With Clutch Control Patents (Class 477/8)
  • Patent number: 8480538
    Abstract: A utility vehicle is disclosed having an electric drive. The drivetrain is comprised of batteries, a motor, a transaxle driven by the motor, a rear differential driven by the transaxle, and a prop shaft which is driven by the transaxle and drives a front differential. The batteries are provided in two groups and are supported on the frame of the vehicle.
    Type: Grant
    Filed: May 17, 2012
    Date of Patent: July 9, 2013
    Assignee: Polaris Industries Inc.
    Inventors: Brian R. Gillingham, Joel M. Notaro, Amber P. Malone, Bradley R. Morisch, Joshua J. Leonard
  • Patent number: 8480537
    Abstract: The second clutch is caused to transition to an engaged state after setting the second clutch in a slip state when the vehicle starts in the hybrid start mode, the temperature of a magnet of the electric motor is estimated based on the temperature of the hydraulic oil and an operating condition of the electric motor when the second clutch is controlled to be in the slip state; and an output torque and a lower limit rotation speed of the electric motor is restricted and reduced when the estimated temperature of the magnet exceeds a restrictive temperature.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: July 9, 2013
    Assignee: Jatco Ltd
    Inventors: Yukihiro Sano, Ippei Suzuki, Yuukou Nojiri
  • Patent number: 8475332
    Abstract: In a locking mechanism provided with: a sleeve which is fixed in the circumferential direction and which can be stroked in the shaft line direction; a hub which can rotate in the circumferential direction orthogonal to the shaft line direction; and an actuator which can apply a driving force for displacing the sleeve in the shaft line direction, dog teeth are formed on the inner circumferential surface of the sleeve, and dog teeth are formed in the hub. Here, the engagement surfaces of the dog teeth are inclined at a predetermined angle with respect to the shaft line such that the hub performs relative rotation with respect to the sleeve in a process in which the sleeve is stroked in the shaft line direction. The ECU estimates the stroke volume of the sleeve on the basis of the rotation amount of the hub and the predetermined angle.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: July 2, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daisuke Ishii, Shigeru Okuwaki
  • Patent number: 8469859
    Abstract: In a hybrid vehicle having a locking mechanism in which a play elimination process is required in the locking, a torque shock in the play elimination is reduced. In a hybrid vehicle 1 having a locking mechanism 700 which is a cam-lock type engaging apparatus, an ECU 100 performs MG1 locking control. In the control, play is formed between a cam 710 and a clutch plate 720 of the locking mechanism 700. The formed play is gradually reduced such that the torque shock in the play elimination does not occur due to the phase control of the cam 710, on the basis of an initial value of the amount of the play when the clutch plate 720 is bought into contact with a friction part 733 and a play elimination amount G.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: June 25, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiromichi Kimura, Tomohito Ono, Yukihiko Ideshio, Hirotatsu Kitabatake, Hiroaki Ebuchi
  • Patent number: 8465393
    Abstract: A method of accelerating decoupling of the starting clutch (5) that is able to connect the electric machine (2) to the transmission input in a hybrid drive-train of a motor vehicle, when a decoupling command is issued, at the same time as the regulation of the starting clutch begins for the purpose of decoupling the starting clutch (5) or a specified time after the regulation of the starting clutch begins. The electric machine is regulated in such manner that a torque is built up such that the transition to sliding friction, and thus decoupling and the onset of slip, are sped up while maintaining the nominal driving torque.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: June 18, 2013
    Assignee: ZF Friedrichshafen AG
    Inventors: Thomas Lemp, Alexander Pfau
  • Patent number: 8430789
    Abstract: A vehicle control device that includes an input member drive-coupled to an engine and a rotary electrical machine; an output member; and a transmission having a plurality of friction engagement elements, in which a plurality of shift speeds are switched by controlling engagement and release of the plurality of friction engagement elements, and a rotary driving force of the input member is shifted by a change gear ratio of one of the shift speeds and outputted to the output member.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: April 30, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Shigekazu Hase, Hiroya Ueno, Kohei Tsuda, Eiji Moriyama, Hiroshi Tsutsui
  • Patent number: 8430790
    Abstract: A power transmission controlling apparatus of a vehicle includes a clutch capable of connecting/disconnecting power transmission between an engine and a motor/generator, and a torque converter enabling power transmission between the engine or/and the motor/generator and an automatic transmission. When the engine is started by motoring torque with engagement of the clutch during rotation of the motor/generator, the power transmission controlling apparatus sets a torque compensation amount by the motor/generator based on an estimated torque capacity of the clutch, and suppresses torque fluctuations on a power transmission path accompanying engagement of the clutch by power of the motor/generator containing the torque compensation amount. The power transmission controlling apparatus corrects the torque capacity or the torque compensation amount based on input torque of the torque converter.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: April 30, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobufusa Kobayashi, Hideaki Otsubo, Yukihiko Ideshio, Terufumi Miyazaki, Shingo Eto
  • Patent number: 8425377
    Abstract: A hybrid electric vehicle powertrain having a mechanical power source and an electro-mechanical power source, including a generator, a motor and a battery. Driving torque developed by the mechanical power source is delivered through one clutch of a geared transmission to a power output shaft. The electric motor of the electro-mechanical power source delivers driving torque through a second clutch of the geared transmission. A mechanical reverse drive torque is used to improve reverse drive performance. A reduction in duration of operation in a negative power split during a driving event is achieved to improve vehicle powertrain efficiency. A series drive is available as the mechanical power source drives the generator to charge the battery, which drives the motor. The generator may act as an engine starter motor.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: April 23, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Wei Liang, Xiaoyong Wang, Wei Wu, Ryan Abraham McGee, Ming Lang Kuang
  • Patent number: 8403790
    Abstract: A motor transmission apparatus is provided between a transmission output shaft coupled to a drive wheel and a motor shaft coupled to a motor/generator. The motor transmission apparatus includes a first power transmission path that is switched to a power transmission condition by a high clutch having a clutch oil chamber, and a second power transmission path that is switched to a power transmission condition by a low brake having a brake oil chamber. Working oil discharged from an oil pump is guided to an oil passage switching valve via an output control valve. The working oil is distributed to one of the clutch oil chamber and the brake oil chamber by the oil passage switching valve, and therefore interlocking, in which the high clutch and the low brake are engaged simultaneously, can be avoided.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: March 26, 2013
    Assignee: Fuji Jukogyo Kabushiki Kaisha
    Inventors: Takenori Hashimoto, Atsushi Namba
  • Publication number: 20130065729
    Abstract: An electric vehicle transmission, the transmission comprising an input shaft arranged to be driven by an electric motor, an output shaft arranged to transfer drive from the input shaft to driving wheels of the vehicle to which the transmission is fitted, a first clutch for engaging/disengaging a first gear ratio of the transmission, a second clutch for engaging/disengaging a second gear ratio of the transmission, and a fluid pump driven in response to rotation of the output shaft, wherein the first clutch is biased to engage said first gear ratio in the absence of pressure from the fluid pump.
    Type: Application
    Filed: February 4, 2011
    Publication date: March 14, 2013
    Applicant: NT CONSULTING INTERNATIONAL PTY LIMITED
    Inventor: Simon Paul Fitzgerald
  • Patent number: 8376905
    Abstract: A vehicle drive device that includes a speed change mechanism; a fluid transmission device provided closer to an engine attachment side than the speed change mechanism is and including a lock-up clutch; an electric motor having a rotor and a stator and connecting the rotor to an input portion of the fluid transmission device; and an engine power cut-off clutch that transmits or cuts off a driving force of an engine to or from the fluid transmission device.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: February 19, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Satoru Kasuya, Mikio Iwase, Tomohide Suzuki
  • Patent number: 8337359
    Abstract: A hybrid engine and coupling system for use with a vehicle or other load which employs a motor/generator unit connected through controllable couplers to a kinetic energy storage device and to one or more internal combustion engine modules in a programmed manner. Several embodiments provide varying configurations to satisfy various power and packaging design requirements.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: December 25, 2012
    Assignee: EcoMotors International
    Inventor: Peter Hofbauer
  • Patent number: 8328683
    Abstract: A transmission assembly for an electric vehicle includes a transmission having an input shaft, an output shaft, and a gear train coupled between the input shaft and the output shaft. A motor includes an output coupled to the input shaft of the transmission. A motor controller is electrically connected to the motor and controls a rotating speed of the motor. A gear controller is electrically connected to the motor controller. The gear controller outputs a speed request signal to the motor controller, and the motor controller controls the rotating speed of the motor based on the speed request signal, allowing smooth engagement between the gear train and the output shaft.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: December 11, 2012
    Assignee: National Pingtung University of Science and Technology
    Inventors: Chyuan-Yow Tseng, Chiu-Feng Lin, Li-Wen Chen
  • Patent number: 8306707
    Abstract: A system and method of dithering speed and/or torque for shifting a transmission of a vehicle having an engine, a reversible, variable displacement hydraulic motor/pump which can be driven by the engine, a hydraulic accumulator supplied by said motor/pump, and at least one reversible hydraulic driving motor for propelling the vehicle supplied with fluid by the hydraulic accumulator and/or by said motor/pump operating as a pump. A transmission unit connects the engine with the variable displacement hydraulic motor/pump during a first mode of operation (city mode) and connects the engine to a vehicle drive wheel during a second mode of operation. The system utilizes stored hydraulic energy to dither the output of the driving motor in order to achieve quick and smooth shifts between city and highway mode, or between various ranges within the city mode.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 6, 2012
    Assignee: Parker-Hannifin Corporation
    Inventors: Yisheng Zhang, John Loeffler
  • Patent number: 8303464
    Abstract: An apparatus comprises a changeover mechanism which is able to change a connection state of an electric motor output shaft to any one of states including, “an IN-Connection State” in which a power transmission path is provided between a transmission input shaft and the electric motor output shaft, “an OUT-Connection State” in which a power transmission path is provided between the transmission output shaft and the electric motor output shaft, and “a neutral connection state” in which no transmission path therebetween is provided. The changeover is carried out based on a combination (area) of a vehicle speed V and a required driving torque T. As for the changeover, an IN-connection area, in which an electric-motor-driving-wheels-maximum-torque is larger than in an OUT-Connection State and in a neutral connection area, is enlarged.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: November 6, 2012
    Assignee: Aisin AI Co., Ltd.
    Inventors: Takeshige Miyazaki, Hiroki Hatori, Kan Sasaki, Toshio Tanba, Yousuke Hayashi
  • Patent number: 8298118
    Abstract: A method for operating a motor vehicle hybrid powertrain having an engine, a motor-generator and a multi-speed automatically-shiftable transmission, wherein the engine and the motor-generator operate to supply torque to the transmission for driving a vehicle. The method includes modulating the torque supply from the motor-generator to the transmission during a gear shift to minimize a transmission output torque disturbance.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: October 30, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Min-Joong Kim, Shawn H. Swales
  • Patent number: 8272993
    Abstract: A method of carrying out a shift under load in either an electric vehicle which has a change-under-load transmission or a hybrid vehicle which has a hybrid transmission while the vehicle is operating in a purely electrical mode. The speed adaptation of the electric machine, which is required for synchronization to a new gear, is carried out in a speed regulation mode.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: September 25, 2012
    Assignee: ZF Friedrichshafen AG
    Inventors: Johannes Kaltenbach, Stefan Wallner
  • Patent number: 8246510
    Abstract: A vehicle drive force control apparatus for controlling a drive force of a vehicle including: a main drive power source for driving main drive wheels through a coupling device and a transmission, an electric generator operated by a drive force generated by the main drive power source, and an electric motor which is driven by electric power generated by the electric generator, to generate a drive torque that can be transmitted to auxiliary drive wheels. The vehicle drive force control apparatus controls the coupling device and transmission to reduce an engaging force of the coupling device and shift up the transmission during driving of the auxiliary drive wheels, so that the operating speed of the main drive power source is raised according to a load of the coupling device, while the electric power generated by the electric generator is increased, permitting an increase of the drive torque of the auxiliary drive wheels and stable 4-wheel-drive control.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: August 21, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaya Michishita, Michiaki Nakao
  • Patent number: 8190317
    Abstract: The present invention provides a mode change control method of a hybrid vehicle, which can improve driving performance and power performance and provide a more stable vehicle behavior control during a mode change from an EV mode to a HEV mode. For this purpose, a transmission input speed is compared with an engine idle speed. If the transmission input speed is lower than the engine idle speed, the pressure of a clutch is open-loop controlled so that an optimal engine torque of operation point determination circuit can be transferred to the clutch. On the other hand, if the transmission input speed is equal to or higher than the engine idle speed, the clutch pressure is feedback-controlled so that a delta RPM follows a target delta RPM profile.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: May 29, 2012
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sang Joon Kim, Joon Young Park
  • Patent number: 8182393
    Abstract: A utility vehicle is disclosed having an electric drive. The drivetrain is comprised of batteries, a motor, a transaxle driven by the motor, a rear differential driven by the transaxle, and a prop shaft which is driven by the transaxle and drives a front differential. The batteries are provided in two groups and are supported on the frame of the vehicle.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: May 22, 2012
    Assignee: Polaris Industries Inc.
    Inventors: Brian R Gillingham, Joel M Notaro, Amber Patricia Malone, Bradley R Morisch, Josh J Leonard
  • Patent number: 8177682
    Abstract: An apparatus for improving fuel efficiency of a vehicle is provided, including an engine, a generator system and an air-conditioning system. The generator system and the air-conditioning system are connected respectively through transmission elements and a moveable first active transmission wheel and a second active transmission wheel on the engine core axis. A first clutch is placed between the crank shaft of the engine and the first active transmission wheel, and a second clutch is placed between the first active transmission wheel and the second active transmission wheel. Also, a control circuit is provided to control the operation of the first clutch and the second clutch, in order to control the driving and rotation of the first active transmission wheel and/or the second active transmission wheel. The control circuit further determines according to the signal whether power is provided directly to the generator system and further drives the air-conditioning system.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: May 15, 2012
    Inventors: Ten-Lee Chang, Tien-Li Chen
  • Patent number: 8170736
    Abstract: A control device includes a target rotation speed determination unit that determines a target rotation speed of an engine, a filtering process unit that receives an output of the target rotation speed determination unit, changes the received output such that the target rotation speed changes gently, and outputs the changed output, a property switching control unit that switches properties of the filtering process unit in accordance with a vehicle state, and a first torque value calculation unit that calculates a target torque of a motor generator in accordance with a difference between the output of the filtering process unit and an actual rotation speed of the engine. Preferably, the property switching control unit increases a time constant of the filtering process in accordance with a shift switch instruction to switch a vehicle state from a traveling state to a neutral state.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: May 1, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Koichiro Muta
  • Publication number: 20120100957
    Abstract: A two-speed transmission for transmitting a drive torque of a vehicle, having an input shaft drivable by a drive unit, a planetary gear system with sun gear, planet gears, planet carriers and ring gear and an output shaft, the sun gear having a rotationally fixed connection to the input shaft and the planet carrier having a rotationally fixed connection to the output shaft, and having a regulatable clutch system whereby the planet carrier can be fixed either relative to the input shaft or relative to the ring gear, and having an exclusively engageable and disengageable clutch system whereby the ring gear can be fixed relative to a housing that supports the planetary gear system.
    Type: Application
    Filed: December 29, 2011
    Publication date: April 26, 2012
    Applicant: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventor: Dierk Reitz
  • Patent number: 8113987
    Abstract: A control device for hybrid vehicle drive apparatus has a differential mechanism operative to perform a differential action and an electric motor. The control device prevents a second electric motor from reaching a high-speed rotation with a likelihood of degradation occurring in durability of the second electric motor when a “D” position is switched into an “N” position during a running of a vehicle. When a shift lever (49) is shifted into the “N” position during the vehicle running to interrupt a power transmitting path of an automatic shifting portion (20), a differential action of a power distributing mechanism (16) is limited. A limited differential action suppresses increases in rotation speeds of rotary members such as a clutch or a brake of the automatic shifting portion (20), a second electric motor (M2) and a differential-portion planetary gear (P0) or the like. Thus, degradation in durability of such rotary members due to high-speed rotations thereof can be minimized.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: February 14, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenta Kumazaki, Tooru Matsubara, Atsushi Tabata
  • Patent number: 8105205
    Abstract: A method for adjusting the friction coefficient of a friction clutch situated in a hybrid power train between an electric machine and a combustion engine, actuated by a clutch actuator, the friction coefficient is adjusted by a torque transmitted by the friction clutch, which is determined when starting the combustion engine by the electric machine.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: January 31, 2012
    Assignee: Schaeffler Technologies GmbH & Co. KG
    Inventor: Michael Reuschel
  • Patent number: 8090499
    Abstract: A vehicle control system reduces vehicle rollback upon brake release. The control system includes a brake system, a vehicle grade measurement device and a controller that modulates applied brake pressure of the brake system based on a grade measurement of the grade measurement device. The controller actuates brake-hold device communicating with the brake system based on the grade measurement through pulse width modulation. The control system communicates with a motor generator and an engine to provide a start power to the engine upon brake release based on the grade measurement. Fuel injectors of the engine are enabled upon brake release based on the grade measurement. The control system further communicates with a transmission forward clutch to provide selective rotational communication between the transmission and the engine based on the grade measurement.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: January 3, 2012
    Inventor: Goro Tamai
  • Patent number: 8062174
    Abstract: A method for controlling a powertrain comprising a transmission coupled to an engine and an electric machine adapted to selectively transmit mechanical power to an output member via selective application of a plurality of hydraulically actuated torque transfer clutches includes filling one of the hydraulic clutches to a reference fill volume expected to create a touching state in the clutch, wherein the filling is accomplished through control of a pressure control solenoid, monitoring an actual fill time of the hydraulic clutch, monitoring a flow utilized in the filling, determining a measured fill volume based upon the actual fill time and the flow, calculating a fill volume error based upon the measured fill volume and the reference fill volume, and adjusting the reference fill volume based upon the fill volume error.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: November 22, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Jy-Jen F. Sah, Ali K Naqvi
  • Patent number: 8038572
    Abstract: A control apparatus for a drive system of a vehicle includes (a) an electrically controlled differential portion having a differential state between rotating speeds of an input and an output shaft being controlled by controlling an operating state of a first electric motor, (b) a switching portion operable to switch a power transmitting path between the output shaft and a drive wheel of the vehicle, between a power transmitting state and a power cut-off state, and (c) a second electric motor connected to the power transmitting path. The control apparatus includes an excessive speed preventing portion configured to limit a rotating speed of the output shaft or an operating speed of the second electric motor when the power transmitting path is switched by the switching portion from the power transmitting state to the power cut-off state.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: October 18, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tooru Matsubara, Atsushi Tabata, Masakazu Kaifuku, Hidenori Kato
  • Patent number: 8041488
    Abstract: A method and apparatus for determining a motion transmission value that provides security of motion transmission between two components that transfer motion through frictional engagement. The motion transmission value provides security of motion transmission through the reaction of the motion transmitted to a change in the contact force between the components that are frictionally engaged. The contact force is modulated in a predetermined frequency range during the motion transmission, and the change in the motion transmitted during the modulation of the contact force is detected. The change in the motion transmitted is evaluated using a filtering process, and the motion transmission value is determined as the result of the evaluation.
    Type: Grant
    Filed: November 26, 2005
    Date of Patent: October 18, 2011
    Assignee: LuK Lamellen und Kupplungsbau Betelligungs KG
    Inventor: Michael Reuschel
  • Publication number: 20110245034
    Abstract: A control system configured with a speed change mechanism. When starting combustion in an internal combustion engine under a combustion-stopped vehicle running condition, the combustion in the internal combustion engine is stopped, the speed change mechanism forms the one-way transmission speed, and the output member rotates. A rotational speed feedback control is executed that sets a value that multiplies a rotational speed of the output member by a speed ratio of the one-way transmission speed as a reference rotational speed of the input member, sets a starting rotational speed, and controls a rotary electric machine such that the rotational speed of the input member matches the target rotational speed. During execution of the rotational speed feedback control, a start control is performed that increases engagement pressure of the clutch to increase a rotational speed of the internal combustion engine and start combustion in the internal combustion engine.
    Type: Application
    Filed: March 3, 2011
    Publication date: October 6, 2011
    Applicant: AISIN AW CO., LTD.
    Inventors: Takashi YOSHIDA, Yomei HAKUMURA, Jin IZAWA, Yoichi TAJIMA
  • Patent number: 8012060
    Abstract: To provide a speed change control system capable of carrying out an entire speed change operation of a transmission in which speed change operation of a first and a second speed change units are carried out simultaneously in directions opposite to each other, without deteriorating shocks even in case a speed change operation of one of the speed change units is restricted. For this purpose, there is provided a speed change control system for an automatic transmission, which has a first and a second speed change units, and in which a speed change ratio of the second speed change unit is changed in a direction opposite to a changing direction of a speed change ratio of the first speed change unit when changing the speed change ratio of the first speed change unit, comprising: a speed changing rate setting means for setting a speed changing rate of the second speed change unit in accordance with a progression of a speed change operation of the first speed change unit.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: September 6, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Shibata, Tooru Matsubara, Atsushi Tabata
  • Patent number: 8002667
    Abstract: A powertrain system includes a transmission operative to transfer power between an input member and first and second torque machines and an output member. The first and second torque machines are connected to an energy storage device and the transmission is operative in a continuously variable operating range state.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: August 23, 2011
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Tung-Ming Hsieh, Anthony H. Heap
  • Patent number: 8002666
    Abstract: A method for controlling a motor vehicle drive train including a combustion engine, an electric machine and a transmission, which are coupled by a summation gear system, having two input and one output elements, and a clutch. One input element is coupled to the crankshaft of the combustion engine, the other input element is coupled to the rotor of the electric machine and the output element is coupled to the input shaft of the transmission and the clutch is arranged between two elements of the summation gear system, such that when the clutch is disengaged a speed difference between the combustion engine and the transmission input shaft is synchronized by the electric machine and, if necessary, by a controlled engagement of the clutch. To improve synchronization, at the beginning of the synchronization the clutch is brought to its contact point before the engagement of the bridging clutch.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: August 23, 2011
    Assignee: ZF Friedrichshafen AG
    Inventors: Stefan Wallner, Notker Amann
  • Patent number: 7998022
    Abstract: A control device for a vehicle which includes a differential portion controlling a differential state between the number of rotations of an input shaft connected to an engine, and the number of rotations of an output shaft connected to drive wheels, with controlling an operating state of an electric motor, and an automatic shifting portion forming part of a power transmitting path. The control device prevents degradation in operability of the vehicle, even in the presence of a shifting command resulting from a manual shift operation when the automatic shifting portion remains under a limited shifting state. More particularly, if the shifting command is present due to the manual shift operation, the differential state of the differential portion is controlled, thereby causing a variation in a drive force at a rate corresponding to the shifting command.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: August 16, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tooru Matsubara, Hiroyuki Shibata, Atsushi Tabata
  • Patent number: 7998024
    Abstract: An automotive transmission transitions from a drive gear to a neutral gear when an engine is shutdown. During a rolling pull-up, a crankshaft of the engine will be spun up to a desired speed and the transmission will transition from the neutral gear to an appropriate gear based on a shift schedule. A target transmission input speed is commanded to be a synchronous speed plus an offset to smoothly transition out of electric axle drive propulsion.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: August 16, 2011
    Assignee: Ford Global Technologies, LLC
    Inventors: Andrew John Silveri, Daniel Scott Colvin, Marvin Paul Kraska
  • Patent number: 7967722
    Abstract: A transmission mechanism including a switching clutch or brake that is switchable between a continuously-variable shifting state and a step-variable shifting state, and has both an advantage of improved fuel economy provided by a transmission, the speed ratio of which is electrically variable, and an advantage of high power transmitting efficiency provided by a gear type power transmitting device constructed for mechanical transmission of power. While a clutch-to-clutch shifting action of an automatic transmission portion is in a tie-up state, a differential portion is placed in a continuously-variable shifting state by switching control, and engine speed is changed under the control of hybrid control, so as to prevent a drop of the engine speed for thereby reducing a shock of the shifting action, unlike in a non-continuously-variable shifting state of the differential portion in which the engine speed is directly influenced by the tie-up state.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: June 28, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Tabata, Yuji Inoue, Atsushi Kamada
  • Patent number: 7953538
    Abstract: A control apparatus for a vehicular drive system including an electric differential portion and a mechanical power transmitting portion which are disposed in series in a power transmitting path between an engine and a drive wheel of a vehicle, the control apparatus being configured to limit an output of the engine according to a difference between an actual rotating speed of an input rotary member of the mechanical power transmitting portion, and a theoretical rotating speed calculated from an actual vehicle speed and a presently established speed ratio of the mechanical power transmitting portion, whereby reduction of torque capacity of an input clutch provided in the mechanical power transmitting portion does not cause an excessive rise of the rotating speed of a rotary member which is located on one side of the input clutch nearer to the engine, and an excessive rise of the rotating speed of an electric motor connected to the input rotary member.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: May 31, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tooru Matsubara, Atsushi Tabata, Koichiro Muta, Masakazu Kaifuku, Hidenori Katoh, Tomokazu Nomura
  • Patent number: 7946952
    Abstract: A transmission for a hybrid vehicle including a combustion engine and an electric propulsion system may include a forward clutch assembly, a fluid chamber, a fluid supply, and a forward clutch holding valve. The forward clutch assembly may include a hydraulically actuated clutch member in communication with the fluid chamber. The forward clutch holding valve may be in communication with the fluid chamber and the fluid supply. The valve may provide communication between the fluid supply and the fluid chamber when in a first position and may seal the fluid chamber when in a second position, thereby maintaining a fixed quantity of fluid within the fluid chamber.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: May 24, 2011
    Inventor: Wayne B. Vogel
  • Publication number: 20110082609
    Abstract: A starting method of an internal combustion thermal engine of a vehicle with hybrid propulsion provided with a transmission equipped with a twin-clutch gearbox and a reversible electric machine connected to a first primary shaft; the starting method including the steps of: making the electric machine work as an engine for producing a torque; partially closing a first clutch connected to the first primary shaft in order to make the first clutch itself slip to transmit part of the torque generated by the electric machine to a drive shaft of the thermal engine; engaging a gear coupled to a second primary shaft to mechanically connect the second primary shaft itself to the driving wheels; and closing partially a second clutch connected to the second primary shaft in order to make the second clutch itself slip and transmit part of the torque generated by the electric machine to the driving wheels.
    Type: Application
    Filed: September 3, 2010
    Publication date: April 7, 2011
    Applicant: Ferrari S.p.A.
    Inventor: Fabrizio Favaretto
  • Patent number: 7914416
    Abstract: A hybrid transmission is provided that is operatively connectable to an engine. The transmission has an electric motor and a clutch, which may be a brake-type clutch or a rotating-type clutch, depending on the embodiment, integrated within the transmission. Absent the electric motor and the clutch, and with the addition of a torque converter and torque converter lock-up clutch, the transmission would be a non-hybrid, operable automatic transmission. The transmission is operable to provide an electric-only operating ode, an engine-only operating mode, an electrically-variable operating mode and a parallel hybrid operating mode.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: March 29, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Joel M Maguire, Alan G Holmes
  • Patent number: 7909729
    Abstract: A control unit for an electric oil pump of the present invention includes: a one-way valve that permits circulation of operating fluid from the electric oil pump to the friction engagement device and blocks circulation in the opposite direction; an accumulator that is connected to a fluid supply path joining the one-way valve to the friction engagement device and accumulates hydraulic pressure required for operating the friction engagement device; a hydraulic pressure measuring device that measures hydraulic pressure inside the fluid supply path; a vehicle speed measuring device that measures a vehicle speed of the vehicle; and a pressure setting device that sets a first predetermined pressure based on the vehicle speed measured by the vehicle speed measuring device.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: March 22, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masashi Tanaka, Ryo Nishikawa, Hisayoshi Arai
  • Patent number: 7908063
    Abstract: An apparatus and method are provided to execute synchronous shifting in a powertrain system having multiple torque-generative devices each operable to independently supply motive torque to the transmission device. The exemplary transmission device comprises a two-mode, compound-split, hybrid electro-mechanical transmission. Operation includes operating in an initial fixed gear ratio, operating the transmission in a mode operation, and, operating the transmission in a final fixed gear ratio. The control system reduces reactive torque of a clutch activating the initial gear, and deactivates the first torque-transfer device when the reactive torque is less than a predetermined value. It determines that speed of an input shaft to the transmission is substantially synchronized with a rotational speed of the second torque-transfer device, and actuates the second torque-transfer device.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: March 15, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Jy-Jen F. Sah
  • Patent number: 7798288
    Abstract: The invention relates to a climbing aid for ladders or the like, comprising an endless traction means running between guide pulleys, from which a person may optionally hang by means of a suspension device, with a drive device (20) comprising a drive motor (21), by means of which one of the guide pulleys may be driven as the drive disc (12) for the drive means (13), with a traction force limitation device and with a device for switching the drive device on/off, which can be actuated by the endless traction means (13).
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: September 21, 2010
    Assignee: Greifzug Hebezeugbau GmbH
    Inventor: Frank Blasek
  • Patent number: 7766790
    Abstract: A controllable selectable one-way clutch is provided for use within a hybrid transmission. The clutch comprises an outer and inner race, and a first and second selector plate. A transmission motor controller synchronizes the speeds of the races to facilitate application and release of the clutch, and a transmission controller communicates a signal to the clutch for re-positioning of the plates to apply and release the clutch. The clutch has three operational modes, including freewheeling and holding torque in one direction or both directions. A method is also provided for applying a selectable one-way clutch in a vehicle having a hybrid transmission with a motor controller and a transmission controller, including synchronizing the clutch speed using the motor controller, detecting the direction of the race speed difference, communicating the race speed difference to the transmission controller, and selecting between the clutch operational modes in response to the detected speed difference.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: August 3, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Paul D. Stevenson, Paula J. Armstrong, Scott H. Wittkopp
  • Patent number: 7749133
    Abstract: A driving device of the invention has a clutch 40 and a continuously variable transmission 50. The clutch 40 couples and decouples a rotating shaft 24 or an output shaft of a motor 30 with and from a driveshaft 22. The continuously variable transmission 50 has an input shaft connected to the rotating shaft 24 and an output shaft connected to the driveshaft 22 via a gear mechanism 52. A spring 36 is attached to a rotor 31 of the motor 30 to apply a pressing force and cause the clutch 40 to couple the rotating shaft 24 with the driveshaft 22 in response to a relatively small output torque of the motor 30. With an increase in output torque of the motor 30, a thrust force produced in the motor 30 moves the rotating shaft 24 against the pressing force of the spring 36 to cause the clutch 40 to decouple the rotating shaft 24 from the driveshaft 22. The output torque of the motor 30 is then transmitted to the driveshaft 22 with a gear change of the continuously variable transmission 50.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: July 6, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tomokazu Yamauchi, Shoichi Sasaki
  • Publication number: 20100056328
    Abstract: A method is for controlling a hybrid drive of a vehicle, which includes at least one internal combustion engine and at least one electric machine, having a first clutch situated between the electric machine and the drive train of the vehicle and a second clutch situated between the electric machine and the internal combustion engine. In the method, a predefinable clutch torque is applied to the second clutch for a start of the internal combustion engine by the operating electric machine, the rotational speed of the internal combustion engine is monitored, and the clutch torque is incremented to a higher value if the rotational speed of the internal combustion engine is less than a predefinable threshold value within a predefinable time interval.
    Type: Application
    Filed: August 14, 2007
    Publication date: March 4, 2010
    Inventors: Rene Schenk, Oliver Kaefer, Thorsten Juenemann
  • Patent number: 7670257
    Abstract: A method of operating a motor vehicle drive train having a hybrid drive including an internal combustion engine, an electric motor and an automatic transmission. A clutch is located between the internal combustion engine and the electric motor, and a clutch or a torque converter is located between the electric motor and the automatic transmission such that, when the drive train is powered exclusively by the electric motor, the internal combustion engine can be started by engagement of the clutch located between the internal combustion engine and the electric motor. The clutch, arranged between the internal combustion engine and the electric motor, is engaged during the process of downshifting when the internal combustion engine is started.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: March 2, 2010
    Assignee: ZF Friedrichshafen AG
    Inventors: Christian Popp, Bernd Allgaier
  • Patent number: 7643925
    Abstract: A method for determining when in the course of a shift event an on-coming clutch gains torque capacity is provided. The method includes closed-loop controlling an off-going clutch to maintain a predetermined slip threshold by generating an off-going clutch pressure command, causing the on-coming clutch to engage during the closed loop control of the off-going clutch, generating a first derivative with respect to time of the off-going clutch pressure command, and using the first derivative to determine when the on-coming clutch gained torque capacity. A neural network method is preferably employed in analyzing the first derivative to locate a transition in the rate of commanded pressure indicative of off-going clutch release. A corresponding apparatus is also provided.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: January 5, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventor: Matthew D. Whitton
  • Patent number: 7641583
    Abstract: A first aspect of the present invention is concerned with a series hybrid drive train for a vehicle comprising a traction motor, an electric generator, a three-position clutch (20) and a controller. The three-position clutch allows the generator to be connected to an internal combustion engine (12) of the vehicle, to the traction motor or to remain freewheeling. In a second aspect of the present invention, a four-position clutch is used to further allow the internal combustion engine to be connected directly to the wheels to thereby yield a series/parallel drive train. A third aspect of the present invention is concerned with a method of operating such a hybrid drive train.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: January 5, 2010
    Assignee: TM4 Inc.
    Inventors: Martin Houle, Pierre Blouin, Louis-Philippe Bibeau, Jianhong Xu, Ghislain Lambert, Philippe Noël
  • Patent number: 7637842
    Abstract: A method and system to capture energy during regenerative braking while managing driveline disturbances by controlling locking and unlocking of a torque-converter clutch based upon operator input, typically throttle position or accelerator pedal position, vehicle speed, and engine load is offered. The exemplary vehicle has an engine, a torque converter with a clutch, and a transmission device. Vehicle kinetic energy is transmittable to an electrical machine using the transmission device and the torque converter. It includes monitoring an operator demand for power, engine operating speed, and, engine load; and, actuating the locking clutch for the torque converter based upon the operator demand for power, the engine operating speed, and, the engine load.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: December 29, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Goro Tamai, Daniel P. Laurent, Birendra P. Bhattarai, James L. Worthing