Thinning Or Removal Of Substrate Patents (Class 438/977)
  • Patent number: 9034708
    Abstract: There is provided a method of fabricating a semiconductor device, the method including: forming a first semiconductor region at a front surface of a substrate, the first semiconductor region including an active element that regulates current flowing in a thickness direction of the substrate; grinding a rear surface of the substrate; after the grinding, performing a first etching that etches the rear surface of the substrate with a chemical solution including phosphorus; after the first etching, performing a second etching that etches the rear surface with an etching method with a lower etching rate than the first etching; and after the second etching, forming a second semiconductor region through which the current is to flow, by implanting impurities from the rear surface of the substrate.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: May 19, 2015
    Assignee: LAPIS SEMICONDUCTOR CO., LTD.
    Inventor: Masataka Yoshinari
  • Patent number: 9023716
    Abstract: A method for processing substrates includes providing a bonding layer between a substrate and a carrier to bond the substrate to the carrier, processing the substrate while the substrate is supported by the carrier, and removing the bonding layer to separate the substrate from the carrier. The bonding layer may include a thermosetting release layer and thermosetting glue layers, wherein at least one of the thermosetting glue layers is provided on each side of the thermosetting release layer.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: May 5, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chungsun Lee, Jung-Seok Ahn, Kwang-chul Choi, Un-Byoung Kang, Jung-Hwan Kim, Joonsik Sohn, Jeon Il Lee
  • Patent number: 9018031
    Abstract: A single crystal silicon layer is formed on a principal surface of a first wafer by epitaxial growth. A silicon oxide layer is formed on the single crystal silicon layer. Next, a defect layer is formed inside the single crystal silicon layer by ion implantation, and then, the second wafer is bonded to the silicon oxide layer on the first wafer. After that, an SOI wafer including the silicon oxide layer formed on the second wafer and the single crystal silicon layer formed on the silicon oxide layer is formed by separating the first wafer including the single crystal silicon layer from the second wafer including the single crystal silicon layer in the defect layer. Then, a photodiode is formed in the single crystal silicon layer. An interconnect layer is formed on a surface of the single crystal silicon layer which is opposite to the silicon oxide layer.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: April 28, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventor: Akira Tsukamoto
  • Patent number: 9011707
    Abstract: An etching method that uses an etch reactant retained within at least a semi-solid media (120, 220, 224, 230). The etch reactant media is applied to selectively etch a surface layer (106, 218, 222). The etch reactant media may be applied to remove metal shorts (222), smearing and eaves resulting from CMP or in failure analysis for uniform removal of a metal layer (218) without damaging the vias, contact, or underlying structures.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: April 21, 2015
    Assignee: Texas Instruments Incorporated
    Inventor: Darwin Rusli
  • Patent number: 9006085
    Abstract: A wafer processing method including a fixing step of providing a wafer on a protective member so that a device area of the wafer faces an unevenness absorbing member provided in a recess of the protective member and providing an adhesive outside the device area to thereby fix the protective member and the wafer, a grinding step of holding the protective member on a holding table in the condition where the back side of the wafer is exposed and next grinding the back side of the wafer by using a grinding unit to thereby reduce the thickness of the wafer to a predetermined thickness, and a removing step of removing the protective member from the wafer. The adhesive is locally provided outside of the device area, so that the protective member can be easily removed from the wafer without leaving the adhesive on the front side of each device.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: April 14, 2015
    Assignee: Disco Corporation
    Inventor: Karl Heinz Priewasser
  • Patent number: 8987109
    Abstract: A method for manufacturing a bonded wafer includes: an ion implantation step of using a batch type ion implanter; a bonding step of bonding an ion implanted surface of a bond wafer to a surface of a base wafer directly or through an insulator film; and a delamination step of delaminating the bond wafer at an ion implanted layer, thereby manufacturing a bonded wafer having a thin film on the base wafer, wherein the ion implantation into the bond wafer carried out at the ion implantation step is divided into a plurality of processes, the bond wafer is rotated on its own axis a predetermined rotation angle after each ion implantation, and the next ion implantation is carried out at an arrangement position obtained by the rotation.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: March 24, 2015
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Hiroji Aga, Isao Yokokawa, Nobuhiko Noto
  • Patent number: 8975150
    Abstract: A transparent board is positioned on a support board provided with a positioning mark, and a release material is provided. A semiconductor element is then positioned so that the electrode element faces upward, and the support board is then removed. An insulating resin is then formed on the release material so as to cover the semiconductor element; and a via, a wiring layer, an insulation layer, an external terminal, and a solder resist are then formed. The transparent board is then peeled from the semiconductor device through the use of the release material. A chip can thereby be mounted with high precision, there is no need to provide a positioning mark during mounting of the chip on the substrate in the manufacturing process, and the substrate can easily be removed. As a result, a semiconductor device having high density and a thin profile can be manufactured at low cost.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 10, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Kentaro Mori, Shintaro Yamamichi, Hideya Murai, Takuo Funaya, Masaya Kawano, Takehiko Maeda, Kouji Soejima
  • Patent number: 8933570
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: January 13, 2015
    Assignee: Elm Technology Corp.
    Inventor: Glenn J. Leedy
  • Patent number: 8928119
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: January 6, 2015
    Inventor: Glenn J. Leedy
  • Patent number: 8907499
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: December 9, 2014
    Inventor: Glenn J Leedy
  • Patent number: 8895328
    Abstract: A fabrication method of a light-emitting device comprises providing a growth substrate; forming a protective layer on a first surface of the growth substrate; and forming a first semiconductor layer on a second surface of the growth substrate opposite to the first surface, wherein the coefficient of thermal expansion of the growth substrate is smaller than that of the protective layer and the first semiconductor layer.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: November 25, 2014
    Assignee: Epistar Corporation
    Inventors: Sheng Horng Yen, Yung Hsiang Lin, Ying Yong Su, Han Min Wu
  • Patent number: 8865489
    Abstract: Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: October 21, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Ralph Nuzzo, Hoon-sik Kim, Eric Brueckner, Sang Il Park, Rak Hwan Kim
  • Patent number: 8859334
    Abstract: An electronic device manufacturing method includes a cutting step at which a wafer is cut to obtain chips before pattern formation and a polishing step at which cut surfaces of the obtained chips are subjected in one batch to barrel polishing. The method further includes an aligning step at which the polished chips are aligned so that front surfaces thereof face in an upward direction. The method further includes a bonding step at which the cut surfaces of the aligned chips are bonded together with an adhesive to thereby form a chip assembly. The method further includes a pattern forming step at which a circuit pattern is formed on each of the chips of the chip assembly and a melting step at which the adhesive on the chip assembly is melted to thereby separate the chip assembly into chips after pattern formation.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: October 14, 2014
    Assignee: Fujitsu Limited
    Inventors: Hajime Kubota, Masayuki Itoh, Masakazu Kishi
  • Patent number: 8853054
    Abstract: A method is provided for preparing multilayer semiconductor structures, such as silicon-on-insulator wafers, having reduced warp and bow. Reduced warp multilayer semiconductor structures are prepared by forming a dielectric structure on the exterior surfaces of a bonded pair of a semiconductor device substrate and a semiconductor handle substrate having an intervening dielectric layer therein. Forming a dielectric layer on the exterior surfaces of the bonded pair offsets stresses that may occur within the bulk of the semiconductor handle substrate due to thermal mismatch between the semiconductor material and the intervening dielectric layer as the structure cools from process temperatures to room temperatures.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: October 7, 2014
    Assignee: SunEdison Semiconductor Limited
    Inventors: Guoqiang Zhang, Jeffrey L. Libbert
  • Patent number: 8841778
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: September 23, 2014
    Inventor: Glenn J Leedy
  • Patent number: 8835282
    Abstract: A method for forming a multi-material thin film includes providing a multi-material donor substrate comprising single crystal silicon and an overlying film comprising GaN. Energetic particles are introduced through a surface of the multi-material donor substrate to a selected depth within the single crystal silicon. The method includes providing energy to a selected region of the donor substrate to initiate a controlled cleaving action in the donor substrate. Then, a cleaving action is made using a propagating cleave front to free a multi-material film from a remaining portion of the donor substrate, the multi-material film comprising single crystal silicon and the overlying film.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: September 16, 2014
    Assignee: Silicon Genesis Corporation
    Inventors: Francois J. Henley, Nathan Cheung
  • Patent number: 8835289
    Abstract: A wafer and a fabrication method include a base structure including a substrate for fabricating semiconductor devices. The base structure includes a front side where the semiconductor devices are formed and a back side opposite the front side. An integrated layer is formed in the back side of the base structure including impurities configured to alter etch selectivity relative to the base structure such that the integrated layer is selectively removable from the base structure to remove defects incurred during fabrication of the semiconductor devices.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: September 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jennifer C. Clark, Emily R. Kinser, Ian D. Melville, Candace A. Sullivan
  • Patent number: 8824159
    Abstract: A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 ?m in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: September 2, 2014
    Inventor: Glenn J. Leedy
  • Patent number: 8809898
    Abstract: A method of fabricating semiconductor devices, such as GaN LEDs, on insulating substrates, such as sapphire. Semiconductor layers are produced on the insulating substrate using normal semiconductor processing techniques. Trenches that define the boundaries of the individual devices are then formed through the semiconductor layers and into the insulating substrate, beneficially by using inductive coupled plasma reactive ion etching. The trenches are then filled with an easily removed layer. A metal support structure is then formed on the semiconductor layers (such as by plating or by deposition) and the insulating substrate is removed. Electrical contacts, a passivation layer, and metallic pads are then added to the individual devices, and the individual devices are then diced out.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: August 19, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jong Lam Lee, Inkwon Jeong, Myung Cheol Yoo
  • Patent number: 8802454
    Abstract: A method for testing TSVs is provided. A plurality of TSVs is formed in a semiconductor substrate. Wiring layers and a first contact array are formed on the front-side of the substrate. The wiring layers couple each of the TSVs to a respective contact of the first contact array. Conductive adhesive is deposited over the first contact array. The conductive adhesive electrically couples contacts of the first contact array. A carrier is bonded to the front-side of the substrate with the conductive adhesive. After bonding the carrier to the substrate, the back-side of the substrate is thinned to expose each of the TSVs on the back-side of the substrate. A second contact array is formed, having a contact coupled to each respective TSV. Conductivity and connections of the TSVs, wiring layers, and contacts are tested by testing for conductivity between contacts of the second contact array.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 12, 2014
    Assignee: Xilinx, Inc.
    Inventors: Arifur Rahman, Henley Liu, Cheang-Whang Chang, Myongseob Kim, Dong W. Kim
  • Patent number: 8802469
    Abstract: A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, metal layers are deposited everywhere except where a block of stop electroplating material exists. The stop electroplating material is obliterated, and a barrier layer is formed above the entire remaining structure. A sacrificial metal element is added above the barrier layer, and then the substrate is removed. After the semiconductor material between the individual dies is eradicated, any desired bonding pads and patterned circuitry are added to the semiconductor surface opposite the sacrificial metal element, a passivation layer is added to this surface, and then the sacrificial metal element is removed. Tape is added to the now exposed barrier layer, the passivation layer is removed, the resulting structure is flipped over, and the tape is expanded to separate the individual dies.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: August 12, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Chen-Fu Chu, Trung Tri Doan, Hao-Chun Cheng, Feng-Hsu Fan, Fu-Hsien Wang
  • Patent number: 8785297
    Abstract: A method for encapsulating electronic components, including the steps of: forming, in a first surface of a semiconductor wafer, electronic components; forming, on the first surface, an interconnection stack including conductive tracks and vias separated by an insulating material; forming first and second bonding pads on the interconnection stack; thinning down the wafer, except at least on its contour; filling the thinned-down region with a first resin layer; arranging at least one first chip on the first bonding pads and forming solder bumps on the second bonding pads; depositing a second resin layer covering the first chips and partially covering the solder bumps; bonding an adhesive strip on the first resin layer; and scribing the structure into individual chips.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: July 22, 2014
    Assignee: STMicroelectronics (Tours) SAS
    Inventors: Marc Feron, Vincent Jarry, Laurent Barreau
  • Patent number: 8778735
    Abstract: A WLCSP method comprises: depositing a metal bump on bonding pads of chips; forming a first packaging layer at front surface of wafer to cover metal bumps while forming an un-covered ring at the edge of wafer to expose the ends of each scribe line located between two adjacent chips; thinning first packaging layer to expose metal bumps; forming a groove on front surface of first packaging layer along each scribe line by cutting along a straight line extended by two ends of scribe line exposed on front surface of un-covered ring; grinding back surface of wafer to form a recessed space and a support ring at the edge of the wafer; depositing a metal layer at bottom surface of wafer in recessed space; cutting off the edge portion of wafer; and separating individual chips from wafer by cutting through first packaging layer, the wafer and metal layer along groove.
    Type: Grant
    Filed: June 29, 2013
    Date of Patent: July 15, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Yan Xun Xue, Hamza Yilmaz, Yueh-Se Ho, Jun Lu, Ping Huang, Lei Shi, Lei Duan, Yuping Gong
  • Patent number: 8748315
    Abstract: The present disclosure relates to a method of forming a back-side illuminated CMOS image sensor (BSI CIS). In some embodiments, the method comprises forming a plurality of photodetectors within a front-side of a semiconductor substrate. An implant is performed on the back-side of the semiconductor substrate to form an implantation region having a doping concentration that is greater in the center than at the edges of the semiconductor substrate. The back-side of the workpiece is then exposed to an etchant, having an etch rate that is inversely proportional to the doping concentration, which thins the semiconductor substrate to a thickness that allows for light to pass through the back-side of the substrate to the plurality of photodetectors. By implanting the substrate prior to etching, the etching rate is made uniform over the back-side of the substrate improving total thickness variation between the photodetectors and the back-side of the substrate.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: June 10, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: En-Ting Lee, Kun-El Chen, Yu-Sheng Wang, Chien-Chung Chen, Huai-Tei Yang
  • Patent number: 8716108
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a circuit substrate having an active side opposite to an inactive portion; attaching a nonconductive cover to the active side; forming a separation-gap partially cutting into the nonconductive cover and the circuit substrate to a kerf depth; attaching a back-grinding tape to the nonconductive cover; removing a portion of the inactive portion; and exposing the nonconductive cover by removing the back-grinding tape.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: May 6, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: Hun Teak Lee, DaeWook Yang, Yeongbeom Ko
  • Patent number: 8709915
    Abstract: A method of manufacturing a semiconductor device comprises: forming a protective film so as to cover at least a side edge of a substrate; forming a trench, which is annular in shape when viewed oppositely to a first principal surface of the substrate, on the first principal surface by etching using a photoresist pattern; and forming an insulating film so as to fill the trench, to form an insulating ring.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: April 29, 2014
    Inventor: Takeo Tsukamoto
  • Patent number: 8679887
    Abstract: A method for manufacturing a micro-electro-mechanical device, which has supporting parts and operative parts, includes providing a first semiconductor wafer, having a first layer of semiconductor material and a second layer of semiconductor material arranged on top of the first layer, forming first supporting parts and first operative parts of the device in the second layer, forming temporary anchors in the first layer, and bonding the first wafer to a second wafer, with the second layer facing the second wafer. After bonding the first wafer and the second wafer together, second supporting parts and second operative parts of said device are formed in the first layer. The temporary anchors are removed from the first layer to free the operative parts formed therein.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: March 25, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Simone Sassolini, Mauro Marchi, Marco Del Sarto, Lorenzo Baldo
  • Patent number: 8679944
    Abstract: The invention provides a method of trimming a structure that includes a first wafer bonded to a second wafer, with the first wafer having a chamfered edge. The method includes a first trimming step carried out over a first depth that includes at least the thickness of the first wafer and over a first width determined from the edge of the first wafer. A second trimming step is then carried out over a second depth that includes at least the thickness of the first wafer and over a second width that is less than the first width.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 25, 2014
    Assignee: Soitec
    Inventors: Marcel Broekaart, Marion Migette, Sébastien Molinari, Eric Neyret
  • Patent number: 8673740
    Abstract: A method is for formation of an electrically conducting through-via within a first semiconductor support having a front face and comprising a silicon substrate. The method may include forming of a first insulating layer on top of the front face of the first semiconductor support, fabricating a handle including, within an additional rigid semiconductor support having an intermediate semiconductor layer, and forming on either side of the intermediate semiconductor layer of a porous region and of an additional insulating layer. The method may also include direct bonding of the first insulating layer and of the additional insulating layer, and thinning of the silicon substrate of the first semiconductor support so as to form a back face opposite to the front face.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 18, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Julien Cuzzocrea, Laurent-Luc Chapelon
  • Patent number: 8669179
    Abstract: A through-wafer interconnect for imager, memory and other integrated circuit applications is disclosed, thereby eliminating the need for wire bonding, making devices incorporating such interconnects stackable and enabling wafer level packaging for imager devices. Further, a smaller and more reliable die package is achieved and circuit parasitics (e.g., L and R) are reduced due to the reduced signal path lengths.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: March 11, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, Charles M. Watkins, William M. Hiatt, David R. Hembree, James M. Wark, Warren M. Farnworth, Mark E. Tuttle, Sidney B. Rigg, Steven D. Oliver, Kyle K. Kirby, Alan G. Wood, Lu Velicky
  • Patent number: 8669166
    Abstract: One illustrative method disclosed herein includes forming a plurality of die above a crystalline semiconducting substrate, irradiating and cooling an edge region of the substrate to form an amorphous region in the edge region of the substrate and, after forming the amorphous region, performing at least one process operation to reduce the thickness of the substrate.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: March 11, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Rahul Agarwal, Ramakanth Alapati, Jon Greenwood
  • Patent number: 8664028
    Abstract: (a) On a growth substrate, a void-containing layer that is made of a group III nitride compound semiconductor and contains voids is formed. (b) On the void-containing layer, an n-type layer that is made of an n-type group III nitride compound semiconductor and serves to close the voids is formed. (c) On the n-type layer, an active layer made of a group III nitride compound semiconductor is formed. (d) On the active layer, a p-type layer made of a p-type group III nitride compound semiconductor is formed. (e) A support substrate is bonded above the p-type layer. (f) The growth substrate is peeled off at the boundary where the voids are produced. In the above step (a) or (b), the supply of at least part of the materials that form the layer is decreased, while heating, before the voids are closed.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: March 4, 2014
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Yasuyuki Shibata, Ji-Hao Liang
  • Patent number: 8664084
    Abstract: A method for making a thin-film element includes epitaxially growing a first crystalline layer on a second crystalline layer of a support where the second crystalline layer is a material different from the first crystalline layer, the first crystalline layer having a thickness less than a critical thickness. A dielectric layer is formed on a side of the first crystalline layer opposite to the support to form a donor structure. The donor structure is assembled with a receiver layer and the support is removed.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: March 4, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Chrystel Deguet, Laurent Clavelier
  • Patent number: 8637380
    Abstract: According to one embodiment, a method of manufacturing a semiconductor device including forming a metal film on aback surface of a glass substrate which supports a semiconductor substrate on a front surface thereof; forming a metal oxide film by oxidizing the whole or at least a portion of the metal film from the front surface; forming protective film, such as silicon nitride, on the metal oxide film; holding the front surface of the protective film with an electrostatic chuck; and forming a via for electrical connection in the semiconductor substrate while the front surface of the protective film is in contact with by the electrostatic chuck; then using a laser to delaminate the glass substrate from the semiconductor substrate.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: January 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsuko Sakata, Kazuyuki Higashi, Akiko Nomachi, Takeshi Ishizaki
  • Patent number: 8558330
    Abstract: A micromechanical systems (MEMs) pressure sensor includes a semiconductor substrate having a deep well located within a first surface and a cavity located within a second, opposing surface. The semiconductor substrate has a first doping type. The deep well has a second doping type, with a gradient doping profile, thereby forming a PN junction within the substrate. The cavity forms a diaphragm, which is a substrate section that is thinner than the surrounding substrate sections, that comprises the deep well. One or more pizeoresistor elements are located within the deep well. The piezoresistors are sensitive to deformations, such as bending, in the diaphragm caused by changes in the pressure of the cavity.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: October 15, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shao-Chi Yu, Hong-Seng Shue
  • Patent number: 8546244
    Abstract: A method includes the steps of: (a) fixing a front surface of a wafer (semiconductor wafer) having the front surface, a plurality of chip regions formed on the front surface, a dicing region formed between the chip regions, and a rear surface opposite to the front surface to the supporting member; (b) in a state of having the wafer fixed to the supporting member, grinding the rear surface of the wafer to expose the rear surface; (c) in a state of having the wafer fixed to the supporting member, dividing the wafer into the chip regions; (d) etching side surfaces of the chip regions to remove crushed layers formed in the step (c) on the side surfaces and obtain a plurality of semiconductor chips. After the steps (e) and (d), the plurality of divided chip regions are peeled off from the supporting member to obtain a plurality of semiconductor chips.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: October 1, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiyuki Abe, Chuichi Miyazaki, Toshihide Uematsu, Haruo Shimamoto
  • Patent number: 8536445
    Abstract: A method of forming a multijunction solar cell comprising an upper subcell, a middle subcell, and a lower subcell comprising providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on said substrate having a first band gap; forming a second solar subcell over said first subcell having a second band gap smaller than said first band gap; and forming a grading interlayer over said second subcell having a third band gap larger than said second band gap forming a third solar subcell having a fourth band gap smaller than said second band gap such that said third subcell is lattice mismatched with respect to said second subcell.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: September 17, 2013
    Assignee: Emcore Solar Power, Inc.
    Inventors: Arthur Cornfeld, Mark A. Stan
  • Patent number: 8530256
    Abstract: (a) Forming on a growth substrate a void-containing layer that is made of a group III nitride compound semiconductor and contains voids. (b) Forming on the void-containing layer an n-type layer that is made of an n-type group III nitride compound semiconductor and serves to close the voids. (c) Forming on the n-type layer an active layer made of a group III nitride compound semiconductor. (d) Forming on the active layer a p-type layer made of a p-type group III nitride compound semiconductor. (e) Bonding a support substrate above the p-type layer. (f) Peeling off the growth substrate at the boundary where the void are produced. (g) Planarizing the n-type layer. Step (b) comprises (b1) forming part of the n-type layer under conditions where horizontal growth is relatively weak and (b2) forming the remaining part of the n-type layer under conditions where horizontal growth is relatively strong.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: September 10, 2013
    Assignee: Stanley Electric Co., Ltd.
    Inventors: Yasuyuki Shibata, Ji-Hao Liang, Takako Chinone
  • Patent number: 8524537
    Abstract: A semiconductor device has a build-up interconnect structure formed over an active surface of a semiconductor wafer containing a plurality of semiconductor die separated by a saw street. An insulating layer is formed over the interconnect structure. Bumps are formed over the interconnect structure. A protective coating material is deposited over the insulating layer and saw street. A lamination tape is applied over the coating material. A portion of a back surface of the semiconductor wafer is removed. A mounting tape is applied over the back surface. The lamination tape is removed while leaving the coating material over the insulating layer and saw street. A first channel is formed through the saw street extending partially through the semiconductor wafer. The coating material is removed after forming the first channel. A second channel is formed through the saw street and the mounting tape is removed to singulate the semiconductor wafer.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: September 3, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: JaEun Yun, HunTeak Lee, SeungYong Chai, WonJun Ko
  • Patent number: 8518797
    Abstract: The method includes steps of adding first ions to a predetermined depth from a main surface of a semiconductor substrate by irradiation of the semiconductor substrate with a planar, linear, or rectangular ion beam, so that a separation layer is formed; adding second ions to part of the separation layer formed in the semiconductor substrate; disposing the main surface of the semiconductor substrate and a main surface of a base substrate to face each other in order to bond a surface of an insulating film and the base substrate; and cleaving the semiconductor substrate using the separation layer as a cleavage plane, so that a single crystal semiconductor layer is formed over the base substrate. The mass number of the second ions is the same as or larger than that of the first ions.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: August 27, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideto Ohnuma, Shunpei Yamazaki
  • Patent number: 8507367
    Abstract: A method of fabricating semiconductor devices is disclosed. The method comprises providing a substrate with a plurality of epitaxial layers mounted on the substrate and separating the substrate from the plurality of epitaxial layers while the plurality of epitaxial layers is intact. This preserves the electrical, optical, and mechanical properties of the plurality of epitaxial layers.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: August 13, 2013
    Assignee: Tinggi Technologies Pte Ltd.
    Inventors: Xuejun Kang, Shu Yuan, Jenny Lam, Shiming Lin
  • Patent number: 8507362
    Abstract: A process of forming ultra thin wafers having an edge support ring is disclosed. The process provides an edge support ring having an angled inner wall compatible with spin etch processes.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: August 13, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Tao Feng, Sung-Shan Tai
  • Patent number: 8486805
    Abstract: A through-silicon via and a method for forming the same are provided. The method includes: providing a semiconductor substrate, the semiconductor substrate including an upper surface and an opposite lower surface; etching the upper surface of the semiconductor substrate to form an opening; filling the opening with a conductive material to form a first nail; etching the lower surface of the semiconductor substrate to form a recess, such that the first nail is exposed at a bottom of the recess; filling the recess with a conductive material that can be etched, and etching the conductive material that can be etched to form a second nail, such that the second nail is vertically connected with the first nail; and filling a gap between the second nail and the semiconductor substrate and a gap between the second nail and an adjacent second nail with a dielectric layer. Then invention can improve the reliability of through-silicon vias and avoid voids.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: July 16, 2013
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Chao Zhao, Dapeng Chen, Wen Ou
  • Patent number: 8486814
    Abstract: A wafer and a fabrication method include a base structure including a substrate for fabricating semiconductor devices. The base structure includes a front side where the semiconductor devices are formed and a back side opposite the front side. An integrated layer is formed in the back side of the base structure including impurities configured to alter etch selectivity relative to the base structure such that the integrated layer is selectively removable from the base structure to remove defects incurred during fabrication of the semiconductor devices.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jennifer C. Clark, Emily R. Kinser, Ian D. Melville, Candace A. Sullivan
  • Patent number: 8471374
    Abstract: An integrated circuit package system includes a first integrated circuit die having die pads only adjacent a single edge of the first integrated circuit die, forming first L-shaped leadfingers adjacent the single edge, connecting the die pads and the first L-shaped leadfingers, and encapsulating the die pads and portions of the first L-shaped leadfingers to form a first package.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: June 25, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Young Cheol Kim, Koo Hong Lee, Jae Hak Yee
  • Patent number: 8466039
    Abstract: A method of cleaving a substrate is disclosed. A species, such as hydrogen or helium, is implanted into a substrate to form a layer of microbubbles. The substrate is then annealed a pressure greater than atmosphere. This annealing may be performed in the presence of the species that was implanted. This diffuses the species into the substrate. The substrate is then cleaved along the layer of microbubbles. Other steps to form an oxide layer or to bond to a handle also may be included.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: June 18, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Deepak A. Ramappa, Julian G. Blake
  • Patent number: 8465992
    Abstract: A method of manufacturing a flexible display device is provided. The method includes: preparing a first flexible substrate on which a display unit is formed; forming an encapsulation unit including a base substrate, a second flexible substrate formed on the base substrate, and a barrier layer formed on the second flexible substrate; combining the encapsulation unit with the display unit; and separating the base substrate from the second flexible substrate by using a difference between a coefficient of thermal expansion of the base substrate and a coefficient of thermal expansion of the second flexible substrate, by applying a heated solution between the base substrate and the second flexible substrate. The flexible display device is easily manufactured since the base substrate and the second flexible substrate, which have different coefficients of thermal expansion and are coupled to each other, are separable from each other by applying the heated solution.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: June 18, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seung-Hun Kim, Hoon-Kee Min, Dong-Un Jin, Sang-Joon Seo, Sung-Guk An, Young-Gu Kim, Hyung-Sik Kim, Young-Ji Kim
  • Patent number: 8450184
    Abstract: Manufacturing a thin film direct bandgap semiconductor active solar cell device comprises providing a source substrate having a surface and disposing on the surface a stress layer having a stress layer surface area in contact with and bonded to the surface of the source substrate. Operatively associating a handle foil with the stress layer and applying force to the handle foil separates the stress layer from the source substrate, and leaves a portion of the source substrate on the stress layer surface substantially corresponding to the area in contact with the surface of the source substrate. The portion is less thick than the source layer. The stress layer thickness is below that which results in spontaneous spalling of the source substrate. The source substrate may comprise an inorganic single crystal or polycrystalline material such as Si, Ge, GaAs, SiC, sapphire, or GaN. The stress layer may comprise a flexible material.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Devendra Sadana
  • Patent number: 8420505
    Abstract: A process to thin semiconductor wafers to less than 50 microns employs a dissolvable photoresist or polyimide or other glue material to hold a thick carrier plate such as a perforated glass to the top surface of a thick processed wafer and to grind or otherwise remove the bulk of the wafer from its rear surface, leaving only the preprocessed top surface, which may include semiconductor device diffusions and electrodes. A thick metal such as copper or a more brittle copper alloy is then conductively secured to the ground back surface and the glue is dissolved and the carrier plate is removed. The wafer is then cleaned and diced into plural devices such as MOSFETs; integrated circuits and the like.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: April 16, 2013
    Assignee: International Rectifier Corporation
    Inventor: Igor Bol
  • Patent number: 8415208
    Abstract: The present invention provides a peeling off method without giving damage to the peeled off layer, and aims at being capable of peeling off not only a peeled off layer having a small area but also a peeled off layer having a large area over the entire surface at excellent yield ratio. The metal layer or nitride layer 11 is provided on the substrate, and further, the oxide layer 12 being contact with the foregoing metal layer or nitride layer 11 is provided, and furthermore, if the lamination film formation or the heat processing of 500° C. or more in temperature is carried out, it can be easily and clearly separated in the layer or on the interface with the oxide layer 12 by the physical means.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 9, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toru Takayama, Junya Maruyama, Mayumi Mizukami, Shunpei Yamazaki