Clutch Controlled Patents (Class 477/86)
  • Patent number: 11339838
    Abstract: A control method of a clutch for a vehicle may include determining whether or not learning of clutch characteristics is possible; learning the clutch characteristics when the learning of the clutch characteristics is possible; determining a clutch torque for controlling the clutch in consideration of a change amount in the clutch torque before and after the learning and controlling the clutch by the determined clutch torque; and determining whether or not it is difficult to continue to learn the clutch characteristics.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: May 24, 2022
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Sung Hyun Cho
  • Patent number: 11174803
    Abstract: In the case of restarting an internal combustion engine that has been automatically stopped during running, the internal combustion engine is restarted by combustion recovery starting when the rotation speed of the internal combustion engine under the input of a restart request is greater than or equal to a predetermined first rotation speed. In the case of restarting the internal combustion engine that has been automatically stopped during running, the internal combustion engine is restarted by cranking recovery starting when the rotation speed of the internal combustion engine under the input of the restart request is lower than the predetermined first rotation speed. The first rotation speed is set lower at the restart of the internal combustion engine in a sailing stop state than at the restart of the internal combustion engine in a coast stop state.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: November 16, 2021
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Terumasa Tsuchiya
  • Patent number: 11111972
    Abstract: A method for controlling an actuator includes providing the actuator with a control unit, a drive unit including an electric motor with a stator and a rotor, a rotor position sensor, connected to the control unit, for detecting a rotation of the rotor, and a displacer unit, drivable by the rotation of the rotor, for displacing a fluid. The displacer unit includes a geometric displacement volume per revolution of the rotor. The method also includes generating a predetermined pressure at the displacer unit by applying an electrical driving power to the electric motor, maintaining the predetermined pressure over a predetermined time interval, determining the rotation of the rotor with the rotor position sensor during the predetermined time interval, and determining a leakage volume flow.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: September 7, 2021
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Manuel Weiler, Roshan Willeke
  • Patent number: 11105383
    Abstract: A drive train arrangement for a motor vehicle includes at least one drive device, a start-up element arrangement, a gear drive arrangement, at least one driveshaft configured to drive drive wheels, an electronic operator control member configured to be operated, a torque control member, and a controller. The controller is configured to store torque regions for a change in load and to transmit a torque default value to the torque control member depending on an actuation of the electronic operator control member. The stored torque regions are zero transition regions with a zero transition starting point and a zero transition end point for covering all zero-load clearance regions. The controller is configured to adapt at least one respective zero transition region of at least one respective stored torque region.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: August 31, 2021
    Assignee: Dr. Ing. h.c. F. Porsche Aktiengesellschaft
    Inventors: Benjamin Blatter, Dominik Kohl, Ulrich Franz Uhlirsch, Matthias Brandl
  • Patent number: 10882534
    Abstract: In one embodiment, in response to a first control command originated from a driver of an ADV, an expected acceleration of the ADV in response to the first control command is determined in view of a current speed of the ADV under the standard driving environment (e.g., dry road, flat road surface, normal tire pressure, zero load). One of the command calibration tables is selected based on a current driving environment of the ADV at the point in time. A lookup operation is performed in the selected command calibration table to obtain a second control command based on the current speed and expected acceleration of the ADV. The second control command is then issued to the ADV to control the ADV. As a result, the ADV would have reached the same acceleration under the current driving environment as if the ADV was driving in the standard driving environment.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: January 5, 2021
    Assignee: BAIDU USA LLC
    Inventor: Fan Zhu
  • Patent number: 10697502
    Abstract: A transmission includes a case defining a bore and a piston disposed within the bore. The piston and the case define a fluid chamber in fluid communication with a fluid source. The piston includes an annular piston body defining a plurality of auxiliary bores angularly spaced along the annular piston body about a central axis of the annular piston body. The piston further includes a plurality of auxiliary pistons disposed within the auxiliary bores. The piston body and the auxiliary pistons have rear surfaces in communication with the fluid chamber. The transmission further includes a clutch pack disposed opposite the piston from the fluid chamber. The clutch pack includes at least one friction plate, at least one separator plate, and at least one separator spring. The transmission further includes a return spring adapted to bias the annular piston body in a direction away from the clutch pack.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: June 30, 2020
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventor: Bradley Ronald Heuver
  • Patent number: 10626984
    Abstract: A gearbox (100) includes an input shaft (105), which is connected to a drive source, and a first and a second proportionally controllable shift element (A-F). A method (200) for open-loop control of the gearbox (100) includes: determining (210) an absolute torque demand (330) on the drive source on the basis of a profile controlled by way of an open-loop system (340) and a profile controlled by way of a closed-loop system (345); determining (220) whether the absolute torque demand (330) threatens to exceed a predetermined threshold value (335); and, in response, reducing (225) the portion controlled by way of the closed-loop system (345).
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: April 21, 2020
    Assignee: ZF FRIEDRICHSHAFEN AG
    Inventors: Harald Stehle, Günther Maier, Christian Villing
  • Patent number: 10293814
    Abstract: A method for operating a motor vehicle originates from a condition in which a torque converter lockup clutch (6) or a master clutch (13) is engaged and the transmission (2) is friction-locking. The torque converter lockup clutch (6) or the master clutch (13) is then brought into a slip condition on a control side, and a prime-mover rotational speed is decoupled from a driven-end rotational speed. The torque converter lockup clutch (6) or the master clutch (13) is brought into the slip condition without reducing a pressure control of the torque converter lockup clutch (6) or the master clutch (13) and by specifying a target rotational speed or a target torque for the prime mover (1) such that a torque or a target torque is greater than a power transmission capacity of the torque converter lockup clutch (6) or the master clutch (13) and slip is built up.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: May 21, 2019
    Assignee: ZF FRIEDRICHSHAFEN AG
    Inventors: Felix Bühle, Thomas Lemp
  • Patent number: 10274024
    Abstract: A dual clutch device is provided with a first piston for engaging a first clutch by using hydraulic pressure supplied to a first hydraulic chamber and disengaging the first clutch by using a first spring, a second piston for engaging a second clutch by using hydraulic pressure supplied to a second hydraulic chamber and disengaging the second clutch by using a second spring, first supply lines for supplying hydraulic pressure to the first hydraulic chamber and a second hydraulic canceling chamber, second supply lines for supplying hydraulic pressure to the second hydraulic chamber and a first hydraulic canceling chamber, a first valve for allowing or blocking the hydraulic pressure supply to the first hydraulic chamber and the second hydraulic canceling chamber, and a second valve for allowing or blocking the hydraulic pressure supply to the second hydraulic chamber and the first hydraulic canceling chamber.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: April 30, 2019
    Assignee: ISUZU MOTORS LIMITED
    Inventor: Tomoaki Shimozawa
  • Patent number: 10138957
    Abstract: A clutch control method for a vehicle includes steps of: calculating, by a controller, an estimated clutch torque by substituting a plurality of parameters, and a sensed stroke of a clutch actuator into a predetermined characteristic function; updating, by the controller, the parameters as new values by a prediction error method using a torque error, which is a difference between a reference clutch torque and the estimated clutch torque; calculating a desired stroke by substituting a desired clutch torque and the updated parameters into a predetermined characteristic inverse function; and driving the clutch actuator based on the calculated desired stroke to control the clutch by the controller. The plurality parameters represent physical properties of a clutch, and the predetermined characteristic function represents characteristics of a clutch transmission torque to a clutch actuator stroke.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: November 27, 2018
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, IUCF-HYU (INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG)
    Inventors: Jin Sung Kim, Ho Young Lee, Jahng Hyon Park, Young Ho Ko
  • Patent number: 9939032
    Abstract: During the inertia phase of a shift, the oncoming clutch is controlled to alleviate shift quality degradation due variability of clutch friction coefficient. The friction coefficient sometimes increases as the slip speed nears zero. The commanded clutch pressure is a sum of an open loop term and a closed loop term. The open loop term decreases as the clutch slip decreases. Thus, when the friction coefficient increases at the end of the inertia phase, the clutch torque remains nearly constant. When the friction coefficient does not increase at the end of the inertia phase, the closed loop term responds to the resulting decreasing rate of slip speed reduction.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: April 10, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Cory Benson LaRoche, Bradley Dean Riedle, Stephen Michael Cicala
  • Patent number: 9890856
    Abstract: A hydraulic pressure supply apparatus, capable of quickly supplying hydraulic pressure to a power transmission apparatus and extending the service life of an accumulator for supplying hydraulic pressure to the power transmission apparatus, includes an oil pump which uses an internal combustion engine as a motive power source and is connected to the power transmission apparatus via an oil passage, for supplying operating hydraulic pressure to the power transmission apparatus, an accumulator connected to the oil passage and capable of accumulating hydraulic pressure, and a switching valve capable of effecting communication between the accumulator and the oil passage by opening during operation of the engine and cutting off the communication therebetween by closing during automatic stop of the engine. When it is determined that the engine is under manual stop caused by turn-off of an ignition switch of a vehicle, manual stop-time control for opening the switching valve is performed.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: February 13, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Fumishige Miyaoka, Toshikazu Uneyama
  • Patent number: 9739371
    Abstract: A method and system are provided for operating a lockup clutch of a torque converter of a motor vehicle. The torque converter includes a pump rotatably driven by a drive unit, a rotatable turbine fluidly coupled to the pump and configured to drive an input shaft of a transmission, and a lockup clutch selectively engageable to non-fluidically couple the pump to the turbine to transmit torque from the drive unit to the transmission. The operation of the lockup clutch is controlled by the system in response to detecting that the motor vehicle is coasting.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: August 22, 2017
    Assignee: Allison Transmission, Inc.
    Inventors: John Byerly, Jeff Shultz
  • Patent number: 9669824
    Abstract: Systems and methods for operating a driveline of a hybrid powertrain that includes a motor/generator and driveline disconnect clutch are described. The systems and methods may adjust a torque capacity of the driveline disconnect clutch during engine starting. Torque output from the motor/generator may also be adjusted during engine starting.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: June 6, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Scott James Thompson, Bernard D. Nefcy, Todd Mccullough
  • Patent number: 9329099
    Abstract: A fault diagnostic method for an automatic transmission may include monitoring an operating state of a trim system configured to selectively supply clutch engagement pressure and exhaust to at least one clutch control valve, determining an expected operating state of the trim system based on current operating conditions of the transmission, and generating a fault signal if the monitored operating state of the trim system is different from the expected operating state of the trim system.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 3, 2016
    Assignee: Allison Transmission, Inc.
    Inventors: Charles F. Long, Darren J. Weber, John William Edward Fuller
  • Patent number: 9267581
    Abstract: A driver pulley assembly for a continuously variable transmission (CVT) includes a roller weight guide, having an inner and outer periphery, adapted to be mounted on the main shaft of the CVT. A plurality of ramp windows extend radially along the roller weight guide. A pair of guide rails extend along opposite edges of each ramp window. A plurality of roller weights, mounted on the pair of guide rails, is adapted to move along the pair of guide rails in a radial direction of the roller weight guide. A ramp structure, coinciding with the ramp window, extends in the radial direction of the roller weight guide and abuts the plurality of roller weights. The roller weighs are adapted to move radially outwards along the ramp structure with increasing rotational speed of the roller weight guide. The ramp structures have ramp profiles. CVT systems and vehicles including the driver pulley assembly are also included.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: February 23, 2016
    Assignee: BPG Recreational Inc.
    Inventors: Ryan James Fairhead, Steve Micacchi
  • Patent number: 9211880
    Abstract: A method of adapting the characteristic curve of clutches in a partial dual-clutch transmission of a vehicle, for example a utility vehicle, having a first partial transmission in the form of a dual-clutch transmission (DKG) having a dual clutch (DK) that includes a first clutch (K1) and a second clutch (K2), which can be functionally connected to a drive engine (M), and a second partial transmission in the form of a main transmission (HG) which shifts with traction force interruption and which is arranged downstream from the dual-clutch transmission (DKG) in a drive-train. To achieve reliable and precise clutch control and a consistently high level of shifting comfort, the characteristic curve adaptation of the first and the second clutches (K1, K2) is carried out with the assistance of a pre-loading of the first and the second clutches (K1, K2), while the main transmission (HG) is in a neutral position.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: December 15, 2015
    Assignee: ZF Friedrichshafen AG
    Inventor: Roland Mair
  • Patent number: 9039570
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, torque transferred via a driveline disconnect clutch is estimated based on characteristics of a torque converter to improve driveline operation.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: May 26, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Jeffrey Allen Doering, Alex O'Connor Gibson, Dennis Craig Reed, Gregory Michael Pietron, Seung-Hoon Lee
  • Patent number: 9022902
    Abstract: A method and transmission control unit configured to improve shift event performance in a vehicle with an automatic transmission by determining a vent time for release of a clutch assembly in a transmission of a vehicle. The vehicle must be stopped and a gear selector in the vehicle must be set to a drive condition. If these conditions are met, the clutch assembly is vented. The vent time from when venting begins to when a turbine (or input shift) speed of the transmission rises is tracked. Once the turbine speed of the transmission rises, the clutch assembly is reapplied. The clutch assembly vent time is set based on the tracked vent time.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: May 5, 2015
    Assignee: FCA US LLC
    Inventors: Gang Chen, Hussein Dourra, Marvin Correia
  • Patent number: 9020718
    Abstract: A torque converter (1) connecting an engine (14) and a transmission (15) of a vehicle is provided with a lockup clutch (2), and a controller (5) is programmed to increase an engagement force of a lockup clutch (2) under open loop control before shifting to feedback control of the engaging force using a target slip rotation speed. When an engine output torque rapidly decreases during open loop control (S59, S60), the controller (5) decreases the engaging force according to a variation amount of the engine output torque (S61, S65), thereby preventing an unintentional sudden engagement of the lockup clutch (2) due to decrease in the engine output torque.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: April 28, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yuji Katsumata, Satoshi Segawa
  • Publication number: 20150072831
    Abstract: If, in uphill deceleration determination procedure, it is determined that the vehicle is being decelerated on an uphill slope, a transmission shift lever is in D range, the motor is in order, the start gear is a first specified gear or lower, a to-be-selected traveling gear is a second specified gear or lower, an actual even-numbered gear is a third specified gear or higher, and actual odd-numbered gear is a fourth specified gear or higher, a first, a second and a third synchronizer mechanisms are put in neutral position to create a state in which no gear is selected. Then, a shift to a gear suited for re-acceleration is conducted by activating operating the first, second and the third synchronizer mechanisms.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 12, 2015
    Inventor: Kunio Sakata
  • Publication number: 20150038295
    Abstract: A power transmission apparatus comprises an input shaft, an output shaft, a clutch device, and an actuator. The clutch device comprises a clutch hub, a clutch housing, a clutch pack, an input side cam mechanism for pressing the clutch pack toward the output shaft, an output side cam mechanism for pressing the clutch pack toward the input shaft, a return spring for urging the clutch pack to have its elements moved away from each other, and a drive shaft having an input side gear for transmitting the driving force of the actuator to the input side cam mechanism, and an output side gear for transmitting the driving force of the actuator to the output side cam mechanism.
    Type: Application
    Filed: March 7, 2012
    Publication date: February 5, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takahiro Yoshimura
  • Publication number: 20150018171
    Abstract: A control device for a solenoid valve that controls a solenoid valve included in a hydraulic control device using a control signal set through feedback control such that an actual current that flows through a solenoid of the solenoid valve matches a command current, including a command current setting device for setting the command current within a range of an upper-limit current. The command current setting device is operable for changing the upper-limit current from a first upper-limit value to a second upper-limit value that is smaller than the first upper-limit value in accordance with a reduction in voltage of a battery that supplies electric power to the solenoid.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 15, 2015
    Applicant: AISIN AW CO., LTD.
    Inventors: Hideya Kawai, Hirotaka Kataoka
  • Patent number: 8924115
    Abstract: The disclosure describes, in one aspect, a control system for controlling a braking system. The control system includes a parking brake operatively to at least one wheel, a park brake override mechanism operatively associated with the parking brake, an inching pedal operatively coupled to a transmission, a shift lever operatively coupled to the transmission, at least one sensor operatively coupled to the parking brake to detect when the parking brake is engaged, at least one sensor operatively coupled to the inching pedal to detect a depression of the inching pedal, and at least one sensor operatively coupled to the shift lever for detecting at least one of a forward or reverse gear selection. The control system further includes a controller operatively coupled to the at least one sensors to receive corresponding signals and adapted to control the engagement of the parking brake when the inching pedal is depressed and the at least one of the forward or reverse gear selections is desired.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: December 30, 2014
    Assignee: Caterpillar Inc.
    Inventors: Mohammad Rahman, Mark Behn, Aaron Gnagey, James Roal, Kirk Shively, Cory Smith
  • Publication number: 20140364274
    Abstract: A system for shifting a transmission includes an off-going clutch, an on-coming clutch, and an assisting clutch. A controller is configured to increase an amount of torque carried by each of the on-coming clutch and the assisting clutch. The controller is further configured to reduce an amount of torque carried by the off-going clutch and, after the off-going clutch is disengaged, to reduce the amount of torque carried by the assisting clutch.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 11, 2014
    Inventors: Timothy A. Lorentz, Hoon Lee, Brent G. Drews
  • Patent number: 8880310
    Abstract: If it is determined that a D range is in use and determined that a vehicle is stopped, neutral control means (25) commands and controls an engagement pressure of a clutch (C-1) so as to achieve a state in which a piston of the clutch (C-1) contacts a clutch drum by a biasing force of a spring, and a state in which oil fills an oil passage from a linear solenoid valve (SLC1) to a hydraulic oil chamber and fills the hydraulic oil chamber. There is thus no drag loss in the clutch (C-1) during a neutral control, and the same fuel economy as when, for example, a manual shift to the neutral range is made can be achieved during the neutral control.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: November 4, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Hiroshi Tsutsui, Yutaka Teraoka, Masatake Ichikawa, Shoji Omitsu
  • Publication number: 20140315683
    Abstract: Method to control a clutch device within a transmission selectively coupling an internal combustion engine to a driveline includes controlling slip of the clutch device in response to an engine autostart event. Controlling slip includes adjusting a commanded fill pressure to the clutch device to a first predetermined magnitude that exceeds a pressure threshold until the clutch device is filled, decreasing the commanded fill pressure from the first predetermined magnitude to a second predetermined magnitude below the pressure threshold, and adjusting the commanded fill pressure in accordance with a first ramping profile and in accordance with a subsequent second ramping profile when a transmission input speed achieves a desired first transmission input speed.
    Type: Application
    Filed: April 17, 2013
    Publication date: October 23, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: MICHAEL WILLIAM ROBLIN, KRISTOPHER J. KOKKO, TONY T. HOANG, BRIAN L. SPOHN
  • Patent number: 8862344
    Abstract: A clutch actuator and to a method for the control thereof. The actuator actuates a multi-disk clutch, and to do so has actuator modules. The number of which corresponds to the number of the friction clutches. The modules have separate control units and electric motors, which are controlled by the control units and act on the friction clutches by a disengaging mechanism. In order to counter block the partial drive trains disposed downstream of the friction clutches, particularly automatically closed friction clutches during a malfunction of an actuator module, the actuator modules are connected among each other to a data line, which allows monitoring of the actuator modules and counter-measures.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: October 14, 2014
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Martin Zimmermann, Matthias Gramann, Juergen Gerhart, Martin Rapp, Wolfgang Hill, Michael Menzel, Wai-Wai Buchet
  • Patent number: 8825321
    Abstract: An automatic transmission control apparatus includes: a frictional engagement element; a hydraulic pressure supplying section configured to supply a hydraulic pressure to the frictional engagement element; a progression state judging section configured to judge a progression state of the engagement of the frictional engagement element; a rotational speed change rate control section configured to control the hydraulic pressure so that a change rate of a rotational speed of an input shaft of the automatic transmission becomes equal to a target change rate, from when the engagement of the frictional engagement element is started; and a rotational speed feedback control section configured to perform a feedback control of the hydraulic pressure so that the rotational speed of the input shaft of the automatic transmission becomes equal to a target rotational speed, from when the progression state judging section judges a predetermined progression state.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: September 2, 2014
    Assignees: JATCO Ltd, Nissan Motor Co., Ltd.
    Inventors: Koji Dohi, Minari Ishii
  • Patent number: 8788160
    Abstract: A control system for a transmission engages at least three clutches to create braking within the transmission to slow a machine during a shuttle shifting operation. The control system may apply the clutches so as to allocate wear between the clutches equally or unequally, as desired.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: July 22, 2014
    Assignee: Caterpillar Inc.
    Inventors: Timothy Lorentz, Mathew Guldan, Hoon Lee
  • Patent number: 8775036
    Abstract: When a capacity coefficient (Cre) of a torque converter is larger than or equal to a predetermined threshold (CreA), a speed ratio (e) is calculated on the basis of an actual power transmission efficiency (?) by referring to a predetermined unique relationship between a power transmission efficiency (?) and a speed ratio (e). Therefore, even in a second speed ratio variation range (R2) in which the capacity coefficient (Cre) is larger than or equal to the threshold (CreA) and the speed ratio (e) is not uniquely determined for the capacity coefficient (Cre), the speed ratio (e) is calculated using the unique relationship between the speed ratio (e) and the power transmission efficiency (?), so the speed ratio (e) may be calculated in all the speed ratio variation range of the torque converter.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: July 8, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Daisuke Inoue
  • Publication number: 20140148304
    Abstract: A vehicle powertrain includes a transmission and a clutch. The slip of the clutch is adjusted to a target where a magnitude of a sensed parameter of a shaft of the transmission corresponds to a desired noise, vibration, and harshness (NVH) level in the powertrain. The sensed parameter of the transmission shaft may be one of acceleration, speed, and torque of the transmission shaft. The transmission shaft may be one of the input shaft and output shaft of the transmission.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 29, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Gregory Michael Pietron, Yuji Fujii, Diana Yanakiev, Joseph F. Kucharski, Nimrod Kapas, Alexander O'Connor Gibson, Seung-Hoon Lee
  • Publication number: 20140141933
    Abstract: A drive system and method includes a gearbox system, a first hydraulic motor driving a first input shaft, a second hydraulic motor driving a second input shaft, a drive pump driving the first and second hydraulic motors, and a system control for controlling the drive pump, the clutch assembly, and the first and second hydraulic motors. The gearbox system includes the first input shaft having a first input gear driving a first output gear on an output shaft, the second input shaft having a second input gear driving a second output gear disengageable from the output shaft, and a clutch assembly for engaging the second output gear with the output shaft. The clutch assembly includes a clutch to engage the second output gear with the output shaft, and a fluid access channel through a rotary manifold to provide pressurized fluid to activate the clutch.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Applicant: TIGERCAT INDUSTRIES INC.
    Inventors: Shawn Thomas PETTE, Kevin Ronald HENSON, Kenneth Roger SHANTZ
  • Patent number: 8725371
    Abstract: A speed changing control apparatus for use in a vehicle includes: a driving power source configured to generate driving power for running; a transmission having a synchromesh mechanism configured to synchronize an input shaft revolution number with an output shaft revolution number and an actuator configured to automatically carry out a shift operation; and an automatic clutch disposed between the driving power source and the transmission. The speed changing control apparatus is configured to start a shift disengaging operation for the transmission after a speed change is requested and before the automatic clutch turns into a decoupled state, so as to suppress torsional vibration at the time of decoupling the automatic clutch. Such control enables the synchromesh mechanism to carry out revolution synchronization with the input shaft revolution number of the transmission in a lowered state, and diminishes a revolution difference subjected to synchronization.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: May 13, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masato Shimizu, Masato Tateno, Masayasu Mizobuchi
  • Patent number: 8721494
    Abstract: An apparatus and method are disclosed for controlling fluid flow to a variator which responsive to separate high and low pressure fluids to control an output torque thereof. A first trim valve may be responsive to a first control signal to supply a first fluid at a fluid outlet thereof. A second trim valve may be responsive to a second control signal to supply a second fluid at a fluid outlet thereof. A variator switching sub-system may controllably supply the high pressure fluid and the low pressure fluid to the variator. A multiplex valve may be fluidly coupled to the outlets of the first and second trim valves, and may supply the first fluid as the high pressure fluid to the variator switching sub-system during at least one predefined operating condition and may otherwise supply the second fluid as the high pressure fluid to the variator switching sub-system.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: May 13, 2014
    Assignee: Allison Transmission, Inc.
    Inventors: Charles F. Long, Darren J. Weber, John W. E. Fuller
  • Patent number: 8694219
    Abstract: The invention relates to a process of ending a clutch protection function against overload of an automated clutch. The clutch protection function is ended when, by actuating the gas- and brake pedals, an absolute value of a brake pedal signal falls below a default threshold value and the time derivative of the brake pedal signal is negative.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: April 8, 2014
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Michael Bechmann
  • Publication number: 20140081541
    Abstract: A method of controlling a line pressure in a transmission is provided. Line pressure in a transmission is set to a pressure value including a first term that is proportional to an input torque value. The first term has a coefficient of proportionality that is increased in response to a signal indicating clutch slippage. The input torque value is a measured input torque value in a steady-state condition. The input torque value may be a maximum of the measured input torque value and a driver demand torque value in a transient condition.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Diana Yanakiev, Gregory Michael Pietron, Yuji Fujii, Stefano Di Cairano, Joseph F. Kucharski, Bradley Dean Riedle
  • Patent number: 8666614
    Abstract: A twin-clutch type hybrid transmission is configured to include an input shaft 10, an odd-numbered stage shift mechanism 30, an even-numbered stage shift mechanism 60, a motor power mechanism 20, and an output mechanism 90. The shift mechanisms 30 and 60 include transmission gear trains 32 and 62, and main clutches 34 and 64, respectively, the main clutches 34 and 64 for selectively transmitting the power of the transmission gear train 32 and the power of the transmission gear train 62 to transmission shafts 40 and 70, respectively. The shift mechanisms 30 and 60 also include shift gear trains 41, 43, 45, 47, 72, 74, 76, and 78 provided to the transmission shafts 40 and 70 to transmit rotation to the output mechanism 90, respectively, and mechanical clutches 50, 52, 80, and 82 for selectively engaging the corresponding shift gear trains and the transmission shafts 40 and 70, respectively. As a result, a compact twin-clutch type hybrid transmission having high transmission efficiency can be obtained.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: March 4, 2014
    Assignee: Hitachi Nico Transmission Co., Ltd.
    Inventors: Hideki Nakamura, Masahiko Ibamoto, Tatsuro Abe
  • Patent number: 8663066
    Abstract: A powertrain/driveline warm-up system includes a vehicle controller, an electrical power source interfacing with the vehicle controller, at least one heater interfacing with the vehicle controller and at least a portion of a vehicle powertrain provided in thermal contact with the at least one heater.
    Type: Grant
    Filed: February 23, 2013
    Date of Patent: March 4, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Steven Thomas, John Edward Brevick
  • Patent number: 8652003
    Abstract: A transmission configured with a speed change control unit which, when upshifting the speed in an accelerator on condition, executes an engagement control including a torque phase control after executing a filling control, which controls the hydraulic control unit in such a way that a hydraulic servo of the engagement side frictional engagement element is filled with hydraulic oil, and a standby control, which controls the hydraulic control unit in such a way that hydraulic pressure for the hydraulic servo is maintained at a preset standby pressure. A correction unit is configured to correct at least one of an execution time of the filling control and the standby pressure to an increment side when a fluctuation in a rotational acceleration of the input shaft exceeding a preset determination reference is detected after the standby control.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: February 18, 2014
    Assignee: Aisin AW Co., Ltd.
    Inventors: Shigekazu Hase, Nobuhiro Iwai, Hiroshi Tsutsui
  • Patent number: 8630778
    Abstract: A system and method for determining a required throttle position and operating a throttle in the required throttle position to attain a required engine speed for fuel cut acquisition is disclosed. A lock-up clutch may be engaged without a shock if a required engine speed is achieved that corresponds to a current transmission speed. Fuel economy may be increased by cutting fuel to the engine when a lock-up clutch is engaged.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: January 14, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Chris Hopp
  • Patent number: 8620513
    Abstract: An actuator arrangement for a motor vehicle drive train has a control device, an electric actuator and a drive circuit for the actuator. The drive circuit receives at least one nominal signal relating to an actuator from the control device and converts it into a drive signal for the actuator. The control device is checked for faults by means of a monitoring device. The drive circuit and/or a power stage which is arranged between the drive circuit and the motor receives a reset signal when such a fault occurs. Further, the control device is configured to check the function of the drive circuit and to generate a reset signal for the drive circuit and/or for the power stage if a malfunction occurs.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: December 31, 2013
    Assignee: GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG
    Inventors: Martin Seufert, Michael Gerhard Ludwig, Volker Naegele
  • Patent number: 8602940
    Abstract: A hybrid driving force transmission device includes an engine (E), a motor-clutch unit (MC), and a transmission unit (T). The motor-clutch unit (MC) is coupled to the engine (E), and includes a multi-plate dry clutch (7) and a slave cylinder (8). The transmission unit (T) is coupled to the motor-clutch unit (MC), and includes a transmission housing (41), a V-belt type continuously variable transmission mechanism (42), and an oil pump (OP). A cylinder housing (81) which comprises a first clutch pressure oil passage (85) communicating with the slave cylinder (8) is provided in the motor-clutch unit (MC). By coupling the motor-clutch unit (MC), a second clutch pressure oil passage (47) is brought into communication with the first clutch pressure oil passage (85) in the cylinder housing (81). An end plate (45) having the second clutch pressure oil passage (47) is provided in the transmission unit (T).
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: December 10, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takashi Kuwahara, Terumasa Hidaka, Norihiro Takemoto
  • Patent number: 8585553
    Abstract: The present invention provides a method for reducing backlash vibrations in a hybrid electric vehicle, in which the backlash vibrations generated between a motor and a driving wheel can be easily reduced by slipping a clutch in an automatic transmission when the direction of a motor driving torque is changed while the hybrid electric vehicle is running in electric vehicle (EV) mode.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: November 19, 2013
    Assignee: Hyundai Motor Company
    Inventor: Joon Young Park
  • Patent number: 8589043
    Abstract: A fail-to-neutral diagnostic technique for a transmission that includes a variator may include monitoring a state of a pressure differential valve fluidly coupled to a high side pressure applied to at least one actuator coupled to at least one corresponding roller of the variator and also fluidly coupled to a low side pressure applied to the at least one actuator, determining from the state of the pressure differential valve a variator torque sign corresponding to whether torque transferred by the at least one roller is positive or negative, determining an expected variator torque sign based on current operating conditions of the transmission, and commanding the transmission to a true neutral condition if the determined variator torque sign is different from the expected variator torque sign.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: November 19, 2013
    Assignee: Allison Transmission, Inc.
    Inventors: Charles F. Long, Darren J. Weber, John William Edward Fuller
  • Publication number: 20130296132
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, torque transferred via a driveline disconnect clutch is estimated based on characteristics of a torque converter to improve driveline operation.
    Type: Application
    Filed: February 25, 2013
    Publication date: November 7, 2013
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Jeffrey Allen Doering, Alex O'Connor Gibson, Dennis Craig Reed, Gregory Michael Pietron, Seung-Hoon Lee
  • Patent number: 8560144
    Abstract: A method for controlling torque in a vehicle including monitoring a plurality of factors associated with an output torque request in response to an output torque request rate of change exceeding a predetermined threshold, and controlling rate limiting of a delivered output torque to achieve the output torque request rate of change based on the plurality of factors associated with the output torque request.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: October 15, 2013
    Assignee: GM Global Technology Operations LLC
    Inventor: Sean W. McGrogan
  • Patent number: 8548704
    Abstract: This invention is a lock-up clutch control device for an automatic transmission, comprising lock-up clutch control means for controlling a slip amount of the lock-up clutch to a target slip amount. When a variation rate in a required load of an engine reaches or exceeds a predetermined threshold, the target slip amount is increased at a predetermined increase rate, whereupon the target slip amount, having been increased by target slip amount increasing means, is reduced at a predetermined reduction rate. At this time, the predetermined reduction rate is set to decrease as an operating condition when the variation rate of the required load reaches or exceeds the predetermined threshold approaches an operating condition in which an increase rate of a rotation speed on the automatic transmission side of a torque converter relative to an increase in the required load is low.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: October 1, 2013
    Assignee: Jatco Ltd
    Inventors: Tomoko Oue, Morimasa Yamawaki, Kouichi Sawano
  • Publication number: 20130237372
    Abstract: A vehicle drive system is provided with an engine, a manual transmission capable of changing a gear position, a clutch arranged between the engine and the transmission, and a control device that performs drive control of the engine. During an inertia running in which torque transmission between the engine and an axle is blocked, when the clutch is opened and the gear position of the transmission is changed to a forward position, if the gear position after the change is lower than an optimal gear position corresponding to a vehicle speed, the control device executes fuel cutoff for the engine.
    Type: Application
    Filed: November 24, 2010
    Publication date: September 12, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Nobukazu Ueki
  • Patent number: 8532895
    Abstract: An assist device for a vehicle including a power train connected to drive wheels by a clutch, a bus, and a power-assist parking brake. The device includes sensors that transmit signals to the bus and a mechanism for learning-based estimation of a clutch curve on the basis of the signals, the curve connecting the position of the clutch pedal and a maximum torque range that can be transmitted by the corresponding clutch and a mechanism phasing the delivered signals to reduce an influence of noise on the sensors associated with the signals.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: September 10, 2013
    Assignee: Renault S.A.S.
    Inventors: Christophe Desfriches, Alessandro Monti, Richard Pothin