A Phosphorus Containing Compound And A Nitrogen Containing Compound Patents (Class 442/143)
  • Patent number: 11834256
    Abstract: An array of toilet tissue products comprising first and second packages, where first package conveys one of strength and softness, and where the second package conveys something different than the first package. Lint, basis weight, total dry tensile, absorbency, and softness are common intensive properties of the first and second toilet tissue products and one or more of these common intensive properties can be different between the first and second toilet tissue products.
    Type: Grant
    Filed: October 26, 2022
    Date of Patent: December 5, 2023
    Assignee: The Procter & Gamble Company
    Inventors: Thorsten Knobloch, Michael Ricardo Burns, Jennifer Lori Steeves-Kiss, Illya Torrance Thomas
  • Patent number: 11241610
    Abstract: A method for handling insulating materials used for storing snow, wherein the insulating materials covering a heap of snow stored through the summer are taken off the heap of snow before the snow in the heap of snow is transferred to a selected use. In the method, the insulating materials used for covering the heap of snow stored through the summer are transferred to such another use, in which the insulating materials have at least one function other than mere storage of the insulating materials.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: February 8, 2022
    Assignee: Snow Secure Oy
    Inventor: Mikko Martikainen
  • Patent number: 10385490
    Abstract: A main object of the present invention is to provide a method for manufacturing a binder-containing inorganic fiber molded body where localization of the binder is inhibited. The present invention achieves the object by providing a method for manufacturing a binder-containing inorganic fiber molded body including steps of: a binder solution coating step of coating an inorganic fiber molded body with a binder solution, and a liquid coating step of coating the inorganic fiber molded body coated with the binder solution with a liquid of which boiling point is less than 120° C.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: August 20, 2019
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Toshio Ito, Hidetaka Ito
  • Patent number: 9006118
    Abstract: A filler cloth includes cellulosic fibers treated with a flame retardant chemistry such that the filler cloth has a char length of less than about nine inches when tested in accordance with NFPA 701, such that thermal shrinkage of the filler cloth at 400° F. is less than about 35% in any direction, and such that the filler cloth maintains flame and heat resistant integrity when impinged with a gas flame in accordance with testing protocols set forth in Technical Bulletin 603 of the State of California Department of Consumer Affairs. The filler cloth cellulosic fibers are treated with a flame retardant chemistry such that the filler cloth has a Frazier air permeability of less than about 400 cfm and a thermal resistance rating of at least about 3 when tested according to NFPA 2112.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: April 14, 2015
    Assignee: Precision Fabrics Group, Inc.
    Inventors: Melanie Pierce Jones, James Douglas Small, Jr., John H. Walton, Alfred Frank Baldwin, Jr., Zareh Mikaelian, William Scott Kinlaw
  • Patent number: 8987149
    Abstract: The present invention relates to fire resistant composite materials and to fire resistant fabric materials and mattresses made therefrom. The composite materials include (a) a substrate selected from the group consisting of cotton, rayon, lyocell and blends thereof; and (b) a coating consisting essentially of water, ammonium polyphosphate, binder material, cross-linking material, thickener material and a catalyst. The binder material bonds the ammonium polyphosphate, cross-linking material, thickener material and catalyst together and to the substrate such that the substrate is coated with the coating.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: March 24, 2015
    Assignee: ElkCorp
    Inventor: Younger Ahluwalia
  • Patent number: 8853106
    Abstract: Flame-retardant composition containing a first component selected from phosphorous acid or a salt of phosphorous acid and a second component selected from an isocyanic acid, an isocyanic acid precursor, a cyanate salt, a thiocyanate salt or isothiocyanic acid precursor, dicyandiamide, cyanamide or carbodiimide precursor.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: October 7, 2014
    Assignee: Perachem Limited
    Inventors: Paul Webb, David Malcolm Lewis, Jamie Anthony Hawkes, Andrew Edward Bayliff
  • Patent number: 8822356
    Abstract: The present invention relates to fire resistant composite materials and to fire resistant fabric materials and mattresses made therefrom. The composite materials include (a) a substrate selected from the group consisting of cotton, rayon, lyocell and blends thereof; and (b) a coating consisting essentially of water, ammonium polyphosphate, binder material, cross-linking material, aluminum trihydrate, prefarbricated microcells, thickener material, a surfactant, surfactant-generated microcells and a catalyst. The binder material bonds the ammonium polyphosphate, cross-linking material, aluminum trihydrate, prefarbricated microcells, thickener material, surfactant, surfactant-generated microcells and catalyst together and to the substrate such that the substrate is coated with the coating.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: September 2, 2014
    Assignee: ElkCorp
    Inventor: Younger Ahluwalia
  • Patent number: 8822355
    Abstract: The present invention relates to fire resistant composite materials and to fire resistant fabric materials and mattresses made therefrom. The composite materials include (a) a substrate selected from the group consisting of cotton, rayon, lyocell and blends thereof; and (b) a coating consisting essentially of water, ammonium polyphosphate, urea formaldehyde binder material, prefarbricated glass microcells, acrylic latex binder, ammonium lauryl sulfate surfactant, thickener material, a second surfactant, surfactant-generated microcells, a catalyst and starch. The binder materials bond the ammonium polyphosphate, prefarbricated microcells, thickener material, surfactants, surfactant-generated microcells, catalyst and starch together and to the substrate such that the substrate is coated with the coating.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: September 2, 2014
    Assignee: ElkCorp
    Inventor: Younger Ahluwalia
  • Patent number: 8722551
    Abstract: A flame retardant composition comprises a phosphorous-containing polymer. The phosphorous-containing polymer can be produced by first reacting a phosphonium compound and a nitrogen-containing compound to produce a precondensate compound and then reacting the precondensate compound with a cross-linking composition. The resulting phosphorous-containing intermediate polymer can then be oxidized to convert at least a portion of the phosphorous atoms in the polymer to a pentavalent state. A textile material comprises a textile substrate and a phosphorous-containing polymer, such as that described above.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 13, 2014
    Assignee: Milliken & Company
    Inventors: Richard A. Mayernik, Shulong Li, William C. Kimbrell
  • Patent number: 8460776
    Abstract: Fiberglass-based materials and fire retardant compositions are described, wherein the fiberglass materials and the fire retardant compositions are encapsulated in a plastic cover. Methods for making encapsulated fiberglass articles are also described.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: June 11, 2013
    Assignee: Knauf Insulation GmbH
    Inventors: William Scott Miller, Brian L Swift
  • Publication number: 20120266385
    Abstract: A filler cloth includes cellulosic fibers treated with a flame retardant chemistry such that the filler cloth has a char length of less than about nine inches when tested in accordance with NFPA 701, such that thermal shrinkage of the filler cloth at 400° F. is less than about 35% in any direction, and such that the filler cloth maintains flame and heat resistant integrity when impinged with a gas flame in accordance with testing protocols set forth in Technical Bulletin 603 of the State of California Department of Consumer Affairs. The filler cloth cellulosic fibers are treated with a flame retardant chemistry such that the filler cloth has a Frazier air permeability of less than about 400 cfm and a thermal resistance rating of at least about 3 when tested according to NFPA 2112.
    Type: Application
    Filed: June 28, 2012
    Publication date: October 25, 2012
    Inventors: Melanie Pearce Jones, James Douglas Small, JR., John H. Walton, Alfred Frank Baldwin, JR., Zareh Mikaelian
  • Publication number: 20120266384
    Abstract: A filler cloth includes cellulosic fibers treated with a flame retardant chemistry such that the filler cloth has a char length of less than about nine inches when tested in accordance with NFPA 701, such that thermal shrinkage of the filler cloth at 400° F. is less than about 35% in any direction, and such that the filler cloth maintains flame and heat resistant integrity when impinged with a gas flame in accordance with testing protocols set forth in Technical Bulletin 603 of the State of California Department of Consumer Affairs. The filler cloth cellulosic fibers are treated with a flame retardant chemistry such that the filler cloth has a Frazier air permeability of less than about 400 cfm and a thermal resistance rating of at least about 3 when tested according to NFPA 2112.
    Type: Application
    Filed: June 28, 2012
    Publication date: October 25, 2012
    Inventors: Melanie Pearce Jones, James Douglas Samll, JR., John H. Walton, Alfred Frank Baldwin, JR., Zarch Mikaelian
  • Publication number: 20120246832
    Abstract: A filler cloth includes cellulosic fibers treated with a flame retardant chemistry such that the filler cloth has a char length of less than about nine inches when tested in accordance with NFPA 701, such that thermal shrinkage of the filler cloth at 400° F. is less than about 35% in any direction, and such that the filler cloth maintains flame and heat resistant integrity when impinged with a gas flame in accordance with testing protocols set forth in Technical Bulletin 603 of the State of California Department of Consumer Affairs. The filler cloth cellulosic fibers are treated with a flame retardant chemistry such that the filler cloth has a Frazier air permeability of less than about 400 cfm and a thermal resistance rating of at least about 3 when tested according to NFPA 2112.
    Type: Application
    Filed: May 30, 2012
    Publication date: October 4, 2012
    Inventors: Melanie Pearce Jones, James Douglas Small, JR., John H. Walton, Alfred Frank Baldwin, JR., Zareh Mikaelian
  • Publication number: 20110275264
    Abstract: Provided is a flame resistant fabric comprising a fabric substrate comprising cellulosic fibers and thermoplastic fibers, and a finish applied to the fabric substrate comprising a tetrahydroxymethyl phosphonium salt or a condensate thereof, a cross-linking agent, a brominated compound, and optionally a melamine resin. Also provided are methods of preparing the flame resistant fabric.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 10, 2011
    Inventors: Daniel T. McBride, Warren W. Gerhardt, John L. Sanchez, Lei Zhang, Keith A. Keller, Jenny S. Kimbrell, Keenon Copeland
  • Patent number: 8039077
    Abstract: Fiberglass-based materials and fire retardant compositions are described, wherein the fiberglass materials and the fire retardant compositions are encapsulated in a plastic cover. Methods for making encapsulated fiberglass articles are also described.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: October 18, 2011
    Assignee: Knauf Insulation GmbH
    Inventors: William Scott Miller, Brian L. Swift
  • Patent number: 8012891
    Abstract: A process for imparting flame resistance and the flame resistant fabrics produced by such process are provided. The process for imparting flame resistant properties involves treating a target fabric with one or more flame retardant chemicals (and, preferably, a softening agent) and then curing the treated fabric to durably affix the flame retardant to the fabric. In many cases, it may be desirable to subject the treated fabric to mechanical face finishing to increase softness. Optionally, stain release agents, soil repellent agents, permanent press resins, and the like may be added to the bath of flame retardant chemicals, eliminating the need for one or more additional manufacturing processes. Alternately, soil repellent agents may be applied to only one side of the treated fabric after the application of the flame retardant chemicals. The present fabrics exhibit improved performance and tear strength, even after repeated launderings, as compared to conventionally treated fabrics.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: September 6, 2011
    Assignee: Milliken & Company
    Inventors: Shulong Li, Richard A. Mayernik
  • Publication number: 20110092119
    Abstract: A flame resistant textile is provided. The textile is a sateen weave fabric containing cellulosic fibers, where the sateen weave fabric has a thickness of at least 19.5 mils, a thickness of at least 25 mils after 3 home washes at 120° F., an air permeability of at least 60 cfm, and a weight of less than about 7 oz/yd2. The sateen weave fabric also contains a treatment, where the treatment contains a tetramethylhydroxy phosphonium salt or its condensate and chemical selected from the group consisting of urea, guanidines, guanyl urea, glycoluril, and polyamines. When the sateen weave fabric to which the treatment has been applied has been heat-cured and oxidized at least a portion of the cellulosic fibers have a pentavalent phosphate compound polymerized therein. The method for producing the flame resistant textile is also provided.
    Type: Application
    Filed: May 10, 2010
    Publication date: April 21, 2011
    Inventors: James D. Cliver, James Travis Greer, Candace W. Sturcken, Samuel M. Caudell, Shulong Li
  • Patent number: 7923389
    Abstract: The invention relates to an intumescent body, made from a non-intumescent polymer material providing the form of the body and a coating material applied to the polymer material. According to the invention, the polymer material together with the coating material provides an intumescent system in which the polymer material forms a carbon-donor material.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: April 12, 2011
    Assignee: Raymaster Holding Aktiengesellschaft
    Inventors: Thomas Leucht, Hannes Obernosterer
  • Patent number: 7842401
    Abstract: A halogen-free varnish includes epoxy resin, composite curing agent, condensed phosphate, and filler. The composite curing agent includes Benzoxazine (BZ) resin and amino triazine novolac (ATN) resin. The filler has aluminium hydroxide and silica. Glass fabric is dipped into the varnish so as to form a prepreg with better thermal stability, anti-flammability, and low moisture absorption.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: November 30, 2010
    Assignee: ITEQ Corporation
    Inventor: Li-Chun Chen
  • Publication number: 20100233925
    Abstract: A flame-retardant composition comprising a first component selected from a phosphorous-containing acid or a salt of a phosphorous-containing acid and a second compound selected from an isocyanic acid, an isocyanic acid precursor, a cyanate salt, a thiocyanate salt or isothiocyanate precursor, dicyandiamide, cyanamide or carbodiimide precursor.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 16, 2010
    Applicant: Perachem Limited
    Inventors: Paul Webb, David Malcolm Lewis, Jamie Anthony Hawkes, Andrew Edward Bayliff
  • Publication number: 20100210162
    Abstract: A process for imparting flame resistance and the flame resistant fabrics produced by such process are provided. The process for imparting flame resistant properties involves treating a target fabric with one or more flame retardant chemicals (and, preferably, a softening agent) and then curing the treated fabric to durably affix the flame retardant to the fabric. In many cases, it may be desirable to subject the treated fabric to mechanical face finishing to increase softness. Optionally, stain release agents, soil repellent agents, permanent press resins, and the like may be added to the bath of flame retardant chemicals, eliminating the need for one or more additional manufacturing processes. Alternately, soil repellent agents may be applied to only one side of the treated fabric after the application of the flame retardant chemicals. The present fabrics exhibit improved performance and tear strength, even after repeated launderings, as compared to conventionally treated fabrics.
    Type: Application
    Filed: April 30, 2010
    Publication date: August 19, 2010
    Inventors: Shulong Li, Richard A. Mayernik
  • Publication number: 20100116542
    Abstract: The present invention provides a metal coated fabric having excellent electromagnetic shielding properties. The metal coated fabric of the present invention has a layer of a flame retardant composition on at least one surface thereof, the flame retardant composition being prepared without using a halogen compound or antimony compound.
    Type: Application
    Filed: April 16, 2009
    Publication date: May 13, 2010
    Applicant: SEIREN CO., LTD.
    Inventors: Shigekazu Sugihara, Toru Takegawa, Terufumi Iwaki, Katsuo Sasa
  • Patent number: 7208429
    Abstract: Fibrous structures having an additive, more particularly finished fibrous structures having a nanoparticle solid additive, and/or sanitary tissue products including such finished fibrous structures, are provided.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: April 24, 2007
    Assignee: The Procter + Gamble Company
    Inventors: Kenneth Douglas Vinson, Michael Scott Prodoehl
  • Publication number: 20030129902
    Abstract: A textile product with enhanced flame and/or smoke retardant properties and a method of forming the same is disclosed. The textile product is comprised of a textile material having a primary layer or backing with intumescent particles coated, sprayed, sprinkled, or otherwise applied to the upper surface thereof. Additionally or alternatively, the particles may be incorporated into the tufting primary or backing. The intumescent particles may also be complexed with additional agents, such as antimicrobial agents, softening agents, pliability agent, stain resistant agents, waterproofing agents, static resistance agents and combinations thereof.
    Type: Application
    Filed: November 14, 2002
    Publication date: July 10, 2003
    Inventors: Connie D. Hensler, Raymond A. Berard
  • Patent number: 6559078
    Abstract: A flame retardant suitable for use in mesh sheets comprising a polyolefin resin aqueous dispersion having a resin solid content of 25-75 wt %, 40 to 130 parts by weight of an ammonium polyphosphate compound based on 100 parts by weight of said polyolefin resin aqueous dispersion, and 60 to 150 parts by weight of a metal hydroxide based on 100 parts by weight of the solid content of said polyolefin resin aqueous dispersion.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: May 6, 2003
    Assignee: Kyowa Kabushiki Kaisha
    Inventors: Saiji Nozaki, Kuniaki Kamiya
  • Patent number: 6340645
    Abstract: Intumescent laminate with high heat transfer resistance composed of a glass-fiber web or glass-fiber fabric each of which has been coated with a four-component intumescent composition comprising a) a phosphate compound, b) a melamine compound, c) a polyol and d) an inorganic framework-forming compound.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: January 22, 2002
    Assignee: DSM Fine Chemicals Austria Nfg GmbH & CoKG
    Inventors: Heinz Horacek, Stefan Pieh
  • Patent number: 6316532
    Abstract: A flame retardant composition suitable for mesh sheets comprising 1.5 to 15 parts by weight of red phosphorus, 5 to 50 parts by weight of melamine sulfate, 40 to 150 parts by weight of a metal hydroxide, and a polyolefin-based resin aqueous dispersion having a resin solid content of 25 to 70% by weight. Each of said weights being based upon 100 parts by weight of the solid content of said dispersion. The present invention in many embodiments does not contain halogen, does not experience a rise in the viscosity of flameproofing agent during storage and provides an excellent effect that the flameproofing component does not elute even when a treated mesh sheet is washed and used repeatedly.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: November 13, 2001
    Assignees: Kyowa Kabushiki Kaisha
    Inventors: Saiji Nozaki, Kuniaki Kamiya
  • Patent number: 6153544
    Abstract: A flame retardant composition for treating a high pulp content nonwoven web is provided. The flame retardant composition includes soluble solids formed from inorganic salts, such as ammonium polyphosphate and sulfur. The TGA range of such soluble solids is from about 175.degree. C. to about 370.degree. C. The flame retardant composition may be continuously and uniformly applied to the high pulp content nonwoven web by a non-compressive process.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: November 28, 2000
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Fred Robert Radwanski, Henry Skoog, Terry Ray Cleveland, Phillip Sherman Warren, William Francis Cartwright
  • Patent number: 5942006
    Abstract: A process for the flame-retardant treatment of a cellulosic fabric by impregnating a fabric with an aqueous solution of a tetrakis (hydroxyorgano) phosphonium (THP) and then at least partially drying it. The partially dried impregnated fabric is passed at a speed of 30 to 100 m/minute once through a chamber containing ammonia for a single cure. Both the moisture contained in the fabric and water produced as a by-product of curing are volatilized and condensed on an interior wall of the chamber and flow down the walls to a drain for removal of the condensed water from the apparatus. The process further includes measuring the rate of ammonia in the gas fed into the chamber, determining the ammonia content of the gas and measuring the temperature within the chamber, for maintaining the initial concentration of ammonia in the gas at 70% to 90% by volume and for maintaining the ratio of ammonia input to the THP composition in the range of at least 1.
    Type: Grant
    Filed: July 31, 1997
    Date of Patent: August 24, 1999
    Assignee: Albright & Wilson UK Limited
    Inventor: Robert Cole
  • Patent number: 5912196
    Abstract: A flame retardant composition for treating a high pulp content nonwoven web is provided. The flame retardant composition includes soluble solids formed from inorganic salts, such as ammonium polyphosphate and sulfur. The TGA range of such soluble solids is from about 175.degree. C. to about 370.degree. C. The flame retardant composition may be continuously and uniformly applied to the high pulp content nonwoven web by a non-compressive process.
    Type: Grant
    Filed: December 20, 1995
    Date of Patent: June 15, 1999
    Assignee: Kimberly-Clark Corp.
    Inventors: Fred Robert Radwanski, Henry Skoog, Terry Ray Cleveland, Phillip Sherman Warren, William Francis Cartwright
  • Patent number: 5837621
    Abstract: Fire resistant glass fiber products are produced by coating the glass fibers with at least one nitrogen containing compound and at least 10 weight percent of at least one boron containing compound, drying the glass fibers and curing a binder that is in the coating. The nitrogen containing compound(s) are present in sufficient amounts that there is at least one mol or atom of nitrogen present for each mol or atom of boron present in the boron containing compound(s). When the product is exposed to a fire or high temperatures, such as about 1000 degrees F. or higher, the nitrogen released from the nitrogen containing compound(s) reacts with boron or boron oxide to form a sheath of refractory material around the fibers that protects the fibers and allows the fibers to maintain integrity to higher temperatures and/or for longer times than untreated fibers.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: November 17, 1998
    Assignee: Johns Manville International, Inc.
    Inventor: Richard Emil Kajander
  • Patent number: 5759207
    Abstract: Improved flat duck griege cotton/thermoplastic fiber blend fabrics have been discovered which are suitable for processing into flame resistant fabrics with low laundry shrinkage while maintaining high resistance to molten metal.
    Type: Grant
    Filed: January 23, 1997
    Date of Patent: June 2, 1998
    Assignee: Itex, Inc.
    Inventor: James R. Green