And Phosphorus, Niobium, Or Tantalum Patents (Class 501/63)
  • Patent number: 7341964
    Abstract: The present invention provides glass compositions and glass coating systems for use on glass substrates in several industrial applications. It relates to a lead-free and cadmium-free glass enamel coating made primarily by utilizing at least one or more of lead-free and cadmium-free glass compositions comprising in weight percent from about 26% to about 63% SiO2, from about 2% to about 10.5% ZnO, from about 8% to about 20% B2O3, from about 0.1% to about 10% Bi2O3, up to about 12% Na2O, from about 0.1% to about 17% K2O, up to about 6% Li2O, from about 0.1% to about 22% of Ta2O5, from about 0.0% to about 22% of Nb2O5, up to about 8% from each of Al2O3, TiO2, ZrO2, BaO and SrO, from about 0.1% to about 7% Sb2O3, up to about 7% F2, up to about 4% from each of CaO, Mo2O3 and MgO, and from about 0.1% to about 4% of one or more of La2O3, Nd2O3, Pr2O3 and Ce2O3.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: March 11, 2008
    Assignee: Shepherd Color Company
    Inventor: Hasan B. Emlemdi
  • Patent number: 7323160
    Abstract: A method of treating sensitive teeth includes (1) attaching a fluoride releasing glass composition to a person's tooth, and (2) allowing fluoride to be slowly released over time in order to reduce chronic and/or acute tooth sensitivity. A preferred glass composition comprises the general empirical formula given below, expressed in approximate weight percent of the element: P: 16-24, F: 5-30, O: 20-40 and at least one of Na, K, Li, or Al in an amount up to a total of about 40 weight percent and optionally, up to about 5 weight percent of boron and/or silicon.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: January 29, 2008
    Assignee: Teldent Ltd.
    Inventors: Brian Algar, Jack Toumba, Martin Curzon
  • Patent number: 7323426
    Abstract: A family of glasses from the SiO2—Al2O3—P2O5 ternary system exhibiting high strain point, transparency, and low coefficient of thermal expansion. The glasses have the following composition, expressed in mol percent and calculated from the glass batch on an oxide basis: 55-80 SiO2, 12-30 Al2O3, and 2-15 P2O5.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: January 29, 2008
    Assignee: Corning Incorporated
    Inventor: Bruce G. Aitken
  • Patent number: 7316740
    Abstract: Lithium silicate materials are described which can be easily processed by machining to dental products without undue wear of the tools and which subsequently can be converted into lithium silicate products showing high strength.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: January 8, 2008
    Assignee: Ivoclar Vivadent AG
    Inventors: Marcel Schweiger, Volker M. Rheinberger, Harald Bürke, Wolfram Höland
  • Patent number: 7297645
    Abstract: An opalescent glass-ceramic product, especially for use as a dental material or as an additive to or component of dental material, including SiO2, Al2O3, P2O5, Na2O, K2O, CaO and Me(IV))O2. In order to obtain improved opalescence with improved transparency, in addition to fluorescence, thermal expansion and a combustion temperature adapted to other materials, the opalescent ceramic product is completely or substantially devoid of ZrO2 and TiO2, such that the Me(II)O content in the glass ceramic is less than approximately 4 wt % and the Me(IV)O2 content amounts to approximately 0.5-3 wt %. The invention also relates to a method for the production of the opalescent glass-ceramic product.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: November 20, 2007
    Assignee: Degudent GmbH
    Inventor: Klaus Krumbholz
  • Patent number: 7279238
    Abstract: A pressable dental ceramic comprising a mixture of glass and glass-ceramic frits. A refractory filler is also combined with the frits. The dental ceramic contains an amount of leucite less than about 35 percent by weight. Other additives may be included such as pigments, opacifying agents and fluorescing agents. The dental ceramic comprises a cellular-like microstructure comprised of glassy regions surrounded by clusters of leucite crystals distributed around those glassy regions forming a cellular three-dimensional network.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: October 9, 2007
    Assignee: Pentron Ceramics, Inc.
    Inventor: Dmitri Brodkin
  • Patent number: 7252713
    Abstract: A method of facilitating the crystallisation of a macromolecule comprising the step of adding a mesoporous glass to a crystallisation sample wherein the mesoporous glass comprises pores having diameters between 4 nm and 100 nm and has a surface area of at least 50 m2/g. A method of facilitating the crystallisation of a macromolecule comprising the step of adding to a crystallisation sample a mesoporous glass of the composition Si02; CaO—P205-SiO2 or Na20-CaO—P205-SiO2, wherein each of the Ca, P, Si or Na atoms within the compositions may be substituted with a suitable atom chosen from B, Al, Ti, Mg, or K, and, optionally, the composition may also include heavy elements to enhance X-ray diffraction contrast such as Ag, Au, Cr, Co, Sr, Ba, Pt, Ta or other atom with an atomic number over 20.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: August 7, 2007
    Assignee: Imperial Collage Innovations Limited
    Inventors: Naomi Chayen, Larry Hench
  • Patent number: 7199066
    Abstract: The present invention relates to glass, glass-ceramic materials, lamp reflectors and processes for making them. The glass material has a composition, by weight of the total composition, comprising 56–67% SiO2; 9–22% Al2O3; 3.4–3.8% Li2O; 1.8–2.6% ZnO; 1.5–2.5% MgO; 3.3–5% TiO2; 0–2.5% ZrO2; 1.5–3% B2O3; 0–6% P2O5; 0–0.6% F; less than 500 ppm Fe; and components resulting from effective amount of at least one refining agent. The glass-ceramic material of the present invention contains ?-spodumene solid solution as the predominant crystalline phase, and can be obtained by proper thermal treatment of the glass-ceramic material.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: April 3, 2007
    Assignee: Corning Incorporated
    Inventors: William E. Horsfall, Ronald L. Stewart
  • Patent number: 7192602
    Abstract: The invention relates to an antimicrobial silicate glass with the following weight composition in wt. % based on oxides: SiO2 20 to 70, Na2O 5 to 30, K2O 0 to 5, P2O5 1 to 15, B2O3 0 to 10, CaO 4 to 30, AgO 0 to 2, ZnO 0 to 8, CuO 0 to 5, MgO 0 to 8, Al2O3 0 to 7, CeO2 0 to 5, Fe2O3 0 to 2 whereby the sum of the components AgO, CuO, CeO2 is >10 ppm, preferably ?100 ppm and <8 wt. %.
    Type: Grant
    Filed: August 17, 2002
    Date of Patent: March 20, 2007
    Assignee: Schott AG
    Inventors: Jörg Hinrich Fechner, José Zimmer
  • Patent number: 7189672
    Abstract: A substrate for flat panel display glasses comprising a glass the P2O5—SiO2—Al2O3 ternary system which yields stable glasses exhibiting high strain point temperatures, resistance to devitrification, good chemical durability, excellent dielectric properties, coefficients of thermal expansion that can be tailored to match that of silicon, and having liquidus viscosities that enable forming by conventional methods. The glass comprises the following composition as calculated in weight percent on an oxide basis: P2O5 33–75%, SiO2 2–52%, Al2O3 8–35%.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: March 13, 2007
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, George H. Beall, Linda R. Pinckney
  • Patent number: 7175833
    Abstract: A glass composition having the general empirical formula given below, expressed in weight percent of the element: P: 16–24, F: 5–30, O: 20–40 and at least one of Na, K, Li or Al in an amount up to a total of 40 wt. % and optionally, up to 5 wt. % of boron and/or silicon. The composition may be used for the treatment and/or prevention of dental caries by providing a slow fluoride releasing device that may be attached to a tooth to release fluoride into the saliva or an individual.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: February 13, 2007
    Assignee: Teldent Ltd
    Inventor: Brian Algar
  • Patent number: 7166549
    Abstract: The invention relates to an antimicrobial, anti-inflammatory and disinfecting glass, whereby the glass comprises: 30–95 wt. % SiO2,0–40 wt. % Na 2O, 0–40 wt. % K2O, 0–40 wt. % Li2O, 0–35 wt. % CaO, 0–10 wt. % MgO, 0–10 wt. % Al2O3, 0–15 wt. % P2O5 wt. % B2O3?, 0–10 wt. % NaF, 0–10 wt. % LiF, 0–10 wt. % KF, 0–10 wt. % CaF2, 0–5 wt. % Ag2O, 0–10 wt. % MgF2,0–2 wt. % Fe2O3and 0–10 wt. % XJy, where X?Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ag or Zn and y=1 or y=2 and the sum of XJy> is 10 ppm.
    Type: Grant
    Filed: August 17, 2002
    Date of Patent: January 23, 2007
    Assignee: Schott AG
    Inventors: Jorg Hinrich Fechner, José Zimmer
  • Patent number: 7138348
    Abstract: An optical glass has optical constants which are an refractive index (nd) of 1.70–1.75 and an Abbe number (vd) of 45.0–54.0; a glass transformation temperature (Tg) of 500–580° C. The glass has the following composition in mass percent of: SiO2 more than 5–15%; B2O3 20-less than 30%; a total amount of SiO2+B2O3 more than 25–40%; La2O3 more than 21-less than 30%; Y2O3 more than 5–15%; Gd2O3 0-less than 10%; ZrO2 1–8%; Nb2O5 0.1–5%; Ta2O5 more than 5–12%; a total amount of ZrO2+Nb2O5+Ta2O5 7–20%; ZnO 0–10%; CaO 0–10%; SrO 0–5%; BaO 0–10%; a total amount of ZnO+CaO+SrO+BaO 5–15%; Li2O 1–8%; Sb2O3 0–1%; and As2O3 0–1%. The glass is substantially free of Yb2O3 and Al2O3. Devitrification is not generated when the optical glass is kept at a temperature of 920° C. for two hours.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: November 21, 2006
    Assignee: Kabushiki Kaisha Ohara
    Inventor: Susumu Uehara
  • Patent number: 7091142
    Abstract: The invention encompasses a glass-ceramic comprising a continuous glass phase and a crystal phase comprising tetragonal leucite, wherein the glass-ceramic has a crack-free glass phase and a crystal phase comprising leucite crystals distributed essentially homogeneously in the glass phase. The crystal phase has a particle size distribution made of from about 5% to about 70% of a first group of leucite crystals having particle sizes of <1 ?m and from about 30% to about 95% of a second group of leucite crystals having particle sizes of ?1 ?m. The proportion of Li2O in the glass-ceramic is preferably below 0.5% by weight. It is preferred that not only the glass phase but also the crystal phase is essentially free of cracks. The corresponding glass-ceramics are particularly suitable for use in the dental sector, in particular as facing ceramics.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: August 15, 2006
    Assignee: Wieland Dental Ceramics GmbH
    Inventors: Steffen Assmann, Peter Appel, Reinhard Armbrust
  • Patent number: 7041612
    Abstract: The invention describes a lead-free and arsenic-free special short flint glass with a refractive index 1.60?nd?1.65, an Abbe number of 41??d?52, a relative partial dispersion 0.551?PgF?0.570 in the blue spectral region, a relative partial dispersion 0.507?PCs?0.525 in the red spectral region, a negative deviation of the relative partial dispersion from the normal line ?Pg,F??0.0045 and an improved chemical resistance which has the following composition (in % by weight): SiO2 >50–65?? Al2O3 0–7 B2O3 0–6 Li2O 0–6 Na2O ?3–11 K2O 0–6 MgO ?0–12 CaO ?1–12 BaO 0–8 La2O3 ?0–15 Ta2O5 ?0–10 Nb2O5 ?4–20 ZrO2 >10–20?? ?(CaO + MgO + BaO) ?1–25 ?(Na2O + K2O + Li2O) ?3–20 SiO2/(ZrO2 + La2O3 + Nb2O5 + Ta2O5) 1.5–2.3.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: May 9, 2006
    Assignee: Schott Glas
    Inventors: Karin Naumann, Uwe Kolberg, Frank-Thomas Lentes
  • Patent number: 7005187
    Abstract: Glass for a light filter capable of preventing variation of refractive index in a band-pass filter has a coefficient of thermal expansion within a range from 90×10?7/° C. within a temperature range from ?20° C. to +70° C. and, preferably, Young's modulus of 75 GPa or over and Vickers hardness of 550 or over, and light transmittance for plate thickness of 10 mm of 90% or over within a wavelength range from 950 nm to 1600 nm.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: February 28, 2006
    Assignee: Kabushiki Kaisha Ohara
    Inventor: Naoyuki Goto
  • Patent number: 6989633
    Abstract: An alkaline-earth aluminosilicate glass having a composition (in % by weight, based on oxide) of SiO2>55-64; Al2O3 13-18; B2O3 0-5.5; M5O 0-7; CaO 5.5-14; SrO 0-8; BaO 6-17; ZrO2 0-2; CeO2 0-0.3; TiO2 0-0.5; CoO 0.01-0.035; Fe2O3 0.005-0.05; and NiO 0-0.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: January 24, 2006
    Assignee: Schott AG
    Inventors: Christian Kunert, Karin Naumann, Franz Ott, Ottmar Becker
  • Patent number: 6986873
    Abstract: A method of producing a single-phase composition Mn+1AzXn, primarily the production of the single-phase material Ti3SiC2, where n lies within a range of 0.8-3.2, where z lies within a range of 0.8-1.2, where M is at least one metal taken from the group of metals Ti (titanium), Sc (scandium), V (vanadium), Cr (chromium), Zr (zirconium), Nb (niobium) and Ta (tantalum), where X is at least one of the non-metals C (carbon) and N nitrogen), and where A is at least one of the chemical elements Si (silicon), Al (aluminum) and Sn (tin) or a compound of those elements, such that the final, desired compound will include the components Mn+1AzXn. A powder mixture of the components is formed and is ignited under an inert atmosphere to prevent promotion of dissociation and to cause the components to react.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: January 17, 2006
    Assignees: Sandvik AB, Drexel University
    Inventors: Mats Sundberg, Kjell Lindgren, Tamer El-Raghy, Michael Barsoum
  • Patent number: 6867157
    Abstract: An optical glass having a positive anomalous dispersion comprises, in mass %, SiO2 40-60% B2O3 3-9% TiO2 ?3-15% Nb2O5 0.1-5.0% Al2O3 ?3-15% WO3 0.5-5.0% MgO 0-3% CaO 0-3% SrO 0-3% BaO 0-3% K2O exceeding 10% and up to 21% Na2O ?0-10% Sb2O3 0-1% and a fluoride or fluorides of a metal element or elements ??3-10%, contained in the above metal oxides, a total amount of F contained in the fluoride or fluorides is free of PbO and As2O3 except for unavoidable mixing of these compounds as impurities, has optical constants of a refractive index (nd) within the range from 1.48 to less than 1.55 and an Abbe number (?d) within the range from 45 to 55, and has an anomalous dispersion (??g,F) of +0.0010 or over.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: March 15, 2005
    Assignee: Kabushiki Kaisha Ohara
    Inventors: Junko Ishioka, Masahiro Onozawa
  • Patent number: 6831791
    Abstract: An optical system for optical communications is composed of a transparent material having a refractive index distribution formed by changing the molar ratio of metal oxide with valence of 2 or more. The metal oxide with valence of 2 or more includes, for example, Fe2O3. Using such an optical system for optical communications, optical communication components such as an optical fiber collimator and an optical isolator are composed.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: December 14, 2004
    Assignee: Olympus Corporation
    Inventors: Mitsuru Namiki, Hirofumi Tsuchida
  • Patent number: 6825141
    Abstract: A candidate composition is prepared. For the candidate composition, the basicity was calculated. With reference to the basicity thus calculated, the fusibility with a mold is evaluated. With reference to the result of evaluation, the composition is determined. A glass material is prepared to have the determined composition, melted, and formed. Thus, a mold-press forming glass having the basicity adjusted to be equal to 11 or less is produced.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: November 30, 2004
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Fumio Sato
  • Patent number: 6821628
    Abstract: The cooking panel is made from an opaque glass-ceramic material uniformly colored throughout and having keatite mixed crystals as the predominant crystalline phase. The cooking panel is made by ceramicizing a ceramicizable glass or a transparent glass-ceramic with high quartz mixed crystals as the predominant crystalline phase in a definite color location range with a brightness parameter value (L*) less than 85 and a color shade and chromaticity according to its later service and wear pattern. The cooking panel makes deposited material, such as dirt and the like, less conspicuous.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: November 23, 2004
    Assignee: Schott Glas
    Inventors: Bernd Schultheis, Waldemar Weinberg, Monica Cotlear De Witzmann, Roland Dudek, Friedrich Siebers, Klaus Schoenberger
  • Patent number: 6812174
    Abstract: The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: November 2, 2004
    Assignee: Westinghouse Savannah River Company
    Inventors: Carol M. Jantzen, John B. Pickett, Connie A. Cicero-Herman, James C. Marra
  • Patent number: 6794043
    Abstract: There is provided a glass-ceramic which is suitable for use as a light filter. The glass-ceramic has Young's modulus (GPa) within a range from 95 to 120 and includes 5.3-8 weight percent of Al2O3, 0.5-3.5 weight percent of ZrO2 and 71-81 weight percent of SiO2, based respectively on the total content of the oxides. The glass-ceramic preferably has, as its predominant crystal phases, (a) lithium disilicate (Li2O.2SiO2) and (b) at least one of &agr;-quartz (&agr;-SiO2) and &agr;-quartz solid solution (&agr;-SiO2 solid solution), has specific gravity within a range from 2.4 to 2.6 and has a coefficient of thermal expansion within a range from 65×10−7/° C. to 130×10−7/° C. within a temperature range from −50° C. to +70° C.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: September 21, 2004
    Assignee: Kabushiki Kaisha Ohara
    Inventors: Naoyuki Goto, Junko Ishioka, Yasuyuki Kawashima
  • Publication number: 20040166172
    Abstract: Abrasive compositions which include bioactive materials, such as bioactive glass and bioactive ceramics, which provide biological properties such as anti-inflammatory, anti-microbial, anti-oxidant effects, improved wound healing, and/or other beneficial effects are provided. Methods for abrading human or animal tissue, such as human skin, by contacting such tissue with these abrasive compositions is also provided. When used as an abrasive material, these biological properties benefit the body surfaces being abraded.
    Type: Application
    Filed: September 29, 2003
    Publication date: August 26, 2004
    Inventors: Coni Rosati, Sean Lee, Jose Zimmer
  • Patent number: 6764972
    Abstract: A compositional range for a mother glass composition for graded index lenses which has a desired refractive index and is less apt to be devitrified and to develop cracks upon ion exchange was obtained by incorporating at least a given amount of one or more ingredients which are selected from oxides of metal elements ranging from yttrium, atomic number 39, to tantalum, atomic number 73, and which are less apt to cause glass coloration into a glass based on SiO2—TiO2—Li2O—Na2O and containing no lead oxide. In particular, a compositional range in which a large angular aperture is obtained and devitrification is less apt to occur was obtained by incorporating Ta2O5 and ZrO2 in a specific proportion and in specific amounts.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: July 20, 2004
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Tetsuro Yoshii, Jun Yamaguchi
  • Publication number: 20040132603
    Abstract: The invention relates to a method for improving soft tissue attachment comprising the steps of coating a surface of a material, to which surface soft tissue is to be attached, with a coating rich in TiO2 and/or SiO2, and applying said coating wherein soft tissue attachment is desired. The invention further relates to an implant wherein a surface or surfaces of said implant intended to be attached to soft tissue are coated with a porous coating rich in TiO2 and/or SiO2. The invention also relates to the use of a porous surface coating rich in TiO2, SiO2, or TiO2 and SiO2, for the manufacture of an implant for soft tissue attachment to said coating.
    Type: Application
    Filed: October 27, 2003
    Publication date: July 8, 2004
    Inventors: Timo Narhi, Hannu Paldan, Antti Yli-Urpo, Timo Peltola, Mika Jokinen, Risto-Pekka Happonen
  • Patent number: 6733891
    Abstract: Rolls include a core and a glass outer coating on the core. The glass can be electrically charged and discharged. The outer coatings have smooth finishes and controlled electrical properties. The outer coatings can also provide selected mechanical, chemical and thermal properties. The rolls can be used in various applications in which controlled electrical properties are desired. For example, the rolls can be used as charge donor rolls in electrostatographic imaging apparatus.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: May 11, 2004
    Assignee: Xerox Corporation
    Inventors: Christopher D. Blair, Timothy R. Jaskowiak
  • Publication number: 20040079258
    Abstract: The invention relates to the use of ions of weakly basic oxides as linking ions for polyacids in cements, preferably polyelectrolyte cements. Suitable ions comprise elements of the scandium series, for example, Sc3+, Y3+, La3+, Ce4+ and all subsequent tri- and tetra-valent lanthanides and the ions Mg2+, Zn2+, Ga2+, In2+. The application of said ions permits a regulation of the cement reaction without surface treatment of the glass powder.
    Type: Application
    Filed: December 8, 2003
    Publication date: April 29, 2004
    Inventors: Stefan Hoescheler, Markus Mikulla, Gabriele Rackelmann, Volker Bambach
  • Publication number: 20040065228
    Abstract: The invention relates to the use of a mixture of bioactive glass and dental glass for producing an agent for a permanent dental filling. The bioactive glass is preferably contained in a binding agent for binding a dental filling to a tooth, in a glass-ionomer cement, in a glass-plastic composite, in a composite-reinforced glass-ionomer cement and/or in an agent for treating the tooth root, the neck of the tooth and/or the tooth crown and preferably contains fluoride ions.
    Type: Application
    Filed: November 3, 2003
    Publication date: April 8, 2004
    Inventors: Susanne Kessler, Sean Lee
  • Patent number: 6709998
    Abstract: The invention relates to lead-free optical glasses which have refractive indices nd of between 1.65 and 1.80 and Abbe numbers &ngr;d of between 21 and 33 and possess the following composition (in % by weight, based on oxide): SiO2 27-40; B2O3 0-<0.5; Al2O3 0-6; Na2O 7-18; K2O 1-10; BaO 1-10; SrO 0-3; CaO 0.5-5; MgO 0-3; with BaO+SrO+CaO+MgO<15; TiO2 21-37; ZrO2 0-7; Nb2O5 5-17; WO3 0.1-7.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: March 23, 2004
    Assignee: Schott Glas
    Inventors: Silke Wolff, Ute Woelfel
  • Patent number: 6626986
    Abstract: Potassium-zinc-silicate glasses are described which because of their high chemical stability as well as their optical properties and favorable working properties are suitable in particular as coating or veneering materials for ceramic dental suprastructures and thus for the preparation of all-ceramic dental restorations, such as crowns or bridges.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: September 30, 2003
    Assignee: Ivoclar Vivadent AG
    Inventors: Marcel Schweiger, Volker Rheinberger, Wolfram Höland
  • Patent number: 6622524
    Abstract: Foodstuffs filled in glass containers undergo a change in taste under the influence of light. In order to combat such changes in taste the glass according to the invention contains vanadium pentoxide. Since pure vanadium pentoxide is relative expensive, the invention proposes a way of using a mixture of vanadium pentoxide and phosphorous oxide which is available as an economical aggregate. This type of glass is preferably used to accomodate foodstuffs. The glass containing vanadium pentoxide and phosphorous oxide is particularly suited for bottles to hold beer. Such bottles exhibit particularly effective light protection properties when they are made of so-called white glass.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: September 23, 2003
    Assignee: Nienburger Glas GmbH
    Inventors: Hans-Jürgen Barklage-Hilgefort, Wolfgang Cieleback
  • Patent number: 6624103
    Abstract: The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: September 23, 2003
    Assignee: Westinghouse Savannah River Company, LLC
    Inventors: Carol M. Jantzen, John B. Pickett, Connie A. Cicero-Herman, James C. Marra
  • Publication number: 20030153451
    Abstract: The invention concerns an optical colored glass with a composition (in percent by weight based on oxide) of
    Type: Application
    Filed: August 20, 2002
    Publication date: August 14, 2003
    Inventors: Rolf Clasen, Monika Gierke, Jochen Freund, Magdalena Winkler-Trudewig, Uwe Kolberg
  • Patent number: 6599606
    Abstract: Disclosed is a process for preparation of crystallized glass obtained by making a glass containing TiO2 subjected to a phase separation step and a crystallization step, where the phase separation step has heat treatment of the glass at a temperature in a range from a temperature of the glass transition temperature Tg (Tg−30° C.) to a temperature 60° C. higher than the glass transition temperature Tg (Tg+60° C.). There are also disclosed a crystallized glass for information recording disk composed of the crystallized glass obtained by the preparation process, where a mean particle size of the crystal particles is in a range of equal to or less than 100 nm, or where a transparency at a wavelength of 600 nm is 40% or higher; and an information recording disk, composed of the glass, having a polished surface with a surface roughness Ra (JIS B0601) in a range from 0.1 to 0.5 nm.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: July 29, 2003
    Assignee: Hoya Corporation
    Inventor: Xuelu Zou
  • Publication number: 20030134734
    Abstract: The present invention relates to a glass substrate of which the outer periphery portion is unprocessed. The present invention also relates to a manufacturing method for a glass substrate of which the outer periphery portion is unprocessed, characterized in that a first lapping process, a second lapping process, a polishing process and a washing process are carried out after a press molding process is carried out so as to compress glass between an upper mold and a lower mold without regulating the edge surface of the outer periphery portion of the glass and, then, a crystallization process or an annealing process is carried out.
    Type: Application
    Filed: August 6, 2002
    Publication date: July 17, 2003
    Inventors: Shiro Nishimoto, Mitsugu Tokunaga, Hideki Kawai, Toshiharu Mori, Shinji Fukumoto
  • Publication number: 20030092555
    Abstract: The invention relates to lead-free optical glasses which have refractive indices nd of between 1.65 and 1.80 and Abbe numbers &ngr;d of between 21 and 33 and possess the following composition (in % by weight, based on oxide) SiO2 27-40; B2O3 0-<0.5; Al2O3 0-6; Na2O 7-18; K2O 1-10; BaO 1-10; SrO 0-3; CaO 0.5-5; MgO 0-3; with BaO+SrO+CaO+MgO<15; TiO2 21-37; ZrO2 0-7; Nb2O5 5-17; WO3 0.1-7.
    Type: Application
    Filed: July 10, 2002
    Publication date: May 15, 2003
    Applicant: SCHOTT GLAS
    Inventors: Silke Wolff, Ute Woelfel
  • Patent number: 6555232
    Abstract: A family of titania lanthana aluminosilicate glasses, and products such as an electronic device having a poly-silicon coating on such glass as a substrate, are disclosed. The glasses have a strain point in excess of 780° C., a coefficient of thermal expansion of 20-60×10−7/° C., a Young's modulus of greater than 12 Mpsi and are chemically durable.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: April 29, 2003
    Assignee: Corning, Incorporated
    Inventors: Bruce G. Aitken, Adam J. G. Ellison, Thomas E. Paulson
  • Publication number: 20030040424
    Abstract: The lead-free optical glasses have an index of refraction (nd) between 1.49 and 1.55 and an Abbé number (&ngr;d) between 47 and 59. They contain (in percent by weight on an oxide basis) 60 to 70, SiO2; 0.3 to 5, Al2O3; 16 to 25, Na2O; 0 to 9, TiO2; 0 to 7, advantageously 0.1 to 2, ZrO2; 0 to <0.5, Nb2O5; 0 to 7, Ta2O5 and 0 to 3, F. The lead-free optical glass is advantageously free of arsenic oxide, except for impurities, and contains antimony oxide as a fining agent.
    Type: Application
    Filed: July 9, 2002
    Publication date: February 27, 2003
    Inventors: Silke Wolff, Peter Brix, Ute Woelfel
  • Patent number: 6514893
    Abstract: High-strength sinterable lithium disilicate glass ceramics are described which can be further processed in particular by pressing in the viscous state to shaped dental products.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: February 4, 2003
    Assignee: Ivoclar AG
    Inventors: Marcel Schweiger, Martin Frank, Volker Rheinberger, Wolfram Hoeland
  • Patent number: 6511932
    Abstract: A graded index lens is obtained by treating a raw glass material having a rod shape by ion exchange using silver to form a refractive index distribution in the radial direction of the rod, wherein the raw glass material comprises a glass composition of the following components: 15<Na2O≦30 mol %; 10<Al2O3≦25 mol %; 27.5≦SiO2≦55 mol %; 3≦B2O3≦18 mol %; 2.5≦MgO≦18 mol %; 0≦Ta2O5≦5 mol %; 0≦La2O3≦3 mol %; 0≦BaO≦3 mol %; and 0≦ZrO2≦3 mol %.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: January 28, 2003
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Jun Yamaguchi, Shigeo Kittaka
  • Patent number: 6476975
    Abstract: An SiO2-TiO2-Li2O-Na2O-based glass composition containing no lead oxide having incorporated therein specific amounts of specific components which are selected from oxides of the metal elements having an atomic number of 30 (Y) to 73 (Ta) and which hardly cause coloration of glass. The glass composition has a desirable refractive index, hardly undergoes devitrification, and hardly develops cracks on ion exchanging and is suitable as glass for a graded index lens.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: November 5, 2002
    Assignee: Nippon Sheet Glass Co., Ltd.
    Inventors: Tetsuro Yoshii, Shigeo Kittaka, Tadashi Koyama
  • Publication number: 20020151426
    Abstract: An alkali-free glass consists essentially of, in mass percent, 58-70% SiO2, 10-19% Al2O3, 6.5-15% B2O3, 0-2% MgO, 3-12% CaO, 0.1-5% BaO, 0-4% SrO, 0.1-6% BaO+SrO, 0-5% ZnO, 5-15% MgO+CaO+BaO+SrO+ZnO, 0-5% ZrO2, 0-5% TiO2, and 0-5% P2O5. The alkali-free glass contains substantially no alkali metal oxide and has a density of 2.45g/cm3 or less, an average coefficient of thermal expansion of 25×10−7/° C.-36×10−7/° C. within a temperature range between 30 and 380° C., and a strain point not lower than 640° C.
    Type: Application
    Filed: January 30, 2002
    Publication date: October 17, 2002
    Applicant: NIPPON ELECTRIC GLASS CO., LTD
    Inventors: Takashi Murata, Shinkichi Miwa
  • Publication number: 20020115550
    Abstract: A substrate satisfies following conditional formulas (1) and (2):
    Type: Application
    Filed: November 8, 2001
    Publication date: August 22, 2002
    Inventors: Hideki Kawai, Toshiharu Mori
  • Patent number: 6436332
    Abstract: The dielectric constant of low loss tangent glass-ceramic compositions, such as cordierite-based glass ceramics, is modified over a range by selective addition of high dielectric constant ceramics, such as titanates, tantalates and carbides and metals, such as copper. The low loss tangent is retained or improved over a range of frequencies, and the low CTE of the glass-ceramic is maintained. BaTiO3, SrTiO3 and Ta2O5 produce the most effective results.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: August 20, 2002
    Assignee: International Business Machines Corporation
    Inventors: Benjamin V. Fasano, Robert A. Rita
  • Patent number: 6402156
    Abstract: Glass-ceramic sealants for ceramic membrane reactors, ceramic membrane sealed to holders or substrates and methods of making seals between two ceramic materials or between a ceramic and a metal or metal alloy are provided. These sealants combine silicate glass-ceramic materials with selected metal oxides and, optionally, materials similar or identical to the materials being sealed, and employ thermal processing so that the resultant materials will have a thermal expansion coefficient that substantially matches the thermal expansion coefficients of the two materials. Surfaces of the ceramic sealant that are exposed to reactive atmospheres can be protected by providing a metal or metallic alloy layer over the ceramic seal.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: June 11, 2002
    Assignee: Eltron Research, Inc.
    Inventors: James B. Schutz, Thomas F. Barton
  • Publication number: 20020065186
    Abstract: A compositional range for a mother glass composition for graded index lenses which has a desired refractive index and is less apt to be devitrified and to develop cracks upon ion exchange was obtained by incorporating at least a given amount of one or more ingredients which are selected from oxides of metal elements ranging from yttrium, atomic number 39, to tantalum, atomic number 73, and which are less apt to cause glass coloration into a glass based on SiO2-TiO2-Li2O-Na2O and containing no lead oxide. In particular, a compositional range in which a large angular aperture is obtained and devitrification is less apt to occur was obtained by incorporating Ta2O5 and ZrO2 in a specific proportion and in specific amounts.
    Type: Application
    Filed: October 11, 2001
    Publication date: May 30, 2002
    Applicant: NIPPON SHEET GLASS CO., LTD.
    Inventors: Tetsuro Yoshii, Jun Yamaguchi
  • Publication number: 20020058117
    Abstract: The cooking panel is made from an opaque glass-ceramic material uniformly colored throughout and having keatite mixed crystals as the predominant crystalline phase, which is ceramicized with a ceramicizable glass or a transparent glass-ceramic with high quartz mixed crystals as the predominant crystalline phase in a definite color location range according to its later service and wear pattern. The cooking panel makes deposited material, such as dirt and the like, less conspicuous.
    Type: Application
    Filed: December 9, 1999
    Publication date: May 16, 2002
    Inventors: BERND SCHULTHEIS, WALDEMAR WEINBERG, MONICA COTLEAR DE WITZMANN, ROLAND DUDEK, FRIEDRICH SIEBERS, KLAUS SCHOENBERGER
  • Patent number: 6372155
    Abstract: The object of the present invention is to provide an oxide glass capable of exhibiting a long lasting afterglow and photostimulated phosphorescence, whereby energy can be accumulated by radiation excitation, for example, by &ggr;-rays, X-rays, UV-rays, etc. and light emission can be continued for a long time even after stopping the excitation. That is, the present invention relates to an oxide glass capable of exhibiting a long lasting afterglow and photostimulated luminescence, characterized by a constitutional composition comprising, at least, terbium oxide (Tb2O3) or manganese oxide (MnO), gallium oxide (Ga2O3) or aluminum oxide (Al2O3), alkali metal oxide or alkaline earth metal oxide and boron oxide (B2O3) or silicon oxide (SiO2) or zinc oxide (ZnO).
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: April 16, 2002
    Assignee: Sumita Optical Glass, Inc.
    Inventors: Masaaki Yamazaki, Yoshinori Yamamoto, Naruhito Sawanobori, Shinobu Nagahama