emitting cells includes a first-conductivity-type semiconductor layer, a second-conductivity-type semiconductor layer, and an active layer disposed therebetween to emit blue light. An interconnection structure electrically connects the first-conductivity-type and the second-conductivity-type semiconductor layers of one light emitting cell to the first-conductivity-type and the second-conductivity-type semiconductor layers of another light emitting cell. A light conversion part is formed in a light emitting region defined by the light emitting cells and includes a red and/or a green light conversion part respectively having a red and/or a green light conversion material.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: December 3, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Je Won Kim, Tae Sung Jang, Jong Gun Woo, Jong Ho Lee
  • Patent number: 8580590
    Abstract: A method for manufacturing a polychromatic light emitting diode device, comprising steps of providing an epitaxial substrate and forming a multiple semiconductor layer on the epitaxial substrate, wherein the multiple semiconductor layer comprises an n-type semiconductor layer, a p-type semiconductor layer and an active layer. The active layer emits light of a first wavelength. Thereafter a first wavelength conversion layer is formed on the multiple semiconductor layer. The first wavelength conversion layer is made of semiconductor and absorbs a portion of the light of a first wavelength and emits light of a second wavelength, wherein the second wavelength is longer than the first wavelength.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 12, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Shih-Cheng Huang, Po-Min Tu, Ying-Chao Yeh, Wen-Yu Lin, Peng-Yi Wu, Shih-Hsiung Chan
  • Patent number: 8492184
    Abstract: A device and method improving luminous efficiency and luminescent color in an organic EL display panel used in electronic devices such as televisions or the like by making it easy to adjust the difference in film thickness between layers of different luminescent colors, such as intermediate layers, when the intermediate layers and light-emitting layers are formed by a wet method. By varying by color the volume of a contact hole formed in an interlayer insulation film, which is a lower layer of an organic EL element, the volume of a concavity in each anode plate is adjusted. When ink that includes material for the intermediate layer or the like is sprayed by an inkjet method, the film thickness of the intermediate layer or the like changes in accordance with the amount of ink filing the concavity.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: July 23, 2013
    Assignee: Panasonic Corporation
    Inventors: Seiji Nishiyama, Tetsuro Kondoh
  • Patent number: 8319233
    Abstract: Disclosed is a light emitting device including a substrate, a light emitting structure arranged on the substrate, the light emitting structure including a first semiconductor layer, a second semiconductor layer and an active layer arranged between the first semiconductor layer and the second semiconductor layer, a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer, wherein the light emitting structure has a top surface including a first side and a second side which face each other, and a third side and a fourth side which face each other.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: November 27, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventors: HeeYoung Beom, SungKyoon Kim, MinGyu Na, HyunSeoung Ju
  • Patent number: 8253143
    Abstract: There is provided a light emitting module. The light emitting module includes: a semiconductor light emitting element that emits light; and a plate-like optical wavelength conversion member that converts a wavelength of light emitted from the semiconductor light emitting element and emits light having the converted wavelength. The semiconductor light emitting element and the optical wavelength conversion member are directly bonded to each other.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: August 28, 2012
    Assignee: Koito Manufacturing Co., Ltd.
    Inventor: Shogo Sugimori
  • Patent number: 8043872
    Abstract: A method of manufacturing epitaxial material used for GaN based LED with low polarization effect, which includes steps of growing n-type InGaAlN layer composed of GaN buffer layer (2) and n-type GaN layer (3), low polarizing active layer composed of InGaAlN multi-quantum well structure polarized regulating and controlling layer (4) and InGaAlN multi-quantum well structure light emitting layer (5) and p-type InGaAlN layer (6) on sapphire or SiC substrate (1) in turn. The method adds InGaAlN multi-quantum well structure polarized regulating and controlling layer, thus reduces polarization effect of quantum well active region.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: October 25, 2011
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Hong Chen, Haiqiang Jia, Liwei Guo, Wenxin Wang, Junming Zhou
  • Patent number: 8039369
    Abstract: There is provided a semiconductor light-emitting element and a method of producing the same including high density and high quality quantum dots emitting light at a wavelength of 1.3 ?m. A semiconductor light-emitting element has a first GaAs layer, a second InAs thin film layer having the plurality of InAs quantum dots formed on the first GaAs layer, a third InGaAs layer formed on the second InAs thin film layer having the plurality of InAs quantum dots, and a fourth GaAs layer formed on the third InGaAs layer, wherein the As source is As2.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: October 18, 2011
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Takeru Amano
  • Patent number: 7704762
    Abstract: A method of producing a lamp, including: mounting light emitting junctions in respective receptacles; mounting the receptacles on a curved support structure so as to form a three-dimensional array; and placing the light emitting junctions in electrical connection with the support structure.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: April 27, 2010
    Assignee: Lednium Technology PTY Limited
    Inventors: Balu Jeganathan, John Albert Montagnat
  • Patent number: 7674641
    Abstract: The present invention is to fabricate a flip-chip diode which emits a white light. The diode has a film embedded with silicon quantum dots. And the white light is formed by mixing colorful lights through the film.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: March 9, 2010
    Assignee: Atomic Energy Council
    Inventor: Tsun-Neng Yang
  • Patent number: 7579200
    Abstract: A semiconductor light emitting apparatus is proposed, which has thyristor without increasing number of constituent semiconductor layers, with large degree of freedom of selection of ON voltage.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: August 25, 2009
    Assignee: Sony Corporation
    Inventor: Yoshifumi Yabuki
  • Patent number: 7541205
    Abstract: A method for forming a transparent electrode on a visible light-emitting diode is described. A visible light-emitting diode element is provided, and the visible light-emitting diode element has a substrate, an epitaxial structure and a metal electrode. The metal electrode and the epitaxial structure are located on the same side of the substrate, or located respectively on the different sides of the substrate. An ohmic metal layer is formed on a surface of the epitaxial structure. The ohmic metal layer is annealed. The ohmic metal layer is removed to expose the surface of the epitaxial structure. A transparent electrode layer is formed on the exposed surface. A metal pad is formed on the transparent electrode layer.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: June 2, 2009
    Assignee: Epistar Corporation
    Inventors: Tse-Liang Ying, Shi-Ming Chen
  • Patent number: 7384807
    Abstract: A method of fabricating a vertical structure opto-electronic device includes fabricating a plurality of vertical structure opto-electronic devices on a crystal substrate, and then removing the substrate using a laser lift-off process. The method then fabricates a metal support structure in place of the substrate. In one aspect, the step of fabricating a metal support structure in place of the substrate includes the step of plating the metal support structure using at least one of electroplating and electro-less plating. In one aspect, the vertical structure is a GaN-based vertical structure, the crystal substrate includes sapphire and the metal support structure includes copper. Advantages of the invention include fabricating vertical structure LEDs suitable for mass production with high reliability and high yield.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: June 10, 2008
    Assignee: Verticle, Inc.
    Inventor: Myung Cheol Yoo
  • Patent number: 7214564
    Abstract: A film bulk acoustic wave filter assembly includes a film bulk acoustic filter and an RF circuit. The film bulk acoustic filter unit cell includes a plurality of film bulk acoustic wave resonators. The number, area and arrangement of the resonators depend on the characteristics of the filter. In the film bulk acoustic wave filter, a metal layer made by CMOS processes is used as a lower electrode area of the film bulk acoustic wave filter or a suspended chamber. The film bulk acoustic filter can be integrated with the RF circuit using processes such as the CMOS process. It facilitates the integration of active devices, streamlining of system design and simplification of test processes, and has a great influence on the application of RF communication devices and integration of system-system-chip (SOC).
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: May 8, 2007
    Assignee: Chung Shan Institute of Science and Technology
    Inventors: Po-Hsun Sung, Pei-Yen Chen, Yung-Chung Chin, Pei-Zen Chang, Yen-Ming Pang, Chi-Ming Fang, Chun-Li Hou
  • Patent number: 7192794
    Abstract: A method for forming a transparent electrode on a visible light-emitting diode is described. A visible light-emitting diode element is provided, and the visible light-emitting diode element has a substrate, an epitaxial structure and a metal electrode. The metal electrode and the epitaxial structure are located on the same side of the substrate, or located respectively on the different sides of the substrate. An ohmic metal layer is formed on a surface of the epitaxial structure. The ohmic metal layer is annealed. The ohmic metal layer is removed to expose the surface of the epitaxial structure. A transparent electrode layer is formed on the exposed surface. A metal pad is formed on the transparent electrode layer.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: March 20, 2007
    Assignee: Epitech Technology Corporation
    Inventors: Tse-Liang Ying, Shi-Ming Chen
  • Patent number: 7074631
    Abstract: A method includes disposing a planarization layer on a surface of a layer of semiconductor material and disposing a lithography layer on a surface of the planarization layer. The method also includes performing nanolithography to remove at least a portion of the planarization layer, at least a portion of the lithography layer and at least a portion of the layer of semiconductor material, thereby forming a dielectric function in the surface of the layer of semiconductor material that varies spatially according to a pattern.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: July 11, 2006
    Assignee: Luminus Devices, Inc.
    Inventors: Alexei A. Erchak, John W. Graff, Michael Gregory Brown, Scott W. Duncan, Milan S. Minsky
  • Patent number: 6969626
    Abstract: The present invention relates to a method for forming LED. In the present invention, LED dies are defined by photolithography and etching processes to replace a cutting step, and a metal substrate of the LED is formed by chemical or physical method.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: November 29, 2005
    Assignee: Advanced Epitaxy Technology
    Inventors: Jan-Der Guo, Wen-Chung Tsai, Tsung-Yu Chen, Shao-Hua Huang
  • Patent number: 6872672
    Abstract: An object of the invention is reducing a manufacturing cost of an EL display device and an electronic device equipped therewith. In an active matrix type EL display device, an EL material for a pixel portion is formed by coating steps using a dispenser device. As a discharge port of the dispenser is made into a linear shape, the throughput is increased. Such the dispenser device is used, so that it is possible to simplify the EL layer forming steps, then, to reduce the manufacturing cost.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: March 29, 2005
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Mayumi Mizukami, Toshimitsu Konuma
  • Patent number: 6773948
    Abstract: A semiconductor light emitting device of the present invention includes: a substrate; a light emitting layer; a semiconductor layer of a hexagonal first III-group nitride crystal; and a cladding layer of a second III-group nitride crystal. A stripe groove is provided in the semiconductor layer along a <1, 1, −2, 0> direction.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: August 10, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shinji Nakamura, Masahiro Ishida, Masaaki Yuri, Osamu Imafuji, Kenji Orita
  • Patent number: 6756325
    Abstract: Several methods for producing an active region for a long wavelength light emitting device are disclosed. In one embodiment, the method comprises placing a substrate in an organometallic vapor phase epitaxy (OMVPE) reactor, the substrate for supporting growth of an indium gallium arsenide nitride (InGaAsN) film, supplying to the reactor a group-III-V precursor mixture comprising arsine, dimethylhydrazine, alkyl-gallium, alkyl-indium and a carrier gas, where the arsine and the dimethylhydrazine are the group-V precursor materials and where the percentage of dimethylhydrazine substantially exceeds the percentage of arsine, and pressurizing the reactor to a pressure at which a concentration of nitrogen commensurate with light emission at a wavelength longer than 1.2 um is extracted from the dimethylhydrazine and deposited on the substrate.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: June 29, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: David P. Bour, Tetsuya Takeuchi, Ashish Tandon, Ying-Lan Chang, Michael R. T. Tan, Scott Corzine
  • Patent number: 6468818
    Abstract: A semiconductor light-emitting device has a light-emitting section comprised of at least a lower clad layer, an active layer and an upper clad layer which are formed on a compound semiconductor substrate and a layer grown on the upper clad layer of the light-emitting section. When growing the current diffusion layer from a crystal interface on the upper clad layer in a lattice mismatching state in which the absolute value of a lattice matching factor &Dgr;a/a is not lower than 0.25% with respect to the upper clad layer at a crystal interface where the crystal composition changes on the upper clad layer of the light-emitting section, the growth rate at least at the start time of growth is made to be 1.0 &mgr;m/h or less.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: October 22, 2002
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junichi Nakamura, Hiroshi Nakatsu, Kazuaki Sasaki
  • Patent number: 6399407
    Abstract: A semiconductor light-emitting device having one or more depletion regions that are controlled by one or more control electrodes to vary the spatial distribution of the carriers in an active layer. The voltages on the control electrodes can be controlled to modulate the current density in the active layer and the output light intensity. The polarization of a surface emitting diode laser based on this device can be controlled or modulated.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: June 4, 2002
    Assignee: California Institute of Technology
    Inventors: John O'Brien, Axel Scherer, Amnon Yariv, Reginald Lee, Yuanjian Xu, Oskar Painter
  • Patent number: 6258615
    Abstract: A process for forming an array of vertical cavity optical resonant structures wherein the structures in the array have different detection or emission wavelengths. The process uses selective area growth (SAG) in conjunction with annular masks of differing dimensions to control the thickness and chemical composition of the materials in the optical cavities in conjunction with a metalorganic vapor phase epitaxy (MOVPE) process to build these arrays.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: July 10, 2001
    Assignee: Sandia Corporation
    Inventors: Hong Q. Hou, Michael E. Coltrin, Kent D. Choquette
  • Patent number: 6103555
    Abstract: The reliability of an antifuse can be increased and/or the thickness of the antifuse dielectric can be decreased by the use of a rapid thermal nitridation nitride layer as part of the antifuse dielectric. The RTN nitride layer is denser and has fewer pinholes than nitride layers formed by chemical vapor deposition. The rapid thermal nitridation also produces a good contact with a bottom electrode containing silicon as well as providing a nucleation layer for any additional nitride layer formed by chemical vapor deposition. Increasing the reliability of the antifuse dielectric allows it to be thinner, and thus allows for the programming of the dielectric layer at lower programming voltages.
    Type: Grant
    Filed: June 10, 1996
    Date of Patent: August 15, 2000
    Assignee: Integrated Device Technology, Inc.
    Inventor: Jeong Yeol Choi
  • Patent number: 6033926
    Abstract: A plurality of different wavelength semiconductor lasers are fabricated on a single semiconductor substrate by establishing a thermal gradient across the substrate during epitaxial growth. The result is a variation in composition which produces a corresponding variation of laser wavelength across the substrate. The thermal gradient is preferably achieved by disposing a patterned layer of material (heat reflecting or heat absorbing) on the back side of the substrate, radiatively heating the backside and growing the active layers on the front side. The backside layer is removed when the substrate is lapped to final thickness.
    Type: Grant
    Filed: June 4, 1998
    Date of Patent: March 7, 2000
    Assignee: Lucent Technologies Inc.
    Inventors: Utpal Kumar Chakrabarti, Richard W. Glew, Karen A. Grim-Bogdan
  • Patent number: 5854089
    Abstract: A semiconductor structure including: a substrate having a step portion; a first semiconductor layer formed on a region of the substrate which is selectively irradiated by light at an angle with respect to the projecting portion by using the step portion as a mask; and a second semiconductor layer formed on a region of the substrate shaded by the step portion.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: December 29, 1998
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hiroshi Nakatsu
  • Patent number: RE43426
    Abstract: A method for forming a transparent electrode on a visible light-emitting diode is described. A visible light-emitting diode element is provided, and the visible light-emitting diode element has a substrate, an epitaxial structure and a metal electrode. The metal electrode and the epitaxial structure are located on the same side of the substrate, or located respectively on the different sides of the substrate. An ohmic metal layer is formed on a surface of the epitaxial structure. The ohmic metal layer is annealed. The ohmic metal layer is removed to expose the surface of the epitaxial structure. A transparent electrode layer is formed on the exposed surface. A metal pad is formed on the transparent electrode layer.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: May 29, 2012
    Assignee: Epistar Corporation
    Inventors: Tse-Liang Ying, Shi-Ming Chen