And Aluminum Compound Patents (Class 501/118)
  • Patent number: 10933560
    Abstract: An intermediate member is a member which is directly or indirectly sandwiched between a first object and a second object. The intermediate member includes a plate-like supporting member having a lower surface which is one main surface opposed to the first object and a plurality of ceramic blocks fixed on an upper surface which is the other main surface of the supporting member in a state of being separated from one another. Thus, in a state where the plurality of ceramic blocks are collectively held by the supporting member having relatively high shape retention, by disposing the intermediate member between the objects, it is possible to easily arrange the plurality of ceramic blocks between the objects with high positioning accuracy.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: March 2, 2021
    Assignee: NGK Insulators, Ltd.
    Inventors: Akinobu Oribe, Takahiro Tomita
  • Patent number: 8980775
    Abstract: The invention relates to a powder comprising more than 70% of glass-ceramic and/or refractory particles, a particle of said powder being classed in the fraction called “matrix” or in the fraction called “aggregate” according to whether it is smaller than, or equal to 100 ?m, or bigger than 100 ?m, respectively, the aggregate, representing more than 60% of the powder, comprising: more than 40% of particles of a glass-ceramic material having a crystallization rate of higher than 50% and a thermal expansion value, measured at 700° C., of less than 0.3%, called “glass-ceramic grains”; less than 35% of particles of a refractory material different from a glass-ceramic material, called “refractory grains”, the quantity of refractory grains being higher than 10% if the aggregate comprises more than 40% of glass-ceramic grains having a thermal expansion value, measured at 700° C., of less than or equal to 0.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 17, 2015
    Assignee: Saint-Gobain Centre de Recherches et D'Etudes European
    Inventors: Olivier Jean Francy, Eric Jorge
  • Publication number: 20140371051
    Abstract: The present invention addresses a technical problem of realizing a sprayable refractory material capable of, even when used in a dry-spraying installation process, ensuring mixability between a silica sol and a refractory composition to promote a hardening reaction, thereby achieving excellent durability. Provided is a dry-sprayable unshaped refractory material which comprises a refractory composition, and a silica sol containing a silica solid component in a concentration of 20 mass % to 50 mass %.
    Type: Application
    Filed: October 4, 2012
    Publication date: December 18, 2014
    Inventors: Shunsuke Inadomi, Kazuhiro Honda, Aya Kusunoki, Kazuaki Haraguchi
  • Patent number: 8715807
    Abstract: A mixture of fused grains mainly comprising or composed of an oxide phase of pseudo-brookite type and comprising titanium, aluminum and magnesium, the fused grains having the following chemical composition, in weight percentages on the basis of the oxides: less than 55% of Al2O3; more than 30% and less than 70% of TiO2; more than 1% and less than 15% of MgO, the fused grains also corresponding to the following composition, in molar percentages and on the basis of the single oxides Al2O3, TiO2, MgO: 180?3t+a?220, a?50, m=100?a?t, in which: a is the molar percentage of Al2O3; t is the molar percentage of TiO2; m is the molar percentage of MgO. A ceramic product obtained from such fused grains.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: May 6, 2014
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Yves Boussant-Roux, Isabelle Cabodi, Samuel Marlin
  • Patent number: 8618007
    Abstract: The invention provides a fused cast refractory product having the following mean chemical composition by weight, as a percentage by weight based on the oxides: 25%<MgO<30%; 70%<Al2O3<75%; other species: <1%. The invention is applicable to a regenerator associated with a soda-lime glass fusion furnace operating under reducing conditions.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: December 31, 2013
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventors: Isabelle Cabodi, Michel H G Gaubil
  • Patent number: 8440584
    Abstract: Provided herein are methods and apparatus to remove unwanted elements in commercial powders, and particularly in commercial powders that include one or more of a crystalline ceramic oxide. The methods involve treating powders in reduced pressure atmosphere, such as a vacuum, with or without heating, for a period of time sufficient to remove impurities. Impurities and contaminants, including anionic species, are removed from the powders without any undesirable changes in the physical characteristics of the starting material, such as particle size and particle size distribution, surface area, and volume, for example. The resulting purified powder starting material can be consolidated without the need for any sintering aids such as LiF to produce nearly colorless, extremely transparent polycrystalline articles that approach identical properties and performance of single crystal spinels.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: May 14, 2013
    Assignee: Lehigh University
    Inventors: Animesh Kundu, Martin P. Harmer
  • Patent number: 8389430
    Abstract: Porous spodumene-cordierite honeycomb bodies of high strength but low volumetric density, useful for the manufacture of close-coupled engine exhaust converters, gasoline engine particulate exhaust filters, and NOx integrated engine exhaust filters, are provided through the reactive sintering of batches comprising sources of magnesia, alumina and silica together with a lithia source, such as a spodumene or petalite ore.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: March 5, 2013
    Assignee: Corning Incorporated
    Inventors: Gregory Albert Merkel, Cameron Wayne Tanner
  • Patent number: 8242037
    Abstract: Methods of making and compositions of dense sintered ceramic nano- and micro-composite materials that are highly stable in a variety of conditions and exhibit superior toughness and strength. Liquid feed flame spray pyrolysis techniques form a plurality of nanoparticles (e.g., powder), each having a core region including a first metal oxide composition comprising Ce and/or Zr or other metals and a shell region including a second metal oxide composition comprising Al or other metals. In certain aspects, the core region comprises a partially stabilized tetragonal ZrO2 and the shell region comprises an ?-Al2O3 phase. The average actual density of the ceramic after sintering is greater than 50% and up to or exceeding 90% of a theoretical density of the ceramic.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: August 14, 2012
    Assignee: The Regents of the University of Michigan
    Inventors: Richard M. Laine, Min Kim
  • Patent number: 8178455
    Abstract: A method for manufacturing an alumina sintered body of the present invention comprises: (a) forming a mixed powder containing at least Al2O3 and MgF2 or a mixed powder containing Al2O3, MgF2, and MgO into a compact having a predetermined shape; and (b) performing hot-press sintering of the compact in a vacuum atmosphere or a non-oxidizing atmosphere to form an alumina sintered body, in which when a amount of MgF2 to 100 parts by weight of Al2O3 is represented by X (parts by weight), and a hot-press sintering temperature is represented by Y (° C.), the hot-press sintering temperature is set to satisfy the following equations (1) to (4) 1,120?Y?1,300??(1) 0.15?X?1.89??(2) Y??78.7X+1,349??(3) Y??200X+1,212??(4).
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: May 15, 2012
    Assignee: NGK Insulatores, Ltd.
    Inventors: Naomi Teratani, Toru Hayase, Yuji Katsuda, Masahiro Kida
  • Patent number: 8143182
    Abstract: The present invention provides a fused ceramic particle, having the following chemical composition, in percentages by weight based on the oxides and for a total of 100%: 50%<ZrO2+HfO2<70%; 10%<SiO2<30%; 6.5%<MgO<9.5%; Al2O3 in a quantity such that the MgO/Al2O3 weight ratio is in the range 2.4 to 6.6; 0.1%<Y2O3; CeO2<10%; and less than 0.6% of other oxides. Use in particular as milling agents, wet medium dispersion agents, propping agents, heat exchange agents, or for the treatment of surfaces.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: March 27, 2012
    Assignee: Saint-Gobain Centre de Recherches Et d'Etudes Europeen
    Inventors: Yves Boussant-Roux, Emmanuel Nonnet
  • Patent number: 8058198
    Abstract: A method of producing cordierite ceramic where the degree of stacking faults and the particle diameter of kaolinite used as a component of a cordierite-forming raw material are appropriately adjusted so that microcracks having an average width of 0.3 ?m or more are introduced into the resulting cordierite ceramic to produce a high-quality cordierite ceramic that includes a cordierite crystal oriented in a specific direction and has a porosity of 25% or more and a coefficient of thermal expansion of 0.30×10?6/° C. or less.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: November 15, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Satoshi Yamazaki, Yuji Katsuda, Atsushi Watanabe, Yohei Ono, Takehiko Watanabe
  • Patent number: 8030235
    Abstract: A magnesia-carbon brick comprised of about 50 to about 95% by weight magnesia and about 1 to about 20% by weight carbon, with or without metallic additions, such that the chemical analysis of the mixture of aggregates used in the brick will comprise, by chemical analysis, about 2 to about 15% SiO2, about 3 to about 50% Al2O3, and about 50 to about 95% MgO.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: October 4, 2011
    Assignee: North American Refractories Company
    Inventors: Shyam Miglani, H. David Prior, David J. Michael
  • Patent number: 7988781
    Abstract: A non-settling refractory mortar is provided, which includes 100 mass % of a ceramic powder such as cordierite, mullite, alumina, or silicon carbide, 0.5 to 1.5 mass % of a clay mineral, and a colloidal oxide solution, in which the Ca content in the total solid component is defined at 0.01 to 0.5 mass % as converted to oxide so as to be provided with a thixotropic property. As a result, the coating performance is not lowered if stored for a long period after kneading, the dimension change rate after coating is small, and cracks or gaps are not formed on the coat surface. The median diameter of ceramic powder is preferred to be 10 to 50 ?m, and in order to reduce the dimension change rate after coating, the content of particles of 0.1 to 5 ?m in ceramic powder is desired to be 1 to 20%.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: August 2, 2011
    Assignees: NGK Insulators, Ltd., NGK Adrec Co., Ltd.
    Inventors: Tsuneo Komiyama, Osamu Yamakawa, Tetsuhiro Honjo, Akito Higuchi
  • Patent number: 7977265
    Abstract: The present invention relates to the machine building industry and it is used for coating of friction surfaces by triboceramics to decrease wear and to reduce the friction coefficient. The triboceramic compound contains oxides—magnesium oxide MgO, silica SiO2, alumine Al2O3, calcium oxide CaO, ferric oxide Fe2O3, being in the chemical composition of serpentine and talc, the natural and/or synthesized heat unprocessed and/or dehydrated minerals—serpentine, talc, clinochlore, magnesite, quartz and aluminium hydroxide are introduced forming a mixture with the following composition of oxides, in mass %: SiO2-46-54; MgO-26-32, Al2O3-2-5; Fe2O3-1.0-1.5; CaO-0.1-0.3, water H2O-5 or less.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: July 12, 2011
    Assignee: Cerlub Ou
    Inventor: Maris Kesners
  • Patent number: 7892623
    Abstract: A honeycomb structured body of the present invention is a honeycomb structured body in which plural pillar-shaped honeycomb units are bonded to one another through sealing material layers, each unit having in the longitudinal direction a large number of cells placed in parallel with a cell wall interposed therebetween. Herein, each honeycomb unit includes inorganic fibers and/or whiskers in addition to inorganic particles. A cross-sectional area of the honeycomb unit on a cross section perpendicular to the longitudinal direction is at least about 5 cm2 and at most about 50 cm2. A region in which a sealing material layer is not formed is provided on both ends of the side faces of each of the honeycomb unit, each of the ends accounting for at least about 0.3% and at most about 5% of the length of the honeycomb structured body.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: February 22, 2011
    Assignee: Ibiden Co., Ltd
    Inventors: Kazushige Ohno, Masafumi Kunieda, Kazutake Ogyu
  • Patent number: 7846526
    Abstract: The honeycomb structural body comprises pillar-shaped honeycomb structural porous ceramic members formed by arranging a plurality of cells through cell walls, and a sealing material layer interposed between the ceramic members and having a specific surface area of approximately 10 to 100 m2/g, and the honeycomb structural body is constructed by bonding a plurality of porous ceramic members through sealing material layer as an exhaust gas convertion apparatus.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: December 7, 2010
    Assignee: Ibiden Co., Ltd
    Inventor: Masafumi Kunieda
  • Publication number: 20100113244
    Abstract: A ceramic foam filter for molten aluminum alloys comprising an alumina silicate rich core and a boron glass shell and a chemical composition comprising: 20-70 wt % Al2O3, 20-60 wt % SiO2, 0-10 wt % CaO, 0-10 wt %; MgO and 2-20 wt % B2O3.
    Type: Application
    Filed: April 2, 2007
    Publication date: May 6, 2010
    Applicant: PORVAIR PLC
    Inventors: Feng Chi, David P. Haack, Leonard S. Aubrey
  • Patent number: 7708957
    Abstract: A chemical processing apparatus that utilizes a ceramic media sintered at a lower temperature than the apparatus' maximum exposure temperature is described. The media's physical and chemical properties may contribute to its thermal stability when exposed to temperatures that exceed the media's sintering temperature by at least 50° C.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: May 4, 2010
    Assignee: Saint-Gobain Ceramics & Plastics Inc.
    Inventor: John Stewart Reid
  • Publication number: 20100025897
    Abstract: A composition for ceramic extrusion-molded bodies includes a ceramic material, a water-soluble cellulose ether, a styrenesulfonate and water. A method for manufacturing a ceramic extrusion-molded body using the composition is also provided.
    Type: Application
    Filed: July 29, 2009
    Publication date: February 4, 2010
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Shingo Niinobe, Kazuhisa Hayakawa
  • Publication number: 20090297764
    Abstract: Disclosed are stabilized, high-porosity cordierite honeycomb substrates having little or no microcracking, and a high thermal shock resistance. The porous ceramic honeycomb substrates generally comprise a primary cordierite ceramic phase as defined herein. Also disclosed are methods for making and using the cordierite substrates.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 3, 2009
    Inventors: Douglas Munroe Beall, George Halsey Beall
  • Patent number: 7605110
    Abstract: A ceramic body, a ceramic catalyst body, a ceramic catalyst body and related manufacturing methods are disclosed wherein a cordierite porous base material has a surface, formed with acicular particles made of a component different from that of cordierite porous base material, which has an increased specific surface area with high resistance to a sintering effect. The ceramic body is manufactured by preparing a slurry containing an acicular particle source material, preparing a porous base material, applying the slurry onto a surface of the porous base material and firing the porous base material, whose surface is coated with the slurry, to cause acicular particles to develop on the surface of the porous base material. A part of or a whole of surfaces of the acicular particles is coated with a constituent element different from that of the acicular particles.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: October 20, 2009
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Keiichi Yamada, Kazuhiko Koike, Katsumi Yoshida, Hideki Kita, Naoki Kondo, Hideki Hyuga
  • Patent number: 7576022
    Abstract: Molten ceramic grains are intended, for example, for applications involving abrading tools, having the following average chemical weight composition, expressed in weight percent based on oxide content: Al2O3: 93% to 97.5%; MgO: 2.2 to 6.5%; SiO2: <0.1%; other impurities: <0.4%.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: August 18, 2009
    Assignee: Saint-Gobain Centre de Recherches et d'Etudes Europeen
    Inventor: Samuel Marlin
  • Patent number: 7510991
    Abstract: The present invention is directed to a noise suppressor for electronic signals. The noise suppressor at least includes Aluminum Oxide (Al2O3) that is sintered under high temperature, resulting in ceramic Aluminum Oxide (Al2O3) for effectively absorbing or suppressing noise, and reshaping the waveform or filtering waveform glitch of the electronic signals.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: March 31, 2009
    Assignee: Y&L Technology Inc.
    Inventors: Cheng-Cheng Wu, Chien-Lung Chen, Cheng-Fu Wu
  • Patent number: 7510755
    Abstract: There is provided a honeycomb structured body having improved durability in a honeycomb structure body obtained by unitarily bonding a plurality of honeycomb segments. There is provided a honeycomb structure body 1 including a plurality of honeycomb segments 12 each having an outer wall 7, partition walls 2 disposed in the outer wall 7, and a plurality of cells 3 separated from each other by the partition walls 2 and extending in an axial direction, a bonding layer 8 interposed between the plurality of honeycomb segments 12 to unitarily bond the honeycomb segments 12, and an intermediate layer 9 interposed between the bonding layer 8 and the honeycomb segments 9. In the honeycomb structure body 1, pores having a diameter of 0.5 ?m or more of the intermediate layer 9 occupies 25% by volume or less of the whole volume of the intermediate layer 9.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: March 31, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Naoshi Masukawa, Shuichi Ichikawa
  • Publication number: 20090047425
    Abstract: The composition applied to the refractory structure has a magnesia-based refractory material, calcium carbonate and a binder. After application of the refractory material to a refractory structure and upon application of heat to the applied refractory material a matrix is formed which protects against penetration of the slag into the refractory material. The resulting refractory material has improved hot strength, slag resistance and durability.
    Type: Application
    Filed: August 18, 2008
    Publication date: February 19, 2009
    Applicant: Specialty Minerals (Michigan) Inc.
    Inventors: Dominick M. Colavito, Yves C. Vermeulen
  • Patent number: 7442663
    Abstract: There is disclosed a ceramic clay obtained by kneading a forming material containing a ceramic forming material, wherein the forming material contains layered double hydroxide, in addition to the ceramic forming material, at a ratio of 0.5 to 50% by mass with respect to a total with the ceramic forming material, and hardness measured by an NGK clay hardness meter is set to 4 to 18 mm. A high-strength honeycomb structure can be obtained capable of preventing or inhibiting pollution and global warming when used in manufacturing a ceramic structure, and having few defects such as cracks.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: October 28, 2008
    Assignee: NGK Insulators, Ltd.
    Inventor: Takahiro Tomita
  • Patent number: 7354879
    Abstract: A chemical processing apparatus that utilizes a ceramic media sintered at a lower temperature than the apparatus' maximum exposure temperature is described. The media's physical and chemical properties may contribute to its thermal stability when exposed to temperatures that exceed the media's sintering temperature by at least 50° C.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: April 8, 2008
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventor: John Stewart Reid
  • Patent number: 7229940
    Abstract: A dense cordierite based sintered body is provided, containing at least 93% by mass of cordierite among crystal components present in the sintered body. The average particle diameter of the particles constituting the sintered body is 2 ?m or less.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: June 12, 2007
    Assignee: NGK Insulators, Ltd.
    Inventors: Naomi Teratani, Naohito Yamada, Hiroaki Sakai
  • Patent number: 7166552
    Abstract: The present invention provides a process for preparing a sintered body comprising as a basic component aluminum magnesium titanate represented by the composition formula: MgxAl2(1?x)Ti(1+x)O5 wherein the value of x is 0.1?x<1. The process comprises a step of sintering a formed product from a raw material mixture comprising 100 parts by weight, calculated on an oxide basis, of a mixture comprising a Mg-containing compound, an Al-containing compound and a Ti-containing compound at the same metal component ratio as the metal component ratio of Mg, Al and Ti in the above composition formula, and 1–10 parts by weight of an alkali feldspar represented by the composition formula: (NayK1?y)AlSi3O8 wherein the value of y is 0?y?1.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: January 23, 2007
    Assignee: Ohcera Co. Ltd.
    Inventors: Tsutomu Fukuda, Masahiro Fukuda, Masaaki Fukuda, Toshinobu Yoko, Masahide Takahashi
  • Patent number: 7148168
    Abstract: The present invention provides a raw material composition for preparing a sintered body of aluminum titanate, the composition comprising (i) 100 parts by weight of a mixture comprising 40 to 50 mol % of TiO2 and 60 to 50 mol % of Al2O3, (ii) 1 to 10 parts by weight of an alkali feldspar represented by the formula: (NaxK1?x)AlSi3O8 (0?x?1), and (iii) 1 to 10 parts by weight of at least one Mg-containing component selected from the group consisting of a Mg-containing oxide with spinel structure, MgCO3 and MgO, and a process for preparing a sintered body of aluminum titanate comprising sintering a formed product prepared from the raw material composition at 1300 to 1700° C. According to the present invention, a sintered body of aluminum titanate having high mechanical strength and ability to be stably used at high temperatures, as well as its inherent properties of low coefficient of thermal expansion and high corrosion resistance, can be obtained.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: December 12, 2006
    Assignee: Ohcera Co., Ltd.
    Inventors: Tsutomu Fukuda, Masahiro Fukuda, Masaaki Fukuda, Toshinobu Yoko, Masahide Takahashi
  • Patent number: 7067085
    Abstract: This invention provides a black low thermal expansion high specific rigidity ceramic sintered body having a black tone, manifesting very small thermal expansion at room temperature and abounding in rigidity and specific rigidity, and a method for the production thereof. The black low thermal expansion high specific rigidity ceramic sintered body is characterized by having a chemical composition comprising 8.0–17.2 mass % of MgO, 22.0–38.0 mass % of Al2O3, 49.5–65.0 mass % of SiO2, a total of 0.1–2 mass % of one or more transition elements as reduced to oxides, and 0–2.5 mass % of Li2O, and having the mass ratios satisfy the relationships of (SiO2?8×Li2O)/MgO?3.0 and (SiO2?8×Li2O)/Al2O3?1.2. The method for the production of a black low thermal expansion high specific rigidity ceramic sintered body of this invention is characterized by forming the sintered body in an atmosphere of a non-oxidizing gas at a temperature in the range of 1200–1500° C.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: June 27, 2006
    Assignee: Nippon Steel Corporation
    Inventors: Jun Sugawara, Hidehiko Morita, Katsumi Hashimoto, Tetsuro Nose
  • Publication number: 20040266605
    Abstract: This invention pertains to product and process. The product is a transparent product of a density in excess 99.5% comprising spinel and having uniform mechanical properties. The process pertains to fabrication of a transparent spinel product comprising the steps of dissolving a sintering aid in water to form a neutral sintering aid solution, adding a suitable additive to the sintering aid solution, applying the sintering aid solution to spinel particles to form a spinel dispersion, sub-dividing or atomizing the spinel dispersion to form droplets comprising one or more spinel particles coated with the final spinel solution, drying the droplets to form dried coated particles comprising one or more spinel particles coated with a dried layer of the sintering aid, and densifying the dried coated particles to form a transparent spinel product having uniform optical and mechanical properties in absence of grains of exaggerated size.
    Type: Application
    Filed: June 24, 2003
    Publication date: December 30, 2004
    Inventors: Guillermo R. Villalobos, Jas S. Sanghera, Shyam S. Bayya, Ishwar D. Aggarwal
  • Patent number: 6815389
    Abstract: An economical and environment-friendly process for the synthesis of anionic clays with carbonate and/or hydroxide anions as the charge-balancing interlayer species is disclosed. The process involves reacting a slurry comprising an aluminum source and a magnesium source, the aluminum source comprising two types of aluminum-containing compounds, preferably aluminum trihydrate and/or thermally treated calcined aluminum trihydrate. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: November 9, 2004
    Assignee: Akzo Nobel NV
    Inventors: Dennis Stamires, Michael F. Brady, William Jones, Fathi Kooli
  • Publication number: 20040180777
    Abstract: The present invention relates to novel ceramic media or ceramic media coatings comprising mainly magnesia, silicon dioxide, and alumina, with forsterite and spinel as the dominant crystalline phases, which show high resistance to alkali attack at high temperature. Ceramic materials having these characteristics are particularly well suited for use as heat-exchange media in regenerative thermal oxidizers (RTOs) for the wood process industry.
    Type: Application
    Filed: March 26, 2004
    Publication date: September 16, 2004
    Inventor: Xueren Cao
  • Publication number: 20040102307
    Abstract: This invention concerns a non-basic refractory batch as well as its use.
    Type: Application
    Filed: November 12, 2003
    Publication date: May 27, 2004
    Applicant: Refractory Intellectual Property GmbH & Co. KG
    Inventors: Malgorzata Bugajski, Karl-Heinz Dott, Alfons Lueftenegger
  • Patent number: 6723442
    Abstract: Disclosed is a ceramic material which is suitable for coating a body by way of a thermal spraying method and which has a coefficient of longitudinal thermal expansion that may be matched to that of a metal. The ceramic material includes 10 to 95% by weight of MgAl2O4, 5 to 90% by weight of MgO, up to 20% by weight of Al2O3, remainder standard impurities, and has grains of MgO which are embedded in a matrix of MgAl2O4.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: April 20, 2004
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jens Decker, Thomas Jansing, Günter Schürholt
  • Patent number: 6677272
    Abstract: A ceramic support element for a NOx trap which includes a NOx storage component comprising an alkali metal, the ceramic support having a composition lying within a ternary system selected from the group consisting of Al2TiO5—MgTi2O5—MgAl2O4 and Al2TiO5—FeTiO5—Al2O3, a coefficent of thermal expansion (22-800° C.) of less than 20×10−7/° C. and a modulus of rupture as measured on a solid rod of circular cross section of greater than 1000 pounds per square inch.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: January 13, 2004
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Shahid G. Lakhwani
  • Patent number: 6677261
    Abstract: Strong, high-surface-area honeycombs of alumina or other ceramic composition are provided by compounding and shaping a moldable ceramic powder extrusion batches including a cellulosic temporary binder and a high-surface-area boehmite precursor for a permanent binder, hydrating the shaped honeycomb to develop a boehmite binding phase, and calcining the hydrated body to develop the binder and provide a ceramic honeycomb of high strength and porosity.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: January 13, 2004
    Assignee: Corning Incorporated
    Inventors: William P. Addiego, Cecilia S. Magee
  • Patent number: 6605557
    Abstract: Ceramic mass transfer media suitable for use in thermal regenerative oxidizers made using a mixture of a clay, talc and optionally a dolomitic limestone have enhanced resistance to environments containing halogens and hydrogen halides.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: August 12, 2003
    Assignee: Saint-Gobain Norpro Corporation
    Inventors: John S. Reid, Thomas Szymanski, Karen C. Beal
  • Patent number: 6596041
    Abstract: Fused abrasive particles comprising eutectic material comprising Al2O3—MgO-REO eutectic. The fused abrasive particles can be incorporated into abrasive products such as coated abrasives, bonded abrasives, non-woven abrasives, and abrasive brushes.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: July 22, 2003
    Assignee: 3M Innovative Properties Company
    Inventor: Anatoly Z. Rosenflanz
  • Patent number: 6593265
    Abstract: A process for preparing a 3R1-type crystalline anionic clay comprising the steps of: a) preparing an aqueous precursor mixture comprising aluminum trihydrate or a thermally treated form thereof and a magnesium source, the magnesium source is milled before use or when present in the precursor mixture, b) aging the precursor mixture at temperatures in the range 30°-100° C. to obtain the crystalline clay product, and c) optionally shaping the product of step b). Milling of the magnesium source, either alone or in combination with the (thermally treated) aluminum trihydrate, results in a faster reaction and higher conversion to anionic clay. The resulting anionic clay can be obtained by simply drying the slurry retrieved from the reactor. There is no need for washing or filtering, and a wide range of ratios of Mg/Al in the reaction product is possible.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: July 15, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, William Jones, Sjoerd Daamen
  • Patent number: 6558806
    Abstract: In order to improve a heat-cycling-durability of a structural body in which a nitrided material is provided on a substrate containing at least metallic aluminum, a heat-resistant structural body having a substrate containing at least metallic aluminum and a nitrided material formed on the substrate provided. The nitrided material is composed mainly of an aluminum nitride phase and a metallic aluminum phase. Preferably, the nitrided material contains at least one metallic element selected from Group 2A, Group 3A, Group 4A, and Group 4B in Periodic Table.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: May 6, 2003
    Assignee: NGK Insulators, Ltd.
    Inventor: Morimichi Watanabe
  • Patent number: 6534161
    Abstract: A crystallized glass composition contains a principal ingredient comprising SiO2, MgO and Al2O3 and contains about 2 to 20 parts by weight of B2O3 relative to 100 parts by weight of the principal ingredient. In a ternary diagram, the weight ratio (SiO2, MgO, Al2O3) lies within a region surrounded by point A (44.0, 55.0, 1.0), point B (34.5, 64.5, 1.0), point C (35.0, 30.0, 35.0) and point D (44.5, 30.0, 25.5).
    Type: Grant
    Filed: July 12, 2000
    Date of Patent: March 18, 2003
    Assignee: Murata Manufacturing Co. Ltd
    Inventors: Hiromichi Kawakami, Toshiki Tanaka, Shizuharu Watanabe, Hiroshi Takagi
  • Patent number: 6534430
    Abstract: A sensor material for measuring physical parameters capable of configuring a sensor capable of directly measuring a high value of physical parameters such as high stress or high pressure without employing a pressure resistance container. The sensor material for measuring static and dynamic physical parameters includes a matrix made of an electrically insulating ceramic material, and piezoresistance materials which are dispersed in the matrix so as to be electrically continuous to each other.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: March 18, 2003
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hiroaki Makino, Mitsuru Asai, Nobuo Kamiya, Shin Tajima, Katsunori Yamada, Hiroshi Hohjo
  • Patent number: 6458732
    Abstract: A dry refractory composition having superior insulating value. The dry refractory composition also may have excellent resistance to molten metals and slags. The composition includes filler lightweight material, which may be selected from perlite, vermiculite, expanded shale, expanded fireclay, expanded alumina silica hollow spheres, bubble alumina, sintered porous alumina, alumina spinel insulating aggregate, calcium alumina insulating aggregate, expanded mulllite, cordierite, and anorthite, and matrix material, which may be selected from calcined alumina, fused alumina, sintered magnesia, fused magnesia, silica fume, fused silica, silicon carbide, boron carbide, titanium diboride, zirconium boride, boron nitride, aluminum nitride, silicon nitride, Sialon, titanium oxide, barium sulfate, zircon, a sillimanite group mineral, pyrophyllite, fireclay, carbon, and calcium fluoride.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: October 1, 2002
    Assignee: Allied Mineral Products, Inc.
    Inventors: Douglas K. Doza, John Y. Liu
  • Patent number: 6440887
    Abstract: A continuous process for the synthesis of anionic clays with carbonate and/or hydroxide anions as the charge-balancing interlayer species is disclosed. The process involves reacting a slurry comprising aluminum trihydrate and/or its calcined form, with a magnesium source. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or it can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: August 27, 2002
    Assignee: Akzo Nobel NV
    Inventors: Dennis Stamires, Michael F. Brady, William Jones, Fathi Kooli
  • Patent number: 6432856
    Abstract: A sintered ceramic honeycomb article that exhibits an average linear coefficient of thermal expansion (25-800° C.) below about 5.0×10−7° C.−1, a total porosity between the range of 20% to about 30%, and a pore size distribution such that at least about 86% of pores are of a pore size of less than about 2 &mgr;m with the pores exhibiting a generally elongated shape oriented with their long axis in the plane of the webs, the article being made from a cordierite-forming inorganic powder batch comprising a platy talc having median particle of size less than about 2 &mgr;m, at least 4% by weight of a dispersible Al2O3-forming source having a specific surface area in excess of 50 m2/g, and one or more of the components of kaolin, calcined kaolin, silica, and corundum, each having a median particle sizes less than 5 &mgr;m.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: August 13, 2002
    Assignee: Corning Incorporated
    Inventors: Douglas M. Beall, Christopher J. Malarkey, Gregory A. Merkel
  • Patent number: 6376405
    Abstract: An economical and environment-friendly process for the synthesis of anionic clays with carbonate and/or hydroxide anions as the charge-balancing interlayer species is disclosed. The process involves reacting a slurry including an aluminum source and a magnesium source, the aluminum source including two types of aluminum-containing compounds, preferably aluminum trihydrate and/or thermally treated calcined aluminum trihydrate. There is no necessity to wash or filter the product. It can be spray dried directly to form microspheres or it can be extruded to form shaped bodies. The product can be combined with other ingredients in the manufacture of catalysts, absorbents, pharmaceuticals, cosmetics, detergents, and other commodity products.
    Type: Grant
    Filed: February 9, 1999
    Date of Patent: April 23, 2002
    Assignee: Akzo Nobel N.V.
    Inventors: Dennis Stamires, Michael F. Brady, William Jones, Fathi Kooli
  • Patent number: RE42352
    Abstract: The present invention provides a process for preparing a sintered body comprising as a basic component aluminum magnesium titanate represented by the composition formula: MgxAl2(1?x)Ti(1+x)O5 wherein the value of x is 0.1?x<1. The process comprises a step of sintering a formed product from a raw material mixture comprising 100 parts by weight, calculated on an oxide basis, of a mixture comprising a Mg-containing compound, an Al-containing compound and a Ti-containing compound at the same metal component ratio as the metal component ratio of Mg, Al and Ti in the above composition formula, and 1–10 parts by weight of an alkali feldspar represented by the composition formula: (NayK1?y)AlSi3O8 wherein the value of y is 0?y?1.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: May 10, 2011
    Assignee: Ohcera Co., Ltd.
    Inventors: Tsutomu Fukuda, Masahiro Fukuda, Masaaki Fukuda, Toshinobu Yoko, Masahide Takahashi
  • Patent number: RE42646
    Abstract: The present invention provides a raw material composition for preparing a sintered body of aluminum titanate, the composition comprising (i) 100 parts by weight of a mixture comprising 40 to 50 mol % of TiO2 and 60 to 50 mol % of Al2O3, (ii) 1 to 10 parts by weight of an alkali feldspar represented by the formula: (NxK1-x)AlSi3O8 (0?x?1), and (iii) 1 to 10 parts by weight of at least one Mg-containing component selected from the group consisting of a Mg-containing oxide with spinel structure, MgCO3 and MgO, and a process for preparing a sintered body of aluminum titanate comprising sintering a formed product prepared from the raw material composition at 1300 to 1700° C. According to the present invention, a sintered body of aluminum titanate having high mechanical strength and ability to be stably used at high temperatures, as well as its inherent properties of low coefficient of thermal expansion and high corrosion resistance, can be obtained.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: August 23, 2011
    Assignee: Ohcera Co., Ltd.
    Inventors: Tsutomu Fukuda, Masahiro Fukuda, Masaaki Fukuda, Toshinobu Yoko, Masahide Takahashi