Calcium Oxide Containing Patents (Class 501/70)
  • Publication number: 20150093581
    Abstract: An object is to devise a tempered glass substrate that has high mechanical strength and hardly undergoes breakage even though having a large size. A tempered glass substrate has a compressive stress layer in a surface thereof, and includes 1 piece/cm3 or less of devitrified stones containing Zr.
    Type: Application
    Filed: December 4, 2014
    Publication date: April 2, 2015
    Inventors: Takashi MURATA, Takako TOJYO, Motokazu OGATA
  • Publication number: 20150087494
    Abstract: The present invention relates to an alkali-free glass having a strain point of 710° C. or higher, an average thermal expansion coefficient at from 50 to 350° C. of from 30×10?7 to 43×10?7/° C., a temperature T2 at which glass viscosity reaches 102 dPa·s of 1,710° C. or lower, and a temperature T4 at which the glass viscosity reaches 104 dPa·s of 1,320° C. or lower, containing, indicated by % by mass on the basis of oxides: SiO2 58.5 to 67.5, Al2O3 18 to 24, B2O3 0 to 1.7, MgO 6.0 to 8.5, CaO 3.0 to 8.5, SrO 0.5 to 7.5, BaO 0 to 2.5, and ZrO2 0 to 4.0, containing 0 to 0.35% by mass of Cl, 0.01 to 0.15% by mass of F, and 0.01 to 0.3% by mass of SnO2, and having a ?-OH value of the glass of from 0.15 to 0.60 mm?1.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hirofumi TOKUNAGA, Akio Koike, Manabu Nishizawa, Tomoyuki Tsujimura
  • Patent number: 8987154
    Abstract: An R-glass composition including SiO2 in an amount from 59.0 to 64.5% by weight, Al2O3 in an amount from 14.5 to 20.5% by weight, CaO in an amount from 11.0 to 16.0% by weight, MgO in an amount from 5.5 to 11.5% by weight, Na2O in N an amount from 0.0 to 4.0% by weight, TiO2 in an amount from 0.0 to 2.0% by weight, Fe2O3 in an amount from 0.0 to 1.0% by weight, B2O3 in an amount from 0.0 to about 3.0% by weight, K2O, Fe2O3, ZrO2, and Fluorine, each of which is present in an amount from 0.0 to about 1.0% by weight, and SrO and ZnO, each of which is present in an amount from 0.0 to about 2.0% by weight. In exemplary embodiments, the glass composition does not contain lithium or boron.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: March 24, 2015
    Assignee: OCV Intellectual Capital, LLC
    Inventors: Douglas Hofmann, Peter McGinnis, John Wingert, Anne Berthereau
  • Publication number: 20150079318
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Applicant: Corning Incorporated
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Publication number: 20150074974
    Abstract: Disclosed are alkali aluminosilicate glasses having unexpected resistance to indentation cracking. The glasses obtain this high resistance as a result of a high level of surface compression accompanied by a shallow depth of layer. The advantaged glasses show greater resistance to radial crack formation from Vickers indentation than glasses with the same compressive stress, but higher depths of layer.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 19, 2015
    Inventors: Jonathan David Pesansky, Chandan Kumar Saha, Trevor E. Wilantewicz
  • Patent number: 8980777
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: March 17, 2015
    Assignee: Corning Incorporated
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 8975199
    Abstract: A compositional range of high strain point and/or intermediate expansion coefficient alkali metal free aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CdTe or CIGS photovoltaic devices or crystalline silicon wafer devices. These glasses can be characterized as having strain points?600° C., thermal expansion coefficient of from 35 to 50×10?7/° C.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: March 10, 2015
    Assignee: Corsam Technologies LLC
    Inventors: Bruce Gardiner Aitken, James Edward Dickinson, Jr., Timothy James Kiczenski, John Christopher Mauro, Adama Tandia
  • Patent number: 8969226
    Abstract: A silicate glass that is tough and scratch resistant. The toughness is increased by minimizing the number of non-bridging oxygen atoms in the glass. In one embodiment, the silicate glass is an aluminoborosilicate glass in which ?15 mol %?(R2O+R?O—Al2O3—ZrO2)—B2O3?4 mol %, where R is one of Li, Na, K, Rb, and Cs, and R? is one of Mg, Ca, Sr, and Ba.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: March 3, 2015
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Adam James Ellison, Sinue Gomez, Robert Michael Morena
  • Patent number: 8962503
    Abstract: To provide a colored glass plate, which uses sodium sulfate (Na2SO3) as a refining agent and which is capable of stably maintaining the mass percentage of divalent iron calculated as Fe2O3 in the total iron calculated as Fe2O3 at a high level, while suppressing development of an amber color that is derived from sodium sulfate. A colored glass plate made of alkali-containing silica glass containing elements of iron, tin and sulfur, wherein the percentage of the total sulfur calculated as SO3 is at least 0.025% as represented by mass percentage based on oxides, the percentage of divalent iron calculated as Fe2O3 in the total iron calculated as Fe2O3 is from 60 to 80% as represented by mass percentage, and the percentage of divalent tin calculated as SnO2 in the total tin calculated as SnO2 is at least 0.1% as represented by mol percentage.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: February 24, 2015
    Assignee: Asahi Glass Company, Limited
    Inventors: Kensuke Nagai, Yuichi Suzuki, Terutaka Maehara
  • Publication number: 20150038316
    Abstract: To provide a glass plate which can be made to have higher Te than conventional glass plates when its iron content is substantially the same as the conventional glass plates, to have substantially the same level of Te as conventional glass plates when its iron content is larger than the conventional glass plates, or to have very high Te when its iron content is smaller than conventional glass plates, and which presents good productivity. A glass plate which comprises, as represented by mol percentage based on oxides, SiO2: from 57 to 71%, Al2O3: from 0 to 6%, B2O3: from 0 to 5%, Na2O: from 10 to 16%, MgO: from 7.5 to 19.8%, and CaO: from 1.6 to 11%, provided that S-value represented by MgO+Al2O3+B2O3—Na2O (as represented by mol percentage) is from ?10 to 10.5%, and the ratio of the content of MgO, as represented by mol percentage based on oxide, to the content of CaO, as represented by mol percentage based on oxide, ([MgO]/[CaO]), is from 0.8 to 10.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Tomoyuki KOBAYASHI, Yusuke Arai, Yuki Kondo
  • Patent number: 8940996
    Abstract: The object of the invention is a substrate for photovoltaic cell comprising at least one sheet of float glass provided on a face of at least one electrode, characterized in that said glass has a chemical composition comprising the following constituents, in a weight content that varies within the limits defined below: SiO2 69-75% Al2O3 ?0-3% CaO + MgO 11-16.2%? MgO ?0-6.5% Na2O 9-12.4%? K2O ?0-1.5%.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: January 27, 2015
    Assignee: Saint-Gobain Glass France
    Inventors: Octavio Cintora, Guillaume Fourty
  • Publication number: 20150024210
    Abstract: A glass that is down-drawable and ion exchangeable. The glass has a temperature T35kp which the viscosity is 35 kilopoise. T35kp is less than the breakdown temperature Tbreakdown of zircon.
    Type: Application
    Filed: August 11, 2014
    Publication date: January 22, 2015
    Inventors: Matthew John Dejneka, Adam James Ellison, Benjamin Zain Hanson
  • Patent number: 8937028
    Abstract: The invention relates to a glass sheet, the composition of which is of the soda-lime-silica type and comprises the following constituents in contents varying within the weight limits defined below: Fe2O3 (total iron) ??0 to 0.02%; and K2O 1.5 to 10%.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: January 20, 2015
    Assignee: Saint-Gobain Glass France
    Inventors: Dominique Sachot, Octavio Cintora
  • Patent number: 8932969
    Abstract: Provided are: a glass substrate for p-Si TFT flat panel displays that is composed of a glass having high characteristic temperatures in the low-temperature viscosity range, typified by the strain point and glass transition point, having a small heat shrinkage rate, and being capable of avoiding the occurrence of the problem regarding the erosion/wear of a melting tank at the time of melting through direct electrical heating; and a method for manufacturing same. The present glass substrate is composed of a glass comprising 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-25 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-1 mass % of Fe2O3, and 0-0.3 mass % of Sb2O3, and substantially not comprising As2O3, the glass having a mass ratio (SiO2+Al2O3)/B2O3 in a range of 7-30 and a mass ratio (SiO2+Al2O3)/RO equal to or greater than 6.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: January 13, 2015
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Patent number: 8921245
    Abstract: The present invention provides a glass substrate having high glass transition temperature and small compaction (C) in a heat treatment at a low temperature (150 to 300° C.), the glass substrate including SiO2, Al2O3, B2O3, MgO, CaO, SrO, BaO, ZrO2, Na2O, K2O, and Li2O, wherein each amount of these compounds is specifically limited, Al2O3+K2O is 7 to 27 mass %, Na2O+K2O is 11.5 to 22 mass %, MgO+CaO+SrO+BaO is 0.2 to 14 mass %, MgO+0.357Al2O3?0.239K2O?5.58 is ?3.0 to 1.5, Na2O+0.272Al2O3+0.876K2O?16.77 is ?2.5 to 2.5, a glass transition temperature is 500° C. or higher, and an average thermal expansion coefficient at 50 to 350° C. is 100×10?7/° C. or less.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: December 30, 2014
    Assignee: Asahi Glass Company, Limited
    Inventor: Manabu Nishizawa
  • Patent number: 8916487
    Abstract: The present invention relates to the glass substrate for an information recording medium comprising the following glass components: SiO2: 52 to 67; Al2O3: 8 to 20; B2O3: 0 to 6, with these three oxides FMO: 70 to 85; Li2O: 0.5 to 4; Na2O: 1 to 8; K2O: 0 to 5; and with these three oxides R2O: 5 to 15; MgO: 2 to 9; CaO: 0.1 to 5; BaO: 0 to 3; SrO: 0 to 3; ZnO: 0 to 5; and with these five oxides: 5 to 15; Y2O3: 0 to 4; La2O3: 0 to 4; Gd2O3: 0 to 4; CeO2: 0 to 4; TiO2: 1 to 7; HfO2: 0 to 2; ZrO2: 0 to 5; Nb2O5: 0.2 to 5; and Ta2O5: 0 to 5, and satisfies Li2O/R2O: 0.05 to 0.35; Li2O/FMO: 0.005 to 0.035; Li2O/(MgO+ZnO): less than 2 and Nb2O5/SiO2: 0.01 to 0.075.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: December 23, 2014
    Assignee: Hoya Corporation
    Inventors: Hideki Kawai, Hiroshi Kajita, Akio Oogaki, Toshiharu Mori
  • Patent number: 8912107
    Abstract: A composition for preparing high-performance glass fiber by tank furnace production comprising in preferred percentage by weight: 57.5˜62.5% of SiO2, 14.5˜17.5% of Al2O3, 13.5˜17.5% of CaO, 6.5˜8.5% of MgO, 0.05˜0.6% of Li2O, 0.1˜2% of B2O3, 0.1˜2% of TiO2, 0.1˜2% of Na2O, 0.1˜1% of K2O and 0.1˜1% of Fe2O3 and (CaO+MgO)/MgO>3, with the content of at least one of the three components, A2O, B2O3 and TlO2 higher than 0.5%, with the composition yielding glass fiber having improved mechanical property, causing the melting and clarification of glass and forming performance of fiber close to those of boron-free E glass, and facilitating industrial mass production by tank furnace processes with manufacturing costs close to those of conventional E glass.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: December 16, 2014
    Assignee: Jushi Group Co., Ltd.
    Inventors: Yuqiang Zhang, Guorong Cao, Bing Zhang, Lin Zhang, Wenzhong Xing, Guijiang Gu
  • Publication number: 20140364298
    Abstract: A Glass for chemical tempering, which includes, as represented by mole percentage based on the following oxides, from 60 to 75% of SiO2, from 5 to 15% of Al2O3, more than 7 and at most 12% of MgO, from 0 to 3% of CaO, from 0 to 3% of ZrO2, from 10 to 20% of Li2O, from 0 to 8% of Na2O and from 0 to 5% of K2O, and has a total content R2O of Li2O, Na2O and K2O of at most 25%, and a ratio Li2O/R2O of the Li2O content to R2O of from 0.5 to 1.0.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 11, 2014
    Applicant: Asahi Glass Company, Limited
    Inventors: Seiki OHARA, Kazutaka ONO, Tetsuya NAKASHIMA
  • Patent number: 8906506
    Abstract: A noble glass composition which is based on a known potassium-zinc crystal glass composition suitable for chemical strengthening, in which most of contained ZnO component is replaced with a combination of less expensive oxides. The noble glass composition is easily melted in a tank and formed by machine into table wares, and provides a chemical strengthened crystal glass article which has high practical strength as tableware and can be subjected to washing with an alkali.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: December 9, 2014
    Assignee: Toyo-Sasaki Glass Co., Ltd.
    Inventors: Noriaki Shibata, Hirokazu Toyoda, Keiko Tamamaki
  • Publication number: 20140356609
    Abstract: A method for producing bubble-free glasses is provided, in which a glass mixture that is arsenic-free, antimony-free and tin-free with the exception of any unavoidable raw material impurities and at least one sulfate compound as a refining agent are used. The glass mixture and refining agent are melted and primarily refined in a first region of a melting tank, an average melting temperature (T1) is set at T1>1580° C. and an average melt residence time (t1) is set at t1>2 hours. A secondary refinement is carried out in a second region, an average melting temperature (T2) is set at T2>1660° C. and an average melt residence time (t2) is set at t2>1 hour, and the proportion of the SO3 resulting from decomposition of the sulfate is reduced to less than 0.002 wt. %.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventors: Frank-Thomas LENTES, Karin NAUMANN, Ulrich SCHIFFNER, Friedrich SIEBERS, Christian MUELLER, Klaus SCHOENBERGER, Evelin WEISS
  • Publication number: 20140356576
    Abstract: Described herein are various glass compositions, glass articles, and information storage devices that comprise the glass articles as substrates therefor, along with methods for their manufacture and use.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Inventors: Matthew John Dejneka, John Christopher Mauro, Morten Mattrup Smedskjaer
  • Publication number: 20140356608
    Abstract: A method for producing bubble-free glasses is provided, in which a glass mixture that is arsenic-free and antimony-free with the exception of any unavoidable raw material impurities and a sulfate compound and SnO2 as refining agents are used. The glass mixture is melted and primarily refined in a first region of a melting tank, an average melting temperature (T1) is set at T1>1560° C. and an average melt residence time (t1) is set at t1>2 hours. The proportion of SO3 resulting from the decomposition of the sulfate compound is reduced to less than 0.002 wt. % as the primary refinement is carried out. A secondary refinement is carried out in a second region of the melting tank, an average melting temperature (T2) is set at T2>1640° C. and an average melt residence time (t2) is set at t2>1 hour.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: Frank-Thomas LENTES, Karin NAUMANN, Ulrich SCHIFFNER, Friedrich SIEBERS, Christian MUELLER, Klaus SCHOENBERGER, Evelin WEISS
  • Patent number: 8901020
    Abstract: Embodiments of the present invention relate to glass compositions, glass fibers formed from such compositions, and related products. In one embodiment, a glass composition comprises 58-62 weight percent SiO2, 14-17 weight percent Al2O3, 14-17.5 weight percent CaO, and 6-9 weight percent MgO, wherein the amount of Na2O is 0.09 weight percent or less.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: December 2, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventor: Hong Li
  • Patent number: 8901021
    Abstract: A vehicle roof window includes an uncoated glass transparency having an Lta in the range of greater than 0% to 10%, and a solar factor in the range of equal to or less than 30%, measured at a thickness in the range of 3.6-4.1 millimeters (“mm”), e.g. at a thickness of 3.6 mm, 3.9 mm or 4.1 mm. The solar factor is determined in accordance to International Organization for Standardization (“ISO”) No. 13837.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: December 2, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Larry J. Shelestak, James P. Thiel
  • Patent number: 8895461
    Abstract: Provided are: a glass substrate for p-Si TFT flat panel displays that is composed of a glass having high characteristic temperatures in the low-temperature viscosity range, typified by the strain point and glass transition point, having a small heat shrinkage rate, and being capable of avoiding the occurrence of the problem regarding the erosion/wear of a melting tank at the time of melting through direct electrical heating; and a method for manufacturing same. The present glass substrate is composed of a glass comprising 52-78 mass % of SiO2, 3-25 mass % of Al2O3, 3-15 mass % of B2O3, 3-25 mass % of RO, wherein RO is total amount of MgO, CaO, SrO, and BaO, 0.01-1 mass % of Fe2O3, and 0-0.3 mass % of Sb2O3, and substantially not comprising As2O3, the glass having a mass ratio (SiO2+Al2O3)/B2O3 in a range of 7-30 and a mass ratio (SiO2+Al2O3)/RO equal to or greater than 6.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 25, 2014
    Assignee: AvanStrate Inc.
    Inventors: Akihiro Koyama, Satoshi Ami, Manabu Ichikawa
  • Patent number: 8895462
    Abstract: The present invention provides the composition of an alkali-free glass composition containing no alkali metal oxide and the preparation thereof. The alkali-free glass comprising substantially no alkali metal oxide according to the present invention comprises 46 to 57 wt % of SiO2; 3.5 to 7.5 wt % of B2O3; 21 to 29 wt % of Al2O3; 3 to 14 wt % of MgO; 11 to 16 wt % of CaO; and 1 to 5 wt % of SrO, based on the total weight of oxides present therein.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: November 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Dong-Kwon Lee, Jung-Sik Bang, Sang-Kook Kim, Won-Bae Lim, Su-Hwan Kim, Da-Jeong Kim
  • Publication number: 20140326314
    Abstract: The invention relates to an extra-clear glass sheet, i.e. a glass sheet with high energy transmission, which can be used in particular in the field of solar energy. Specifically, the invention relates to a glass sheet having a composition that includes, in an amount expressed in wt % for the total weight of the glass: 60-78% of SiO2; 0-10% of Al2O3; 0-5% of B2O3; 0-15% of CaO; 0-10% of MgO; 5-20% of Na2O; 0-10% of K2O; 0-5% of BaO, wherein the total amount of iron (in the form of Fe2O3) is 0.002-0.03%, and the composition includes a ratio of manganese/(total iron) of 1 to 8.5, the manganese content being expressed in the form of MnO in wt % relative to the total weight of the glass.
    Type: Application
    Filed: September 27, 2012
    Publication date: November 6, 2014
    Applicant: AGC GLASS EUROPE
    Inventors: Audrey Dogimont, Sebastien Hennecker, Thomas Lambricht
  • Publication number: 20140329661
    Abstract: A cover glass includes a soda lime silica glass including SiO2, MgO, CaO, Na2O and Al2O3. The SiO2 content in the silica glass is in the range of 60 wt % to 71.1 wt %, the MgO content in the silica glass in the range of 4.5 wt % to 15 wt %, the CaO content in the silica glass in the range of 0.5 wt % to 10 wt %, the Na2O content in the silica glass in the range of 10-20 wt %, the Al2O3 content in the silica glass in the range of 0-10.3 wt %, the silica glass has the ratio [MgO]/[CaO] of larger than 1 and the Q value of 20 or larger, and the Q value is obtained by formula, Q=([MgO]/[CaO])X([CaO]+[Na2O]—[Al2O3]), where [MgO] is the MgO content, [CaO] is the CaO content, [Na2O] is the Na2O content, and [Al2O3] is the Al2O3 content by mass percentage based on oxides.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 6, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yusuke ARAI, Tomoyuki KOBAYASHI, Yuki KONDO
  • Patent number: 8877662
    Abstract: The invention relates to a silica glass compound having improved physical and chemical properties. In one embodiment, the present invention relates to a silica glass having a desirable brittleness in combination with a desirable density while still yielding a glass composition having a desired hardness and desired strength relative to other glasses. In another embodiment, the present invention relates to a silica glass composition that contains at least about 85 mole percent silicon dioxide and up to about 15 mole percent of one or more dopants selected from F, B, N, Al, Ge, one or more alkali metals (e.g., Li, Na, K, etc.), one or more alkaline earth metals (e.g., Mg, Ca, Sr, Ba, etc.), one or more transition metals (e.g., Ti, Zn, Y, Zr, Hf, etc.), one or more lanthanides (e.g., Ce, etc.), or combinations of any two or more thereof.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: November 4, 2014
    Assignee: Momentive Performance Materials, Inc.
    Inventors: Nathan J. Cassingham, Ben Matthew Gauthier, Martin Panchula, Robert Stephen Pavlik, Yan Zhou, Konstantin S. Zuyev
  • Publication number: 20140323286
    Abstract: Fusion-formable sodium-containing aluminosilicate and boroaluminosilicate glasses are described. The glasses are particularly useful for controlled release of sodium—useful in semiconductor applications, such as thin film photovoltaics where the sodium required to optimize cell efficiency is to be derived from the substrate glass.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Applicant: CORNING INCORPORATED
    Inventors: Bruce Gardiner Aitken, Adam James Ellison, James Patrick Hamilton, Timothy James Kiczenski
  • Patent number: 8871662
    Abstract: The subject of the invention is a mineral wool, the glass fibers of which have a chemical composition substantially free of boron oxide and comprising the following constituents in the limits defined below, expressed in percentages by weight: 60 to 75 SiO2; 0 to 4 Al2O3; 17 to 22 Na2O; 5 to 15 CaO; 0 to 2 Fe2O3; and 0 to 3 P2O5.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: October 28, 2014
    Assignee: Saint-Gobain Isover
    Inventors: Emmanuel Lecomte, Yannick Lefrere
  • Patent number: 8871663
    Abstract: The present invention provides the composition of an alkali-free glass composition containing no alkali metal oxide and the preparation thereof. The alkali-free glass comprising substantially no alkali metal oxide according to the present invention comprises 68 to 75 wt % of SiO2; 1 to 3 wt % of B2O3; 4 to 13 wt % of Al2O3; 1 to 6 wt % of MgO; 1 to 11 wt % of CaO; 4 to 9 wt % of SrO; and 3 to 7 wt % of BaO, based on the total weight of oxides present therein.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: October 28, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Dong-Kwon Lee, Duk-Sik Ha, Han-Kook Kim, Won-Bae Lim, Du-Sun Hwang, Sang-Kook Kim
  • Publication number: 20140309099
    Abstract: A glass has a basic soda-lime-silica glass portion, and a colorant portion including total iron as Fe2O3 selected from the group of total iron as Fe2O3 in the range of greater than zero to 0.02 weight percent; total iron as Fe2O3 in the range of greater than 0.02 weight percent to less than 0.10 weight percent and total iron as Fe2O3 in the range of 0.10 to 2.00 weight percent; redox ratio in the range of 0.2 to 0.6, and tin and/or tin compounds, e.g. SnO2 greater than 0.000 to 6.0 weight percent. In one embodiment of the invention, the glass has a tin side and an opposite air side, wherein the tin side of the glass is supported on a molten tin bath during forming of the glass. The tin concentration at the tin side of the glass is greater than, less than, or equal to the tin concentration in “body portion” of the glass. The “body portion” of the glass extending from the air side of the glass toward the tin side and terminating short of the tin side of the glass.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 16, 2014
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Mark O. Naylor, Lawrence E. Jansen, Larry J. Shelestak
  • Publication number: 20140302346
    Abstract: According to one aspect of the present invention, provided is glass for use in substrate for information recording medium, which comprises, denoted as molar percentages, a total of 70 to 85 percent of SiO2 and Al2O3, where SiO2 content is equal to or greater than 50 percent and Al2O3 content is equal to or greater than 3 percent; a total of equal to or greater than 10 percent of Li2O, Na2O and K2O; a total of 1 to 6 percent of CaO and MgO, where CaO content is greater than MgO content; a total of greater than 0 percent but equal to or lower than 4 percent of ZrO2, HfO2, Nb2O5, Ta2O5, La2O3 Y2O3 and TiO2; with the molar ratio of the total content of Li2O, Na2O and K2O to the total content of SiO2, Al2O3, ZrO2, HfO2, Nb2O5, Ta2O5, La2O3, Y2O3 and TiO2 ((Li2O+Na2O+K2O)/(SiO2+Al2O3+ZrO2+HfO2+Nb2O5+Ta2O5+La2O3+Y2O3+TiO2)) being equal to or less than 0.28.
    Type: Application
    Filed: June 17, 2014
    Publication date: October 9, 2014
    Applicant: HOYA CORPORATION
    Inventors: Kazuo TACHIWANA, Yoichi HACHITANI, Xuelu ZOU, Mikio IKENISHI, Kinobu OSAKABE
  • Patent number: 8846218
    Abstract: A method of smoothing the surface of a ceramic matrix composite material part that presents a surface that is undulating and rough. The method includes depositing a refractory vitreous coating on the surface of the part, the vitreous coating essentially containing silica, alumina, baryte, and lime.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: September 30, 2014
    Assignees: Herakles, SNECMA
    Inventors: Eric Bouillon, Nicolas Eberling-Fux, Serge Chateigner
  • Publication number: 20140287905
    Abstract: A method for manufacturing an alkali-free glass includes heating the glass raw material at a temperature of 1,400 to 1,800° C. in a melting furnace to thereby prepare a molten glass, and forming the molten glass into a sheet shape, wherein heating by combustion flame of a burner and electrical heating of the molten glass by a heating electrode arranged so as to be dipped in the molten glass in the melting furnace are used in combination in the heating in the melting furnace, and when an electrical resistivity of the molten glass at 1,400° C. is Rg (?cm) and an electrical resistivity of a refractory constituting the melting furnace at 1,400° C. is Rb (?cm), the glass raw material and the refractory are selected so as to satisfy Rb>Rg.
    Type: Application
    Filed: June 6, 2014
    Publication date: September 25, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hirofumi TOKUNAGA, Akio Koike, Manabu Nishizawa, Tomoyuki Tsujimura
  • Publication number: 20140274652
    Abstract: A plurality of soda-lime glass batch materials are formed into granules that include a core and a shell surrounding the core. The core comprises a first portion of the plurality of glass batch materials, and the shell comprises a remaining portion of the plurality of glass batch materials. These core-shell granules can be melted in a glass furnace to produce molten soda-lime glass in less time and at a lower temperature than conventional soda-lime glass batch preparations.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Owens-Brockway Glass Container Inc.
    Inventor: Owens-Brockway Glass Container Inc.
  • Patent number: 8828897
    Abstract: The invention relates to an alumino-silicate glass which has a thermal expansion coefficient in the range of 8 to 10×10?6/K in a temperature range of 20 to 300° C., a transformation temperature Tg in a range of 580° C. to 640° C., and a processing temperature VA in a range of 1065° C. to 1140° C. and which can therefore be used as an alternative for soda lime glasses. An object of the invention is also the use of the inventive glasses in applications where a high temperature stability of the glasses is advantageous, in particular as substrate glass, superstrate glass and/or cover glass in the field of semiconductor technology, preferably for Cd—Te or for CIS or CIGS photovoltaic applications and for other applications in solar technology.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: September 9, 2014
    Assignee: Schott AG
    Inventors: Jörg H. Fechner, Franz Ott, Erhard Dick, Christof Kass
  • Patent number: 8828511
    Abstract: The invention relates to a hollow glass article having, for a thickness of 5 mm, an overall light transmission greater than or equal to 70%, said overall light transmission being calculated by taking into consideration the illuminant C as defined by the ISO/CIE 10526 standard and the CIE 1931 standard colorimetric observer as defined by the ISO/CIE 10527 standard, and a filtering power greater than or equal to 65%, especially 70%, said filtering power being defined as being equal to the value of 100% reduced by the arithmetic mean of the transmission between 330 and 450 nm, said article having a chemical composition of soda-lime-silica type, which comprises the following optical absorbent agents in a content that varies within the weight limits defined below: Fe2O3 (total iron) 0.01 to 0.15% TiO2 0.5 to 3% Sulfides (S2?) 0.0010 to 0.0050%.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: September 9, 2014
    Assignee: Saint-Gobain Emballage
    Inventor: Neill McDonald
  • Patent number: 8828898
    Abstract: A glass plate made of soda lime silica glass containing at least MgO, CaO, Na2O and Al2O3 produced by a float process or a downdraw method, wherein [MgO] is at least 4.5%, [MgO]/[CaO] is larger than 1, and Q=([MgO]/[CaO])×([CaO]+[Na2O]?[Al2O3]) is at least 20, wherein [MgO] is the content of MgO, [CaO] is the content of CaO, [Na2O] is the content of Na2O, and [Al2O3] is the content of Al2O3 (each being as represented by mass percentage based on oxide) and a process for the glass plate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 9, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Yusuke Arai, Tomoyuki Kobayashi, Yuki Kondo
  • Patent number: 8828545
    Abstract: The invention provides a silica-alumina-sodium oxide glass easy to melt and suitable for a low temperature ion exchange process. The glass is suitable for chemical tempering and consists of 55-60 wt % of SiO2, 0.1-2.5 wt % of B2O3, 11-16 wt % of Al2O3, 14-17 wt % of Na2O, 1-8 wt % of K2O, 0-8 wt % of ZrO2, 0-5 wt % of CaO, 0-5 wt % of MgO and 0-1 wt % of Sb2O3. By reasonably setting the composition, the difficulty in glass production decreases and the glass melting temperature is reduced obviously, which is favorable to reduce energy consumption and improve yield of products. Under the condition that tempering temperature is 380?-500? and tempering time is 4-12 h, the surface compressive stress can be 610-1100 Mpa, the depth of a stress layer can be 31-80 ?m, and the glass is reinforced and has high shock resistance. The glass of the invention has high wear resistance and can be used as a protective glass material of high-grade electronic display products such as mobile phones and PDAs.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: September 9, 2014
    Assignee: CDGM Glass Co., Ltd.
    Inventors: Wei Sun, Chuncai Song, Xiaoli Chen, Ning Chen, Jun Xiao, Chang Li
  • Publication number: 20140249017
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess excellent compaction and stress relaxation properties.
    Type: Application
    Filed: May 15, 2014
    Publication date: September 4, 2014
    Applicant: Corning Incorporated
    Inventors: Douglas Clippinger Allan, Bradley Frederick Bowden, Adam James Ellison, Timothy James Kiczenski, Marcel Potuzak
  • Patent number: 8824248
    Abstract: An aspect of the present invention relates to glass for a magnetic recording medium substrate, which includes essential components in the form of SiO2, Li2O, Na2O, and one or more alkaline earth metal oxides selected from the group consisting of MgO, CaO, SrO, and BaO, wherein a molar ratio of a content of MgO to a combined content of MgO, CaO, SrO, and BaO (MgO/(MgO+CaO+SrO+BaO)) is equal to or greater than 0.80, and which has a Young's modulus of equal to or greater than 80 GPa, and a glass transition temperature of equal to or greater than 620° C.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: September 2, 2014
    Assignee: Hoya Corporation
    Inventors: Naomi Matsumoto, Kazuaki Hashimoto
  • Patent number: 8802581
    Abstract: A glass that is down-drawable and ion exchangeable. The glass has a temperature T35kp at which the viscosity is 35 kilopoise. T35kp is less than the breakdown temperature Tbreakdown of zircon.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: August 12, 2014
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Adam James Ellison, Benjamin Zain Hanson
  • Publication number: 20140209169
    Abstract: A glass substrate for a CdTe solar cell includes a base composition includes, in terms of mol % on a basis of following oxides: from 60 to 75% of SiO2; from 1 to 7.5% of Al2O3; from 0 to 1% of B2O3; from 8.5 to 12.5% of MgO; from 1 to 6.5% of CaO; from 0 to 3% of SrO; from 0 to 3% of BaO; from 0 to 3% of ZrO2; from 1 to 8% of Na2O; and from 2 to 12% of K2O, wherein MgO+CaO+SrO+BaO is from 10 to 24%, Na2O+K2O is from 5 to 15%, MgO/Al2O3 is 1.3 or more, (2Na2O+K2O+SrO+BaO)/(Al2O3+ZrO2) is 3.3 or less, Na2O/K2O is from 0.2 to 2.0, Al2O3??0.94MgO+11, and CaO?0.48MgO+6.5.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Yu HANAWA, Yutaka KUROIWA, Tetsuya NAKASHIMA, Yuki KONDO
  • Patent number: 8791036
    Abstract: The present invention relates to a glass plate for a substrate contains, as a glass matrix composition, in mol % on the oxide basis, SiO2: 67 to 72, Al2O3: 1 to 7, B2O3: 0 to 4, MgO: 11 to 15, CaO: 0 to 3, SrO: 0 to 3, BaO: 0 to 4, ZrO2: 0 to 4, Na2O: 8 to 15, and K2O: 0 to 7, with SiO2+Al2O3: 71 to 77, MgO+CaO+SrO+BaO: 11 to 17, Na2O+K2O: 8 to 17, and satisfying K2O/(Na2O+K2O)?0.13×(SiO2+Al2O3+0.5B2O3+0.3BaO)?9.4, in which the glass plate has a ?-OH value (mm?1) of 0.05 to 0.5, and a heat shrinkage ratio (C) of 16 ppm or less.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: July 29, 2014
    Assignee: Asahi Glass Company, Limited
    Inventors: Tomoyuki Tsujimura, Yuichi Kuroki, Manabu Nishizawa
  • Patent number: 8785337
    Abstract: A glass container and related methods of manufacturing. The glass container has a glass composition including soda-lime base glass materials, and an oxide of vanadium for good ultraviolet light blocking properties and an oxide of selenium to decolor the glass for good clarity and decolorization. The glass composition of the glass container also may include an oxide of sulfur.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: July 22, 2014
    Assignee: Owens-Brockway Glass Container Inc.
    Inventors: Stephen D. Barton, Carol A. Click, Terence K. G. Howse
  • Publication number: 20140179510
    Abstract: Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess excellent compaction and stress relaxation properties.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 26, 2014
    Applicant: Corning Incorporated
    Inventors: Douglas Clippinger Allan, Bradley Frederick Bowden, Adam James Ellison, Timothy James Kiczenski, Marcel Potuzak
  • Patent number: 8753994
    Abstract: The embodiments described herein relate to chemically and mechanically durable glass compositions and glass articles formed from the same. In another embodiment, a glass composition may include from about 70 mol. % to about 80 mol. % SiO2; from about 3 mol. % to about 13 mol. % alkaline earth oxide; X mol. % Al2O3; and Y mol. % alkali oxide. The alkali oxide may include Na2O in an amount greater than about 8 mol. %. A ratio of Y:X may be greater than 1 and the glass composition may be free of boron and compounds of boron. In some embodiments, the glass composition may also be free of phosphorous and compounds of phosphorous. Glass articles formed from the glass composition may have at least a class S3 acid resistance according to DIN 12116, at least a class A2 base resistance according to ISO 695, and a type HGA1 hydrolytic resistance according to ISO 720.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: June 17, 2014
    Assignee: Corning Incorporated
    Inventors: Paul Stephen Danielson, Steven Edward DeMartino, Melinda Ann Drake, Robert Michael Morena, Santona Pal, Robert Anthony Schaut
  • Patent number: 8748002
    Abstract: A tempered glass of the present invention includes, as a glass composition, in terms of mass %, 45 to 75% of SiO2, 0 to 30% of Al2O3, and 0 to 30% of Li2O+Na2O+K2O and has a ?-OH value of 0.3 to 1/mm.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: June 10, 2014
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventor: Takashi Murata