Halogen Containing Patents (Class 501/25)
  • Patent number: 9302932
    Abstract: Provided are a glass composition, preparation method thereof, and cooking appliance including the glass composition. The glass composition includes a glass frit containing P2O5, a Group I-based oxide, and a Group III-based oxide. The Group I-based oxide is selected from Na2O, K2O, and Li2O, the Group III-based oxide is selected from Al2O3 and B2O3, and the glass frit contains about 40 wt % to about 75 wt % of P2O5.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: April 5, 2016
    Assignee: LG Electronics Inc.
    Inventors: Youngseok Kim, Yongsoo Lee, Namjin Kim, Youngjun Lee
  • Patent number: 9296643
    Abstract: Provided are a enamel composition, a preparation method thereof, and a cooking appliance. The enamel composition includes a glass frit comprising P2O5, SiO2, B2O3, Al2O3, R2O (where R is an alkali metal), a chemical property enhancement component, and an adhesion enhancement component. The chemical property enhancement component includes at least one of ZrO2 and TiO2, and the adhesion enhancement component includes at least one of CoO, NiO, MnO2 and Fe2O3.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: March 29, 2016
    Assignee: LG Electronics Inc.
    Inventors: Youngseok Kim, Yongsoo Lee, Namjin Kim, Youngjin Lee
  • Patent number: 9296642
    Abstract: Provided are an enamel composition, a preparation method thereof, and a cooking appliance including the same. The enamel composition includes a glass frit containing P2O5, SiO2, TiO2, Na2O, and Al2O3. The glass frit contains about 10 wt % to about 25 wt % of SiO2, about 5 wt % to about 20 wt % of TiO2, about 5 wt % to about 15 wt % of Na2O, and about 9 wt % to about 20 wt % of Al2O3, and the glass frit has a glass deformation temperature of about 500° C. or more, and a reflectivity of about 70% or more.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: March 29, 2016
    Assignee: LG Electronics Inc.
    Inventors: Youngjun Lee, Namjin Kim, Yongsoo Lee, Youngseok Kim
  • Patent number: 9084505
    Abstract: The present invention relates to enameled-heated cooking utensils with a non-stick ceramic coating layer, and a preparation method thereof, wherein enamel layers are formed on both sides of a main body of heating cooking utensils which is made by using an iron and steel material such as cast ion, steel, cold rolled steel plate and the like, and a non-stick ceramic coating layer which emits anions, radiates far infrared rays, is nonadhesive and does not harm the human body, is formed on the outer surface of the enamel layers. The inventive enameled heating cooking utensils has excellent corrosion resistance, abrasion resistance, heat resistance and the like, prevents food from sticking when heating food, and is environmentally-friendly by forming a non-stick ceramic coating layer which does not harm human body, and thus the demand of the enameled-heated cooking utensils according to the present invention is expected to remarkably increase hereafter.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: July 21, 2015
    Inventor: Chung Kwon Park
  • Publication number: 20140326393
    Abstract: Certain example embodiments relate to improved seals for glass articles. Certain example embodiments relate to a composition used for sealing an insulted glass unit. In certain example embodiments the composition includes vanadium oxide, barium oxide, zinc oxide, and at least one additional additive. For instance, another additive that is a different metal oxide or different metal chloride may be provided. In certain example embodiments, a vacuum insulated glass unit includes first and second glass substrates that are sealed together with a seal that includes the above-described composition.
    Type: Application
    Filed: July 16, 2014
    Publication date: November 6, 2014
    Inventor: Timothy A. DENNIS
  • Patent number: 8778455
    Abstract: A composition that upon firing, forms a non-stick enamel layer is disclosed. The composition can be applied to a metal substrate to provide a non-stick, durable coating for cooking surfaces. Also disclosed are methods of forming enamel layers and corresponding coated substrates. Various ground coats and related methods are also described. Furthermore, various multilayer coatings and structures are disclosed that include an enamel layer and a ground coat layer.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: July 15, 2014
    Assignee: Ferro Corporation
    Inventors: Albert L. Benford, Jr., Andrew Gorecki, Louis J. Gazo, Charles A. Baldwin
  • Patent number: 8772189
    Abstract: This invention relates to glass and enamel compositions. The glass compositions comprise SiO2, Cs2O, Na2O, ZnO, B2O3, and TiO2, and optionally Bi2O3 and F. The resulting compositions can be used to form an enamel on a substrate, for example, to decorate and/or protect the substrate.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: July 8, 2014
    Assignee: Ferro Corporation
    Inventors: Sandeep K. Singh, George E. Sakoske, David A. Klimas
  • Publication number: 20120282407
    Abstract: This invention relates to glass and enamel compositions. The glass compositions comprise SiO2, Cs2O, Na2O, ZnO, B2O3, and TiO2, and optionally Bi2O3 and F. The resulting compositions can be used to form an enamel on a substrate, for example, to decorate and/or protect the substrate.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 8, 2012
    Applicant: FERRO CORPORATION
    Inventors: Sandeep K. Singh, George E. Sakoske, David A. Klimas
  • Patent number: 8298971
    Abstract: The present invention relates to a ceramic powder and special raw material and use thereof. The raw material of the ceramic powder comprises 20-80 mass parts of SiO2, 10-50 mass parts of AlF3 and 0-30 mass parts of regulator. The raw material for preparing the ceramic powder is mixed and crushed, followed by melted into liquid glass at 1200-1400° C., quenched to obtain the ceramic powder. The low temperature co-fired ceramic powder has the following advantages: low sintering temperature (750-850° C.) and controllable sintering shrinkage rate; the dielectric constant of the ceramic block prepared with the ceramic powder is adjustable between 4.5 and 10 (1 MHz), the dielectric loss is less than 0.002, the mechanical strength is high and the preparation process is simple. The ceramic powder may be used for electric devices such as ceramic substrate, resonator, etc. as well as in other microelectronic packaging.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: October 30, 2012
    Assignee: Tsinghua University
    Inventors: Ji Zhou, Rui Wang, Hongjie Zhao
  • Patent number: 8252708
    Abstract: A borosilicate glass composition suitable for manufacturing microreactor glass frits includes 12-22 mol % B2O3=12-22; 68-80 mol % SiO2; 3-8 mol % Al2O3, 1-8 mol % Li2O, and one of 0.5±0.1 mol % ZrO2 and 1.1±0.5 mol % F. After sintering a glass frit having the borosilicate glass composition, the glass frit has a surface crystalline layer of 30 ?m or less or is amorphous throughout.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: August 28, 2012
    Assignee: Corning Incorporated
    Inventors: Robert Michael Morena, Paulo Jorge Marques, Henry Edwin Hagy
  • Publication number: 20120213951
    Abstract: Certain example embodiments relate to improved seals for glass articles. Certain example embodiments relate to a composition used for sealing an insulted glass unit. In certain example embodiments the composition includes vanadium oxide, barium oxide, zinc oxide, and at least one additional additive. For instance, another additive that is a different metal oxide or different metal chloride may be provided. In certain example embodiments, a vacuum insulated glass unit includes first and second glass substrates that are sealed together with a seal that includes the above-described composition.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Applicant: Guardian Industries Corp.
    Inventor: Timothy A. Dennis
  • Publication number: 20120213952
    Abstract: Certain example embodiments relate to improved seals for glass articles. Certain example embodiments relate to a composition used for sealing an insulted glass unit. In certain example embodiments the composition includes vanadium oxide, barium oxide, zinc oxide, and at least one additional additive. For instance, another additive that is a different metal oxide or different metal chloride may be provided. In certain example embodiments, a vacuum insulated glass unit includes first and second glass substrates that are sealed together with a seal that includes the above-described composition.
    Type: Application
    Filed: September 21, 2011
    Publication date: August 23, 2012
    Applicant: Guardan Industries Corp.
    Inventor: Timothy Alan DENNIS
  • Patent number: 8202812
    Abstract: This invention relates to lead free, cadmium free, bismuth free low melting high durability glass and enamel compositions. The compositions comprise silica, zinc, titanium, and boron oxide based glass frits. The resulting compositions can be used to decorate and protect automotive, beverage, architectural, pharmaceutical and other glass substrates.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: June 19, 2012
    Assignee: Ferro Corporation
    Inventor: George E. Sakoske
  • Patent number: 8080490
    Abstract: The invention relates to an antimicrobial phosphate glass having the following composition in percent by weight on an oxide basis: P2O5>66-80 percent by weight; SO30-40 percent by weight; B203 0-1 percent by weight; Al2O3>6.2-10 percent by weight; SiO2 0-10 percent by weight; Na2O>9-20 percent by weight; CaO 0-25 percent by weight; MgO 0-15 percent by weight; SrO 0-15 percent by weight; BaO 0-15 percent by weight; ZnO>0-25 percent by weight; Ag2O 0-5 percent by weight; CuO 0-10 percent by weight; GeO2 0-10 percent by weight; TeO2 0-15 percent by weight; Cr2O3 0-10 percent by weight; J 0-10 percent by weight; F 0-3 percent by weight.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: December 20, 2011
    Assignee: Schott AG
    Inventors: Jörg Hinrich Fechner, José Zimmer, Karine Seneschal
  • Patent number: 8042363
    Abstract: The invention relates to producing continuous organic fibers by stretching from molten minerals. These fibers can be used for producing heat resistant threads, rovings, cut fibers, fabrics, composite materials and products based thereon. The inventive glass has the following chemical composition in mass percentage: 15.9-18.1 Al2O3, 0.75-1.2 TiO2, 7.51-9.53 Fe2O3+FeO, 6.41-8.95 CaO, 2.5-6.4 MgO, 1.6-2.72 K2O, 3.3-4.1 Na2O, 0.23-0.5 P2O5, 0.02-0.15 SO3, 0.12-0.21 MnO, 0.05-0.19 BaO, impurities up to 1.0, the rest being SiO2. The inventive method consists in loading a ground composition in a melting furnace, in melting said composition, in homogenizing a melt, in consequently stabilizing the melt in the melting furnace feeder, in drawing and oiling the fiber and in winding it on a spool. Prior to loading, the composition is held in an alkali solution for 15-20 minutes, and is then washed with flowing water for 20-30 minutes and dried.
    Type: Grant
    Filed: December 25, 2006
    Date of Patent: October 25, 2011
    Inventors: Viktor F. Kibol, Sunao Nakanoo, Alexandr B. Biland, Roman V. Kibol
  • Patent number: 7964294
    Abstract: An easy to clean and stain resistant coating for a cooking product includes an oxycarbofluoride coating. The oxycarbofluoride coating has a composition comprising at least one metal oxide, carbon and fluorine and can be applied to a substrate using a sol-gel process.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: June 21, 2011
    Assignee: General Electric Company
    Inventors: Venkat Subramaniam Venkataramani, Salil Mohan Joshi, Nagaveni Karkada, Sundeep Kumar
  • Patent number: 7767603
    Abstract: A network former and a glass modifier are formed and maintained by using basalt rock ore, and the crystallization and binding of basalt fiber are inhibited The heat-resistance property of basalt fiber is greatly improved from the conventional 750° C. to 850 or 900° C., and significant cost reduction is achieved over conventional products. Basalt fiber material having basalt rock as a raw material to which one or more kinds of oxide selected from Al2O3, SiO2, CaO, and MgO is added, and basalt fiber material having two kinds of basalt rock containing different amounts of elements as raw materials are provided.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: August 3, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Nakagawa Sangyo Co., Ltd.
    Inventors: Sumio Kamiya, Isao Tanaka, Kazumi Imamura, Hironori Sasaki, Noriaki Nakagawa
  • Patent number: 7763557
    Abstract: A porcelain enamel composition having a metallic appearance is disclosed. The composition comprises about 45% to about 55% SiO2, about 4 to about 20% R2O, about 9 to about 15% B2O3, about 4 to about 12% MnO2, about 1.5 to about 7% F2, about 0% to about 20% MO2, about 0% to about 10% RO, about 0% to about 6% NO2, about 0% to about 2% P2O5, about 0% to about 3% CoO, about 0% to about 3% NiO, about 0% to about 3% Al2O3, about 0% to about 3% Fe2O3, about 0% to about 3% CuO, about 0% to about 4% ZrO2, about 0% to about 2% Nb2O5, and about 0% to about 5% Sb2O3, wherein R2O represents at least one alkali oxide, wherein RO represents at least one alkaline earth oxide and wherein MO2 represents at least one opacifying pigment selected from the group consisting of ZrO2, TiO2, CeO2, SnO2 and La2O3.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: July 27, 2010
    Assignee: Ferro Corporation
    Inventors: Charles A. Baldwin, David P. Fedak, Bradley E. Devine
  • Publication number: 20100050693
    Abstract: lead-free crystal ice that can be melt-adhered to a plate glass, has an average particle diameter (ø) of 0.2 mm to 1.0 mm, can be melted at a firing temperature (i.e. an internal temperature of a heating furnace) of 650 to 710° C., contains no heavy metals, and consists of optimal components present in optimal amounts. The lead-free crystal ice has the highest melting point within the range of 650 to 710° C. In addition, the surface of the lead-free crystal ice is not deformed or discolored in the atmosphere after the crystal ice is melt-adhered to the surface of a plate glass.
    Type: Application
    Filed: November 24, 2006
    Publication date: March 4, 2010
    Inventor: Jae Seok Jeon
  • Publication number: 20100009837
    Abstract: This invention relates to lead free, cadmium free, bismuth free low melting high durability glass and enamel compositions. The compositions comprise silica, zinc, titanium, and boron oxide based glass frits. The resulting compositions can be used to decorate and protect automotive, beverage, architectural, pharmaceutical and other glass substrates.
    Type: Application
    Filed: February 10, 2009
    Publication date: January 14, 2010
    Applicant: FERRO CORPORATION
    Inventor: George E. Sakoske
  • Patent number: 7611774
    Abstract: The glass ceramic or glass element that can be subjected to high thermal loads is decorated with a metallic colorant. The metallic colorant consists of a melted silicate and at least one effect pigment, which is included in a specified proportion in a melt of the silicate glass to form the metallic colorant. The at least one effect pigment is in the form of platelets of synthetic aluminum oxide (Al2O3) coated with at least one metal oxide. Preferably the at least one effect pigment is a XIRALLIC® high chroma sparkle pigment supplied commercially by Merck and the metallic colorant has a pigment content of from 1 to 30 wt. %.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: November 3, 2009
    Assignee: Schott AG
    Inventors: Monica Cotlear De Witzmann, Dietmar Wennemann, Angelina Milanovska, Ella Ruhl, Eva Lauterbach, Ioannis Kosmas
  • Patent number: 7323160
    Abstract: A method of treating sensitive teeth includes (1) attaching a fluoride releasing glass composition to a person's tooth, and (2) allowing fluoride to be slowly released over time in order to reduce chronic and/or acute tooth sensitivity. A preferred glass composition comprises the general empirical formula given below, expressed in approximate weight percent of the element: P: 16-24, F: 5-30, O: 20-40 and at least one of Na, K, Li, or Al in an amount up to a total of about 40 weight percent and optionally, up to about 5 weight percent of boron and/or silicon.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: January 29, 2008
    Assignee: Teldent Ltd.
    Inventors: Brian Algar, Jack Toumba, Martin Curzon
  • Patent number: 7175833
    Abstract: A glass composition having the general empirical formula given below, expressed in weight percent of the element: P: 16–24, F: 5–30, O: 20–40 and at least one of Na, K, Li or Al in an amount up to a total of 40 wt. % and optionally, up to 5 wt. % of boron and/or silicon. The composition may be used for the treatment and/or prevention of dental caries by providing a slow fluoride releasing device that may be attached to a tooth to release fluoride into the saliva or an individual.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: February 13, 2007
    Assignee: Teldent Ltd
    Inventor: Brian Algar
  • Patent number: 6837075
    Abstract: A glass fixative composition for bonding glass materials to non-glass materials is provided. The fixative composition is selected for its thermal expansion coefficient, its viscosity, its adhesion to glass, melting point, and bond strength. The glass fixative is in particular useful for bonding optical fibers to metallic materials such as Kovar. The low melting point of the glass fixative enables localized heating methods to be used, in particular, as Kovar is a ferromagnetic material, induction heating can be used to form a bond. The bond formed provides a compressive joint which enables the fiber to be hermetically fixed in position.
    Type: Grant
    Filed: October 27, 2000
    Date of Patent: January 4, 2005
    Assignee: Bookham Technology, plc.
    Inventors: Kenneth Snowdon, Timothy J Durrant, Richard Wilmshurst, Christopher G Tanner
  • Patent number: 6777358
    Abstract: A glass composition for a seal consists essentially of 70-75 wt % of PbO, 3-7 wt % of PbF2, 5-8 wt % of Bi2O3, 5-7 wt % of B203, 2-5 wt % of ZnO, 1-3 wt % of Fe2O3, 0-2 wt % of CuO, 0-2% of TeO2, and a trace <0.2% of MnO2, the composition having a flow temperature of <350° C. Such seals can be flowed at low temperatures, using different and less environmentally damaging constituents to those used before. Damage to temperature sensitive materials near the seals, can be reduced. Low flow temperatures can be achieved without excessive degradation of properties such as low viscosity, low expansion coefficient, good adhesion to glass and metals, low permeability of air, good long term hydrolytic stability. A filler such as a ceramic powder, is added to match the temperature expansion coefficient to the materials being sealed. It can be used to fix silica fiber into electro-optic devices to achieve hermetic joints with high mechanical stability.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: August 17, 2004
    Assignee: Nortel Networks Limited
    Inventors: Kenneth Snowdon, Christopher Tanner, Timothy Durrant, Christopher Woodend
  • Publication number: 20040018932
    Abstract: A composition for producing a porcelain enamel having a metallic appearance includes a first mixture which forms a polyoxide surface crystal having a metallic appearance when the composition is heated to a temperature ranging from 700 to 1,000° C. and which is composed of from about 0.7 to about 2 wt. % of NiO; from about 2.5 to about 8 wt. % of MnO2; and from about 5 to about 11 wt. % of TiO2; and remainder a second mixture which is a porcelain enamel forming mixture. Advantageously, the composition additionally includes at least one of from about 0.2 to about 0.8 wt. % of CuO, from about 0.05 to about 0.3 wt. % of CoO, and/or from about 0.2 to about 0.6 wt. % of Fe2O3.
    Type: Application
    Filed: June 30, 2003
    Publication date: January 29, 2004
    Inventors: Boris Yuriditsky, Vincent Duchamp
  • Patent number: 6660073
    Abstract: A porcelain composition for dental restorations comprising a leucite crystallite phase and a glass matrix phase, wherein the leucite crystallites possess diameters not exceeding about 10 micron. Preferably, the porcelain composition has a maturing temperature from about 750° to about 1050° C. and a coefficient of thermal expansion from about 12×10−6/° C. to about 17.5×10−6/° C., and comprises: Component Amount (wt. %) SiO2 57-66 Al2O3  7-15 K2O  7-15 Na2O  7-12 Li2O 0.5-3.
    Type: Grant
    Filed: August 8, 2000
    Date of Patent: December 9, 2003
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Carlino Panzera, Lisa M. Kaiser
  • Patent number: 6624104
    Abstract: Low temperature melting lead-free glass and enamel compositions are provided which have low boron content and possess high durability properties. Enamel pastes containing frits of the glass compositions are particularly useful in forming colored borders in automotive glass.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: September 23, 2003
    Assignee: Ferro Glass & Color Corporation
    Inventors: George E. Sakoske, Gerhard Tünker
  • Patent number: 6428614
    Abstract: Opaque porcelains for use with metal cores in the manufacture of PFM restorations. The porcelains exhibit a coefficient of thermal expansion (CTE) substantially equal to or slightly above the CTE of the metal to which it is applied. The porcelains exhibit a CTE equal to or up to about 1.5×10−6/° C. higher than the dental alloys to which they are applied as the opaque. The porcelains are fabricated from a mixture of two frit compositions. A high expansion, leucite containing frit is combined with a low melting glass frit to provide a porcelain having an expansion in the range of 16.9 to about 18×10−6/° C. in the temperature range of 25°-500° C.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: August 6, 2002
    Assignee: Jeneric/Pentron, Inc.
    Inventors: Dmitri Brodkin, Carlino Panzera, Paul Panzera
  • Patent number: 6403506
    Abstract: The invention relates to a glass powder, where at least one oxidizing agent or one reducing agent is added to the glass powder. The glass powder is preferably used as dental glass powder.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: June 11, 2002
    Assignee: Schott Glas
    Inventors: Susanne Kessler, Hartmut Paschke, Hans-Werner Beudt, Susanne Kiermayer
  • Patent number: 6387832
    Abstract: Transition metal NZP type compounds are synthesized. Examples of these compounds include MnZr4(PO4)6, FeZr4(PO4)6, CoZr4(PO4)6, NiZr4(PO4)6, and CuZr4(PO4)6. These compounds are synthesized by the Xerogel process. These transition metal NZP type compounds can be used as colorants in applications such as ceramic glazes where high thermal stability of the colorant is important.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: May 14, 2002
    Assignee: The Penn State Research Foundation
    Inventors: Sridhar Komarneni, William W. Gould
  • Patent number: 6346493
    Abstract: The present invention provides a new and improved lead-free and cadmium-free glass enamel composition that displays good flow at traditional glass enamel firing temperatures and upon firing produces an enamel finish that displays no cracking, good chemical resistance, good weatherability, and improved color values. The glass enamel composition of the present invention includes a glass component, an oxidizer, a pigment system, and optional vehicles and fillers. The presence of the oxidizer in the composition, which can be included as part of the glass component, as a separately added material, or both, improves the color values of the fired enamel as compared to enamels formed using similar glass enamel compositions having no oxidizer present.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: February 12, 2002
    Assignee: Ferro Corporation
    Inventors: Galina Kniajer, Jeffrey David Cosby, Ivan H. Joyce, Srinivasan Sridharan, John J. Maloney
  • Patent number: 6306783
    Abstract: A tin borophosphate glass for use in sealing materials includes, by mole, 30 to 80% of SnO, 5 to 60% of B2O3, and 5 to 24% of P2O5 as main components. The glass is free of lead but is of equal quality to those of conventional lead-containing sealing glasses. The glass can provide a satisfactory sealing material.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: October 23, 2001
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Toshio Yamanaka
  • Patent number: 6306784
    Abstract: Alkali silicate glasses are described which, in view of their good chemical stability and their optical properties and processing properties, are particularly suitable as a coating or veneering material for ceramic dental frameworks and hence for the production of all-ceramic dental restorations such as crowns or bridges.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: October 23, 2001
    Assignee: Ivoclar AG
    Inventors: Helga Drescher, Martin Frank, Volker Rheinberger, Wolfram Höland
  • Patent number: 6287996
    Abstract: A ceramic color composition which comprises from 5 to 40 wt % of a heat-resistant color pigment powder, from 50 to 94.5 wt % of a glass powder, from 0 to 25 wt % of a refractory filler, and from 0.1 to 40 wt % of at least one whisker-like refractory filler selected from the group consisting of aluminum borate whiskers, &agr;-alumina whiskers, potassium titanate whiskers, zinc oxide whiskers, Na2Ca2P2O18 whiskers, magnesium oxide whiskers, magnesium borate whiskers, basic magnesium sulfate (MgSO4.5MgO.8H2O) whiskers and titanium diboride whiskers.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: September 11, 2001
    Assignee: Asahi Glass Company Ltd.
    Inventors: Jiro Chiba, Takaji Shimosaka, Kenji Mukai, Shuji Taguchi, Mineyuki Ishida, Hitoshi Onoda, Hiroshi Usui, Tsuneo Manabe
  • Patent number: 6255239
    Abstract: Lead-free alkali metal-free bismuth-borosilicate glass compositions are disclosed. These compositions are useful in preparing glass frits which are employed in glass enamel compositions which, in turn, are used to prepare glass enamel pastes. The glass enamel pastes can be coated on non-porous substrates and fused to form decorative and functional coatings on the substrates.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: July 3, 2001
    Assignee: Cerdec Corporation
    Inventor: George E. Sakoske
  • Patent number: 6206958
    Abstract: Porcelain compositions of the present invention comprises particulate of one or more glass or glass-ceramic powder components. Additionally, one or more opacifing agents, pigments, fluorescing agents and the like may be included in the composition. Based on volume percent, the particulate has a d10 of from about 1.1 and about 1.8 microns; a d50 of from about 3 to about 6 microns; a d90 of from about 8 to about 16 microns; and about 1.0 to about 4.0% by volume of the particulate has a particle size greater than or equal to about 20 microns. The mean particle size is preferably in the range of about 3.0 microns to about 7.5 microns.
    Type: Grant
    Filed: July 15, 1999
    Date of Patent: March 27, 2001
    Assignee: Jeneric/Pentron, Incorporated
    Inventors: Paul Panzera, Jana N. Pruden, Dmitri Brodkin, Lisa M. Kaiser, Richard A. Brightly, Carlino Panzera
  • Patent number: 6171987
    Abstract: A glass composition comprising, in mole percent of the total composition: glass-forming compounds in a total amount of 75 to 85%, wherein said glass forming compounds comprise 40 to 65% SiO2, 10 to 20% Bi2O3 and 0.1 to 3% Al2O3, and glass modifiers in a total amount of 15 to 25%, wherein said glass modifiers comprise 1 to 23 % ZnO, 0.1 to 5% CuO, 0.1 to 5 CaO and 0.1 to 2% MgO, thick film formulations containing said composition and uses thereof.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: January 9, 2001
    Assignee: Ben-Gurion University of the Negev
    Inventor: Jacob Hormadaly
  • Patent number: 6121175
    Abstract: Alkali silicate glasses are described which, in view of their good chemical stability and their optical properties and processing properties, are particularly suitable as a coating or veneering material for ceramic dental frameworks and hence for the production of all-ceramic dental restorations such as crowns or bridges.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: September 19, 2000
    Assignee: Ivoclar AG
    Inventors: Helga Drescher, Frank Martin, Volker Rheinberger, Wolfram Holand
  • Patent number: 6083858
    Abstract: The present invention relates to a sealing glass composition, which is able to seal a panel and funnel of a color TV at low temperature for a short time by adding Garnet(Fe.sub.3 Al.sub.2 Si.sub.3 O.sub.12) as a nucleating agent and filler component to control the thermal expansion coefficient.
    Type: Grant
    Filed: March 8, 1999
    Date of Patent: July 4, 2000
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Tae Ho Park, Sung Hoon Moon, Young Gil Nam
  • Patent number: 6043171
    Abstract: The lead- and cadmium-free glass composition for glazing, enameling and decorating glass or glass-ceramic articles contains high quartz and/or keatite solid solution crystals as principal crystalline phases after crystallization and a low thermal expansion coefficient of less than 2.times.10.sup.-6 /K at temperatures between 20 and 700.degree. C. This glass composition contains Li.sub.2 O, 0 to 5% by weight; Na.sub.2 O, 0 to 5% by weight; K.sub.2 O, less than 2% by weight; MgO, 0 to 3% by weight; CaO, 0 to 4% by weight; SrO, 0 to 4% by weight; BaO, 0 to 4% by weight; ZnO, 0 to 4% by weight; B.sub.2 O.sub.3, 15 to 27% by weight; Al.sub.2 O.sub.3, 10 to 20% by weight; SiO.sub.2, 43 to 58% by weight; TiO.sub.2, 0 to 3% by weight and ZrO.sub.2, 0 to 4% by weight, Sb.sub.2 O.sub.3, 0 to 2% by weight; F, 0 to 3% by weight in exchange for oxygen and up to 30% by weight of at least one inorganic pigment resistant to a burning-in temperature on the glass or the glass-ceramics. The sum total amount of Li.sub.2 O, Na.
    Type: Grant
    Filed: May 19, 1998
    Date of Patent: March 28, 2000
    Assignee: Schott Glas
    Inventors: Friedrich Siebers, Ottmar Becker, Waldemar Weinberg, Petra Auchter-Krummel
  • Patent number: 6022819
    Abstract: Porcelain compositions of the present invention comprise one or more glass or glass-ceramic powder components. Additionally, one or more opacifying agents, pigments, fluorescing agents and the like may be included in the composition. Based on volume percent, 10% of the particulate in the porcelain has a particle size of less than between about 1.1 microns and about 1.5 microns, 50% of the particulate in the porcelain has a particle size of less than between about 3 and about 6 microns, 90% of the particulate in the porcelain has a particle size of less than between about 8 and about 13.5 microns, and the maximum particle size of the particulate is greater than about 20 microns and less than about 60 microns. The mean particle size is preferably in the range of about 3.0 microns to about 6.5 microns.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: February 8, 2000
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Paul Panzera, Jana Pruden, Dmitri Brodkin, Lisa M. Kaiser, Richard A. Brightly, Carlino Panzera
  • Patent number: 6010973
    Abstract: A dielectric forming material for a plasma display panel enables to form a dielectric layer having a high dielectric strength and good transparency. The dielectric forming material is provided with a green sheet in form that comprises, as a component, glass powder having a 50% particle diameter D.sub.50 which is not more than 2.8 .mu.m. Preferably, the glass powder preferably may have the maximum particle diameter D.sub.MAX which is not more than 18 .mu.m. Desirably, the green sheet essentially may consist by weight of 60-80% the glass powder, 0-10% ceramic powder, 5-30% thermoplastic resin, and 0-10% plasticizer.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: January 4, 2000
    Assignee: Nippon Electric Glass, Co., Ltd.
    Inventors: Hiromitsu Watanabe, Hiroyuki Oshita, Masahiko Ohji, Kazuo Hadano
  • Patent number: 6004894
    Abstract: The present invention provides a porcelain enamel coating composition for use in forming a coating composition upon a metal substrate having an infrared reflectivity of at least 50% at 2.5 .mu.-microns measured with a Perkin Elmer Lambda 19 UV/VIS/NIR spectrometer with a labsphere RSA-PE 19 reflectance spectroscopy accessory. The coating composition comprises a glass component and a separate and distinct addition of cerium oxide. Preferably, the coating composition comprises from about 0.20% to about 3.0% by weight of the cerium oxide.
    Type: Grant
    Filed: October 28, 1998
    Date of Patent: December 21, 1999
    Assignee: Ferro Corporation
    Inventors: William D. Faust, Holger F. Evele
  • Patent number: 5944884
    Abstract: A porcelain composition for dental restorations comprising a leucite crystallite phase and a glass matrix phase, wherein the leucite crystallites possess diameters not exceeding about 10 micron. Preferably, the porcelain composition has a maturing temperature from about 750.degree. to about 1050.degree. C. and a coefficient of thermal expansion from about 12.times.10.sup.-6 /.degree. C. to about 17.5.times.10.sup.-6 /.degree. C., and comprises:______________________________________ Component Amount (wt. %) ______________________________________ SiO.sub.2 57-66 Al.sub.2 O.sub.3 7-15 K.sub.2 O 7-15 Na.sub.2 O 7-12 Li.sub.2 O 0.5-3.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: August 31, 1999
    Assignee: Jeneric/Pentron Incorporated
    Inventors: Carlino Panzera, Lisa M. Kaiser
  • Patent number: 5891233
    Abstract: A pharmaceutical preparation, including a glass phase which is bioactive silica containing glass in the form of a paste, suspension or solution mixed in a physiologically suitable liquid or bound to a physiologically suitable vehicle, and which preparation reduces the pulpal irritation or a tooth and/or strengthens the structure of a tooth. Bioactive silica containing glass may be a material which contains only Si-oxide or Si-hydroxide and which allows the formation and movement of Si--OH-groups. Preferably, the preparation also contains calcium and phosphate sources.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: April 6, 1999
    Assignee: Bioxid Oy
    Inventors: Jukka Salonen, Ulla Tuominen, Antti Yli-Urpo
  • Patent number: 5849649
    Abstract: A glass flux composition consisting essentially in mol percent of 3.0-13.0 lithium oxide, 0.5-3.5 potassium oxide, 2.5-7.0 sodium oxide, 0.5-2.5 zinc oxide, 2.0-8.0 aluminium oxide, 15-30 boron oxide, 44-68 silica, 1.0-7.0 zirconium oxide, 0-4.0 calcium oxide, 0-3.0 lanthanum oxide, 0-1.0 other rare earth metal oxide, 0-1.0 yttrium oxide, 0-4.0 magnesium oxide, 0-4.0 strontium oxide, 0-4.0 titanium oxide, 0-10 phosphorus pentoxide, 0-1.5 lead oxide and 0-13.0 fluoride is useful for preparing an enamel or cover flux composition, especially for application to ceramic ware.
    Type: Grant
    Filed: April 14, 1997
    Date of Patent: December 15, 1998
    Assignee: Johnson Matthey Public Limited Company
    Inventor: Sucharitra D. Poole
  • Patent number: 5843853
    Abstract: The invention pertains to a new lead-free glass composition with improved properties, a glass frit of this composition and its use for the production of glass-enamel, particularly for architectural glass. The glass composition contains in mole %:______________________________________ Na.sub.2 O 10-15 K.sub.2 O 0.1-2 SiO.sub.2 40-50 B.sub.2 O.sub.3 8-12 TiO.sub.2 4-7 Al.sub.2 O.sub.3 0.1-3 ZnO 13-17 F 1-5 ______________________________________and less than 0.5 weight % each of the oxides of the series PbO, CdO, P.sub.2 O.sub.5, and alkaline earth metal oxides. Use of a dye preparation containing the glass frit at 600.degree. to 650.degree. C. results in bakeable glazed, crack-free, acid and base resistant enamel layers.
    Type: Grant
    Filed: August 4, 1997
    Date of Patent: December 1, 1998
    Assignee: Cerdec Aktiengesellschaft Keramische Farben
    Inventors: Oliver Heitmann, Gerhard Tunker
  • Patent number: 5817586
    Abstract: A colored ceramic composition comprising, as inorganic components, from 5 to 40 wt % of a colored heat resistant pigment powder, from 60 to 95 wt % of a powder of zinc-containing glass and from 0 to 10 wt % of a refractory filler powder, wherein said glass consists essentially of the following components:______________________________________ SiO.sub.2 30 to 60 wt % ZnO 8 to 60 wt % B.sub.2 O.sub.3 0 to 5 wt % Li.sub.2 O 0 to 20 wt % Na.sub.2 O 0 to 20 wt % K.sub.2 O 0 to 20 wt % Li.sub.2 O + Na.sub.2 O + K.sub.2 O 0.1 to 20 wt % MgO + CaO + SrO + BaO 0 to 20 wt % Bi.sub.2 O.sub.3 0 to 40 wt % TiO.sub.2 0 to 10 wt % F 0 to 5 wt %.
    Type: Grant
    Filed: April 11, 1997
    Date of Patent: October 6, 1998
    Assignee: Asahi Glass Company Ltd.
    Inventors: Kazuo Harada, Hiroshi Usui, Tsuneo Manabe
  • Patent number: 5792716
    Abstract: The present invention provides a new and improved thick film paste for use as an acid resistant overglaze. In one preferred embodiment such paste includes a glass composition comprising in weight percent from about 30% to about 60% PbO, from about 5% to about 20% ZnO, from about 2% to about 20% B.sub.2 O.sub.3, from about 4% to about 12% Al.sub.2 O.sub.3, from about 5% to about 18% SiO.sub.2, up to about 8% ZrO.sub.2, up to about 8% TiO.sub.2 and from about 9% to about 21% Nb.sub.2 O.sub.5.
    Type: Grant
    Filed: February 19, 1997
    Date of Patent: August 11, 1998
    Assignee: Ferro Corporation
    Inventors: Subramanian Vasudevan, Srinivasan Sridharan, Gordon J. Roberts