Simultaneous Formation Of Monocrystalline And Polycrystalline Regions Patents (Class 438/969)
  • Patent number: 8293626
    Abstract: It is an object to provide a homogeneous semiconductor film in which variation in the size of crystal grains is reduced. Alternatively, it is an object to provide a homogeneous semiconductor film and to achieve cost reduction. By introducing a glass substrate over which an amorphous semiconductor film is formed into a treatment atmosphere set at more than or equal to a temperature that is needed for crystallization, rapid heating due to heat conduction from the treatment atmosphere is performed so that the amorphous semiconductor film is crystallized. More specifically, for example, after the temperature of the treatment atmosphere is increased in advance to a temperature that is needed for crystallization, the substrate over which the semiconductor film is formed is put into the treatment atmosphere.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: October 23, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Naoki Okuno
  • Patent number: 8236603
    Abstract: A semiconductor structure may include a polycrystalline substrate comprising a metal, the polycrystalline substrate having substantially randomly oriented grains, as well as a buffer layer disposed thereover. The buffer layer may comprise a plurality of islands having an average island spacing therebetween. A polycrystalline semiconductor layer is disposed over the buffer layer.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: August 7, 2012
    Assignees: Solexant Corp., Rochester Institute of Technology
    Inventors: Leslie G. Fritzemeier, Ryne P. Raffaelle, Christopher Leitz
  • Patent number: 7994017
    Abstract: A self-aligned, silicon carbide power metal oxide semiconductor field effect transistor includes a trench formed in a first layer, with a base region and then a source region epitaxially regrown within the trench. A window is formed through the source region and into the base region within a middle area of the trench. A source contact is formed within the window in contact with a base and source regions. The gate oxide layer is formed on the source and base regions at a peripheral area of the trench and on a surface of the first layer. A gate electrode is formed on the gate oxide layer above the base region at the peripheral area of the trench, and a drain electrode is formed over a second surface of the first layer.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: August 9, 2011
    Assignee: Cree, Inc.
    Inventors: Christopher Harris, Kent Bertilsson, Andrei Konstantinov
  • Patent number: 7972919
    Abstract: The present invention relates to a device structure located in a semiconductor substrate and containing high performance vertical NPN and PNP transistors. Specifically, the vertical PNP transistor has an emitter region, and the vertical NPN transistor has an intrinsic base region. The emitter region of the vertical PNP transistor and the intrinsic base region of the vertical NPN transistor are located in a single silicon germanium-containing layer, and they both contain single crystal silicon germanium. The present invention also relates to a method for fabricating such a device structure based on collateral modification of conventional fabrication processes for CMOS and bipolar devices, with few or no additional processing steps.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: July 5, 2011
    Assignee: International Business Machines Corporation
    Inventors: Peter B. Gray, Benjamin T. Voegeli
  • Patent number: 7572715
    Abstract: In one example, a method of epitaxially forming a silicon-containing material on a substrate surface is presented which includes positioning a substrate into a process chamber. The substrate has a monocrystalline surface and at least a second surface, such as an amorphous surface and/or a polycrystalline surface. The substrate is exposed to a deposition gas to deposit an epitaxial layer on the monocrystalline surface and a polycrystalline layer on the second surface. The deposition gas preferably contains a silicon source and at least a second elemental source, such as a germanium source, a carbon source and/or combinations thereof. Thereafter, the method further provides exposing the substrate to an etchant gas to etch the polycrystalline layer and the epitaxial layer in a manner such that the polycrystalline layer is etched at a faster rate than the epitaxial layer.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: August 11, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Yihwan Kim, Arkadii V. Samoilov
  • Patent number: 7560352
    Abstract: A method for epitaxially forming a silicon-containing material on a substrate surface utilizes a halogen containing gas as both an etching gas as well as a carrier gas through adjustments of the process chamber temperature and pressure. It is beneficial to utilize HCl as the halogen containing gas because converting HCl from a carrier gas to an etching gas can easily be performed by adjusting the chamber pressure.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: July 14, 2009
    Assignee: Applied Materials, Inc.
    Inventors: David K. Carlson, Satheesh Kuppurao, Errol Antonio C. Sanchez, Howard Beckford, Yihwan Kim
  • Patent number: 7557010
    Abstract: The invention, in one aspect, provides a method for fabricating a semiconductor device, which includes conducting an etch through an opening in an emitter layer to form a cavity from an underlying oxide layer that exposes a doped tub. A first silicon/germanium (SiGe) layer, which has a Ge concentration therein, is formed within the cavity and over the doped tub by adjusting a process parameter to induce a strain in the first SiGe layer. A second SiGe layer is formed over the first SiGe layer, and a capping layer is formed over the second SiGe layer.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: July 7, 2009
    Assignee: Agere Systems Inc.
    Inventors: Alan S. Chen, Mark Dyson, Nace M. Rossi, Ranbir Singh
  • Patent number: 7312128
    Abstract: In one example, a method of epitaxially forming a silicon-containing material on a substrate surface is presented which includes positioning a substrate into a process chamber. The substrate has a monocrystalline surface and at least a second surface, such as an amorphous surface and/or a polycrystalline surface. The substrate is exposed to a deposition gas to deposit an epitaxial layer on the monocrystalline surface and a polycrystalline layer on the second surface. The deposition gas preferably contains a silicon source and at least a second elemental source, such as a germanium source, a carbon source and/or combinations thereof. Thereafter, the method further provides exposing the substrate to an etchant gas to etch the polycrystalline layer and the epitaxial layer in a manner such that the polycrystalline layer is etched at a faster rate than the epitaxial layer.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: December 25, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Yihwan Kim, Arkadii V. Samoilov
  • Patent number: 7265010
    Abstract: The invention includes a method and resulting structure for fabricating high performance vertical NPN and PNP transistors for use in BiCMOS devices. The resulting high performance vertical PNP transistor includes an emitter region including silicon and germanium, and has its PNP emitter sharing a single layer of silicon with the NPN transistor's base. The method adds two additional masking steps to conventional fabrication processes for CMOS and bipolar devices, thus representing minor additions to the entire process flow. The resulting structure significantly enhances PNP device performance.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: September 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: Peter B. Gray, Jeffrey B. Johnson
  • Patent number: 7227186
    Abstract: An amorphous silicon film is laser irradiated a plural number of times to make the film composed of a plurality of crystal grains while suppressing the formation of protrusions at the boundaries of the adjoining grains to realize a polycrystalline silicon thin film transistor having at least partly therein the clusters of grains, or the aggregates of at least two crystal grains, with preferred orientation in the plane (111), and having high electron mobility of 200 cm2/Vs or above.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: June 5, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Takuo Tamura, Kiyoshi Ogata, Yoichi Takahara, Kazuhiko Horikoshi, Hironaru Yamaguchi, Makoto Ohkura, Hironobu Abe, Masakazu Saitou, Yoshinobu Kimura, Toshihiko Itoga
  • Patent number: 7067341
    Abstract: A method manufactures a single electron transistor device by electro-migration of nanocluster wherein said nanoclusters are metallically passivated and forced to assembly over a lithographic patterned substrate under control of a non homogeneous electric field at room temperature. A controlled migration and the desired location of the metallic passivated nanoclusters are based on a dielectrophoretic process.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: June 27, 2006
    Assignee: STMicroelectronics S.r.l.
    Inventors: Danilo Mascolo, Rossana Scaldaferri, Teresa Napolitano, Valeria Casuscelli, Luigi Occhipinti
  • Patent number: 6991999
    Abstract: A bi-layer silicon electrode and its method of fabrication is described. The electrode of the present invention comprises a lower polysilicon film having a random grain microstructure, and an upper polysilicon film having a columnar grain microstructure.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: January 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Li Fu, Shulin Wang, Luo Lee, Steven A. Chen, Errol Sanchez
  • Patent number: 6964892
    Abstract: An N-channel metal oxide semiconductor (NMOS) driver circuit (and method for making the same), includes a boost gate stack formed on a substrate and having a source and drain formed by a low concentration implantation, and an N-driver coupled to the boost gate stack.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: November 15, 2005
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Rama Divakaruni, Louis Lu-Chen Hsu, Yujun Li
  • Patent number: 6909164
    Abstract: The invention includes a method and resulting structure for fabricating high performance vertical NPN and PNP transistors for use in BiCMOS devices. The resulting high performance vertical PNP transistor includes an emitter region including silicon and germanium, and has its PNP emitter sharing a single layer of silicon with the NPN transistor's base. The method adds two additional masking steps to conventional fabrication processes for CMOS and bipolar devices, thus representing minor additions to the entire process flow. The resulting structure significantly enhances PNP device performance.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: June 21, 2005
    Assignee: International Business Machines Corporation
    Inventors: Peter B. Gray, Jeffrey B. Johnson
  • Patent number: 6884699
    Abstract: A process for making a polycrystalline silicon film includes forming, on a glass substrate, an amorphous silicon film having a first region and a second region that contacts the first region, forming a first polycrystalline portion by irradiating the first region of the amorphous silicon film with laser light having a wavelength not less than 390 nm and not more than 640 nm and forming a second polycrystalline portion that contacts the first polycrystalline portion by irradiating the second region and the portion of the region of the first polycrystalline portion that contacts the second region of the amorphous silicon film with the laser light.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: April 26, 2005
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Seiko Epson Corporation
    Inventors: Tetsuya Ogawa, Hidetada Tokioka, Junichi Nishimae, Tatsuki Okamoto, Yukio Sato, Mitsuo Inoue, Mitsutoshi Miyasaka, Hiroaki Jiroku
  • Patent number: 6593174
    Abstract: A field-effect transistor and a method for its fabrication is described. The transistor includes a monocrystalline semiconductor channel region overlying and epitaxially continuous with a body region of a semiconductor substrate. First and second semiconductor source/drain regions laterally adjoin opposite sides of the channel region and are electrically isolated from the body region by an underlying first dielectric layer. The source/drain regions include both polycrystalline and monocrystalline semiconductor material. A conductive gate electrode is formed over a second dielectric layer overlying the channel region. The transistor is formed by patterning the first dielectric layer to selectively cover a portion of the substrate and leave an exposed portion of the substrate.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: July 15, 2003
    Assignee: STMicroelectronics, Inc.
    Inventor: Richard A. Blanchard
  • Patent number: 6500717
    Abstract: A method for making an integrated circuit includes forming spaced-apart trenches on a surface of a single crystal silicon substrate, lining the trenches with a silicon oxide layer, forming a first polysilicon layer over the silicon oxide layer, forming a second polysilicon layer over the first polysilicon layer, and removing a thickness of the single crystal silicon substrate to expose tubs of single crystal silicon in the second polysilicon layer.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: December 31, 2002
    Assignee: Agere Systems Inc.
    Inventors: Charles Arthur Goodwin, Daniel David Leffel, William Randolph Lewis
  • Patent number: 6407014
    Abstract: The invention provides a method for the production of high quality thermally grown oxide on top of silicon carbide. The high quality oxide is obtained by selectively removing the carbon from the silicon carbide in the areas where oxide formation is desired or required.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: June 18, 2002
    Assignee: Philips Electronics North America Corporation
    Inventor: Dev Alok
  • Patent number: 6337255
    Abstract: A method for forming a trench structure in a silicon substrate, which trench structure serves for electrically insulating a first region of the substrate from a second substrate region. The method proceeds from a growth of a thermal oxide layer on the substrate surface and an application and patterning of a mask layer over the thermal oxide layer. A trench of predetermined depth is subsequently etched into the silicon substrate through the patterned mask layer. The trench is filled by a deposition of a conformal covering oxide layer on the substrate with an essentially uniform thickness that is sufficient for completely filling the trench. Afterwards, a polysilicon layer is deposited on the covering oxide layer and a chemical mechanical planarization method is carried out with high selectivity S between the polysilicon material and the oxide material in order to obtain a flat surface.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: January 8, 2002
    Assignee: Infineon Technologies AG
    Inventors: Stephan Bradl, Olaf Heitzsch, Michael Schmidt
  • Patent number: 6184059
    Abstract: A diamond product comprising a semiconductor layer having an outer surface region of graphite in contact with the metal electrode to form an ohmic junction with the metal electrode, wherein the outer surface region of graphite has a thickness of at least about 12 Å.
    Type: Grant
    Filed: December 26, 1995
    Date of Patent: February 6, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Keiji Hirabayashi, Masaaki Matsushima
  • Patent number: 6171935
    Abstract: A process for producing an epitaxial layer with laterally varying doping includes the following steps: (a) applying a patterned insulator layer to a semiconductor body; (b) growing a first epitaxial layer on the semiconductor body and the patterned insulator layer so that monocrystalline regions are formed over the semiconductor body and polycrystalline regions are formed over the patterned insulator layer, the angle of inclination (&agr;) of the interface between the monocrystalline regions and the polycrystalline regions depending on the grain size of the polycrystalline regions; (c) removing the polycrystalline regions and the insulator layer, and (d) growing a second epitaxial layer which, together with the monocrystalline regions of the first epitaxial layer, forms the epitaxial layer.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: January 9, 2001
    Assignee: Siemens Aktiengesellschaft
    Inventors: Paul Nance, Wolfgang Werner
  • Patent number: 5998844
    Abstract: A method of forming a field effect transistor relative to a monocrystalline silicon substrate, where the transistor has an elevated source and an elevated drain, includes: a) providing a transistor gate over the monocrystalline silicon substrate, the gate being encapsulated fin electrically insulative material; b) providing outer exposed monocrystalline silicon substrate surfaces adjacent the transistor gate; c) cleaning the outer exposed substrate surfaces to remove oxide and impurities therefrom; d) within a rapid thermal chemical vapor deposition reactor and after the cleaning step, chemical vapor depositing conductively doped non-polycrystalline silicon layer over the cleaned substrate surfaces adjacent the transistor gate, the non-polycrystalline silicon layer having an outer surface, the substrate not being exposed to oxidizing or contaminating conditions between the time of cleaning and the chemical vapor depositing; and e) after chemical vapor depositing, exposing the doped non-polycrystalline silicon
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: December 7, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Kirk Prall, Pai-Hung Pan, Sujit Sharan
  • Patent number: 5913135
    Abstract: A method for forming a transistor (50) includes forming a first insulating region (16) in the outer surface of a semiconductor body (10) and forming a second insulating region (16) in the outer surface of the semiconductor body (10) and spaced apart from the first insulating region by a region of semiconductor material. The method further includes planarizing the first and second insulating regions and the region of semiconductor material to define a planar surface (17) and forming a conductive source region (34) overlying the first insulating region. The method further includes forming a conductive drain region (36) overlying the second insulating region and forming a conductive gate body (24) overlying the planar surface (17) and spaced apart from the conductive source region (34) and the conductive drain region (36).A field effect transistor device (50) having a substrate (10) is provided.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: June 15, 1999
    Assignee: Texas Instruments Incorporated
    Inventor: Ih-Chin Chen
  • Patent number: 5840613
    Abstract: A semiconductor device including a bipolar transistor is provided, which can reduce the base resistance of the transistor. This device includes a semiconductor base region having a first semiconductor active region of a first conductivity type in its inside. A first insulating layer is formed on the main surface of the substructure to cover the first active region. The first insulating layer has a first penetrating window exposing the first active region. A semiconductor contact region of a second conductivity type is formed on the first insulating layer. The contact region has an overhanging part which overhangs the first window. The second window is defined by the inner end of the overhanging part to be entirely overlapped with the first window. The contact region is made of a polycrystalline semiconductor. A second semiconductor active region of the second conductivity type is formed on the first active region in the first window.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: November 24, 1998
    Assignee: NEC Corporation
    Inventor: Fumihiko Sato
  • Patent number: 5831334
    Abstract: A method of forming a field effect transistor relative to a monocrystalline silicon substrate, where the transistor has an elevated source and an elevated drain, includes: a) providing a transistor gate over the monocrystalline silicon substrate, the gate being encapsulated in electrically insulative material; b) providing outer exposed monocrystalline silicon substrate surfaces adjacent the transistor gate; c) cleaning the outer exposed substrate surfaces to remove oxide and impurities therefrom; d) within a rapid thermal chemical vapor deposition reactor and after the cleaning step, chemical vapor depositing a conductively doped non-polycrystalline silicon layer over the cleaned substrate surfaces adjacent the transistor gate, the non-polycrystalline silicon layer having an outer surface, the substrate not being exposed to oxidizing or contaminating conditions between the time of cleaning and the chemical vapor depositing; and e) after chemical vapor depositing, exposing the doped non-polycrystalline silico
    Type: Grant
    Filed: August 15, 1997
    Date of Patent: November 3, 1998
    Assignee: Micron Technology, Inc.
    Inventors: Kirk Prall, Pai-Hung Pan, Sujit Sharan
  • Patent number: 5637518
    Abstract: A method of forming a field effect transistor relative to a monocrystalline silicon substrate, where the transistor has an elevated source and an elevated drain, includes: a) providing a transistor gate over the monocrystalline silicon substrate, the gate being encapsulated in electrically insulative material; b) providing outer exposed monocrystalline silicon substrate surfaces adjacent the transistor gate; c) cleaning the outer exposed substrate surfaces to remove oxide and impurities therefrom; d) within a rapid thermal chemical vapor deposition reactor and after the cleaning step, chemical vapor depositing a conductively doped non-polycrystalline silicon layer over the cleaned substrate surfaces adjacent the transistor gate, the non-polycrystalline silicon layer having an outer surface, the substrate not being exposed to oxidizing or contaminating conditions between the time of cleaning and the chemical vapor depositing; and e) after chemical vapor depositing, exposing the doped non-polycrystalline silico
    Type: Grant
    Filed: October 16, 1995
    Date of Patent: June 10, 1997
    Assignee: Micron Technology, Inc.
    Inventors: Kirk Prall, Pai-Hung Pan, Sujit Sharan