And Boron Patents (Class 501/77)
  • Patent number: 7438829
    Abstract: The invention is directed to a screen-printable getter composition comprising: (a) glass frit; dispersed in (b) organic medium. The invention is further directed to a screen-printable thick film getter composition comprising: (a) glass frit; and (b) desiccant material; dispersed in (c) organic medium. The present invention further relates to a getter composition utilizing low-softening temperature glasses comprising, based on weight %, 1-50% SiO2, 0-80% B2O3, 0-90% Bi2O3, 0-90% PbO, 0-90% P2O5, 0-60% Li2O, 0-30% Al2O3, 0-10% K2O, 0-10% Na2O, and 0-30% MO where M is selected from Ba, Sr, Ca, Zn, Cu, Mg and mixtures thereof. The glasses described herein may contain several other oxide constituents that can substitute glass network-forming elements or modify glass structure.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: October 21, 2008
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Yong Cho, Terri Cardellino, James Daniel Tremel
  • Publication number: 20080248942
    Abstract: A porous phosphorous glass composition, as calculated in weight percent on an oxide basis, including, for example: about 30-60 SiO2; about 2-25 P2O5; about 0-5 B2O3; about 20-50 Al2O3; about 0.01-20 Na2O; and about 0-20 K2O, the composition having porosity and pore size properties as defined herein. The disclosure also provides a method for making porous phosphorous glass compositions.
    Type: Application
    Filed: April 3, 2008
    Publication date: October 9, 2008
    Inventors: Nicholas F. Borrelli, George B. Hares, Joseph F. Schroeder
  • Publication number: 20080248941
    Abstract: A glass composition being suitable for precision mold press forming, having superior resistance to devitrification, having optical constants (a refractive index, an Abbe number, and the like) required for aspherical lenses, and a low glass transition temperature. There is provided an optical glass comprising no less than 5 mol % and no more than 60 mol % of a B2O3 component, and no less than 0.2 mol % and no more than 60 mol % of a TeO2 component, by mol % on the basis of oxides. Further, there is provided an optical glass mentioned above having optical constants with a refractive index (nd) of 1.80 to 2.20, and an Abbe number (?d) of 16 to 40. Still further, there is provided an optical glass mentioned above having a glass transition temperature (Tg) of no more than 680° C.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 9, 2008
    Inventor: Jie Fu
  • Patent number: 7399720
    Abstract: A glass composition for use as a sealant or otherwise bonded to a fuel cell component, including from about 40 mol % to about 60 mol % RO; from about 2 mol % to about 10 mol % M2O3; and from about 35 mol % to about 45 mol % SiO2. R is selected from the group including strontium, calcium, magnesium and zinc and combinations thereof. M is selected from the group including aluminum, boron, lanthanum, iron and combinations thereof. The glass includes at least about 5 mol % ZnO. Upon heat treatment, the glass at least partially crystallizes with the formation of at least one alkaline earth-zinc pyrosilicate crystalline phases.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: July 15, 2008
    Inventors: Richard K. Brow, Signo Tadeu Dos Reis, Glen Benson
  • Patent number: 7371335
    Abstract: The invention is directed to a thick film getter composition comprising: (a) desiccant material; dispersed in (b) organic medium comprising (1) curable organic polymeric binder; (2) monomer; and (3) photoinitiator.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: May 13, 2008
    Assignee: E.I. duPont de Nemours and Company
    Inventors: Yong Cho, Jay Robert Dorfman
  • Patent number: 7358206
    Abstract: The present invention relates to a boroaluminosilicate glass which exhibits excellent UV transmission. In particular, the present invention is directed at an alkali fluorine-doped boroaluminosilicate glass comprising, in mole percent on the oxide basis, of 30-80% SiO2, 1-20% Al2(O, F2)3, 5-35% B2O3, 5-20% R2O, where R is Li, Na, K, Rb or Cs, and an amount of up to 12% of F. The glass possesses an R/Al molar ratio of between 0.4 to 3 and an F/O molar ratio of no greater than 0.35. The alkali fluorine-doped boroaluminosilicate glass of the present invention exhibits a UV transmission at 300 nm, of greater than 80%/mm.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: April 15, 2008
    Assignee: Corning Incorporated
    Inventors: Lauren Kay Cornelius, Adam James Gillmar Ellison
  • Patent number: 7341965
    Abstract: The invention relates to bismuth oxide glass, containing germanium oxide, a method for the production thereof, the use thereof and a glass fiber consisting of said inventive glass.
    Type: Grant
    Filed: September 7, 2002
    Date of Patent: March 11, 2008
    Assignee: Schott AG
    Inventors: Bianca Schreder, Ruediger Sprengard, Ulrich Peuchert, Martin Letz, Joseph S. Hayden, Sally Pucilowski
  • Patent number: 7332453
    Abstract: Ceramics (including glasses and glass-ceramics) comprising nitrogen, and methods of making the same.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: February 19, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Berkan K. Endres, Thomas J. Anderson
  • Patent number: 7297646
    Abstract: Ceramics comprising (i) at least one of Nb2O5 or Ta2O5 and (ii) at least two of (a) Al2O3, (b) REO, or (c) at least one of ZrO2 or HfO2. Embodiments of ceramics according to the present invention can be made, formed as, or converted into optical waveguides, glass beads, articles (e.g., plates), fibers, particles (e.g., abrasive particles), and thin coatings.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: November 20, 2007
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Craig R. Schardt
  • Patent number: 7291571
    Abstract: The invention relates to crystallizable aluminosilicate magnesium-containing glass which is used for producing extremely solid and break-resistant glass-ceramics having an easily polished surface. The inventive crystallizable glass contains 5-33 mass % of SiO2, 25-40 mass % of Al2O3, 5-25 mass % of MgO, 0-15 mass % of B2O3, 0.1-30 mass % of Y2O3, Ln2O3, As2O3 and/or Nb2O5 and 0.1-10 mass % of P2O5.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: November 6, 2007
    Assignee: Schott AG
    Inventors: Dirk Sprenger, Thilo Zachau, Rainer Liebald
  • Patent number: 7262144
    Abstract: The invention relates to a photostructurable body, in particular glass or glass-ceramic, in which the glass is a multicomponent glass and/or the glass-ceramic is a multicomponent glass-ceramic, in each case having a positive change in refractive index ?n as a result of the action of light.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: August 28, 2007
    Assignee: Schott AG
    Inventors: Bianca Schreder, Josè Zimmer, Matthias Brinkmann, Michael Kluge
  • Publication number: 20070179038
    Abstract: An optical glass has optical constants of a refractive index (nd) within a range from 1.73 to less than 1.80 and an Abbe number (?d) within a range from 43 to 55, comprises SiO2, B2O3, Y2O3, La2O3, ZnO and Li2O as essential components, is substantially free of lead component, arsenic component and fluorine component, has a ratio of SiO2/B2O3 of 0.30 to 1.55 and a ratio of Y2O3/La2O3 of 0.15 to 1.00, and has a glass transition temperature (Tg) of 620° C. or below.
    Type: Application
    Filed: January 31, 2007
    Publication date: August 2, 2007
    Applicant: OHARA INC.
    Inventor: Susumu UEHARA
  • Patent number: 7247987
    Abstract: Disclosed is a rear plate of a plasma display panel. In the rear plate, a dielectric layer or a barrier wall layer is formed by forming slurry in a tape of a green tape and then attaching the green tape to upper surfaces of electrodes and a glass substrate. Therefore, a PDP employing a rear plate according to the present invention has superior electric and optical characteristics.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: July 24, 2007
    Assignee: LG Micron Ltd.
    Inventor: Jae-Chil Seo
  • Patent number: 7214441
    Abstract: A solid oxide fuel cell device incorporates a sealing material resistant to hydrogen gas permeation at a sealing temperature in the intermediate temperature range of 600° C.–900° C., the seal having a CTE in the 100×10?7/° C. to 120×10?7/° C., wherein the sealing material comprises in weight %, of: (i) a 80 wt % to 100 wt % glass frit, the glass frit itself having a composition comprising in mole percent of: SiO2 15–65; Li2O 0–5; Na2O 0–5; K2O 0–10; MgO 0–5; CaO 0–32; Al2O3 0–10; B2O3 0–50; SrO 0 to 25, wherein the total amount of alkalis is less than 10 mole %; and (ii) zirconia or leucite addition 0 wt % to 30 wt.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: May 8, 2007
    Assignee: Corning Incorporated
    Inventors: Jeffrey Earl Cortright, Lisa Ann Lamberson, Pamela Arlene Maurey, Robert Michael Morena
  • Patent number: 7189672
    Abstract: A substrate for flat panel display glasses comprising a glass the P2O5—SiO2—Al2O3 ternary system which yields stable glasses exhibiting high strain point temperatures, resistance to devitrification, good chemical durability, excellent dielectric properties, coefficients of thermal expansion that can be tailored to match that of silicon, and having liquidus viscosities that enable forming by conventional methods. The glass comprises the following composition as calculated in weight percent on an oxide basis: P2O5 33–75%, SiO2 2–52%, Al2O3 8–35%.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: March 13, 2007
    Assignee: Corning Incorporated
    Inventors: Bruce G. Aitken, George H. Beall, Linda R. Pinckney
  • Patent number: 7166549
    Abstract: The invention relates to an antimicrobial, anti-inflammatory and disinfecting glass, whereby the glass comprises: 30–95 wt. % SiO2,0–40 wt. % Na 2O, 0–40 wt. % K2O, 0–40 wt. % Li2O, 0–35 wt. % CaO, 0–10 wt. % MgO, 0–10 wt. % Al2O3, 0–15 wt. % P2O5 wt. % B2O3?, 0–10 wt. % NaF, 0–10 wt. % LiF, 0–10 wt. % KF, 0–10 wt. % CaF2, 0–5 wt. % Ag2O, 0–10 wt. % MgF2,0–2 wt. % Fe2O3and 0–10 wt. % XJy, where X?Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Ag or Zn and y=1 or y=2 and the sum of XJy> is 10 ppm.
    Type: Grant
    Filed: August 17, 2002
    Date of Patent: January 23, 2007
    Assignee: Schott AG
    Inventors: Jorg Hinrich Fechner, José Zimmer
  • Patent number: 7161117
    Abstract: A window glass for vehicles equipped with a conductor, which comprises a glass plate, a patterned conductor layer formed on the glass plate, and a covering layer formed to cover the conductor layer, wherein the covering layer comprises a fired product obtained by firing a composition containing a crystalline glass powder and a reducing agent capable of reducing silver ions.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: January 9, 2007
    Assignee: Asahi Glass Company, Limited
    Inventors: Toshio Minowa, Hiroyuki Hayakawa, Shuji Taguchi
  • Patent number: 7141522
    Abstract: Ceramics comprising (i) at least one of Nb2O5 or Ta2O5 and (ii) at least two of (a) Al2O3, (b) Y2O3, or (c) at least one of ZrO2 or HfO2. Embodiments of ceramics according to the present invention can be made, formed as, or converted into optical waveguides, glass beads, articles (e.g., plates), fibers, particles (e.g., abrasive particles), and thin coatings.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: November 28, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Craig R. Schardt
  • Patent number: 7141523
    Abstract: Ceramics comprising (i) at least one of Nb2O5 or Ta2O5 and (ii) at least two of (a) Al2O3, (b) REO, or (c) at least one of ZrO2 or HfO2. Embodiments of ceramics according to the present invention can be made, formed as, or converted into optical waveguides, glass beads, articles (e.g., plates), fibers, particles (e.g., abrasive particles), and thin coatings.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: November 28, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Anatoly Z. Rosenflanz, Craig R. Schardt
  • Patent number: 7138347
    Abstract: A thick-film composition comprising: (a) conductive metal; (b) crystallized glass; (c) amorphous glass; and (d) organic medium.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 21, 2006
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Takuya Konno
  • Patent number: 7087542
    Abstract: There is provided an optical glass suitable for mold pressing having optical constants of a refractive index (nd) within a range from 1.60 to 1.69 and Abbe number (?d) within a range from 35 to 45, having a glass transition point (Tg) within a range from 300° C. to 500° C., being free from devitrification when the optical glass is held at a temperature which is higher by 100° C. than the glass transition point (Tg) for 30 minutes, comprising in mass % on oxide basis: SiO2 20–less than 40% B2O3 5–20% Al2O3 0–5% ZrO2 more than 3%–15% Nb2O5 10–30% MgO + CaO 0–less than 5% in which MgO 0–less than 5% CaO 0–less than 5% SrO 0–10% BaO 0–10% ZnO 0–18% Li2O more than 5%–15% Na2O 1–10% K2O 1–10% Sb2O3 0–1%, and being free from La2O3, TiO2, Ta2O5 and PbO.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: August 8, 2006
    Assignee: Kabushiki Kaisha Ohara
    Inventor: Susumu Uehara
  • Patent number: 7019189
    Abstract: The present invention provides processes to immobilize radioactive and/or hazardous waste in a borosilicate glass, the waste containing one or more of radionuclides, hazardous elements, hazardous compounds, and/or other compounds. The invention also provides borosilicate glass compositions for use in immobilizing radioactive and/or hazardous waste.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: March 28, 2006
    Assignee: Geomatrix Solutions, Inc.
    Inventors: Anatoly Chekhmir, Arthur Gribetz
  • Patent number: 7005396
    Abstract: The present invention provides a composition for use in forming an enamel cover coat from which baked-on foods can be removed without the need for pyrolysis or highly alkaline cleaners. The enamel cover coat preferably exhibits no chipping or other surface defects subsequent to a 2.0 mm Plum Jam Test and an acid resistance of A or better according to ISO 2722. The composition according to the invention includes a glass component including at least a first glass frit comprising a low SiO2 glass frit. Preferably, the glass component includes a blend of the first glass frit and at least a second glass frit. Preferably, the first glass frit includes by weight from about 30% to about 45% P2O5, from about 20% to about 40% Al2O3, from about 15% to about 35% Li2O+Na2O+K2O, up to about 15% B2O3, up to about 15% MgO+CaO+SrO+BaO+ZnO, up to about 10% TiO2+ZrO2, and up to about 10% SiO2.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: February 28, 2006
    Assignee: Ferro France-S.A.R.L.
    Inventors: Sophie Espargillière, Andreas Schanné, Francois Roques
  • Patent number: 6984261
    Abstract: The invention relates to uses of glasses and glass-ceramics in dental and orthodontic applications.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: January 10, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Kevin M. Cummings, Jacqueline C. Rolf, Anatoly Z. Rosenflanz, Richard P. Rusin, Jerome E. Swanson
  • Patent number: 6946415
    Abstract: An insulating ceramic composition includes a mixture of a ceramic powder containing MgAl2O4 and a glass powder containing 30-60% by mole of silicon oxide on the basis of SiO2 and 20-55% by mole of magnesium oxide on the basis of MgO, and the ceramic powder further includes Mg2SiO4 and TiO2. The insulating ceramic composition can be fired at 1000° C. and co-sintered with Ag and Cu. An insulating ceramic obtained by sintering the insulating ceramic composition has a high Q-factor and is therefore suitable for ceramic multilayer substrates used at high frequencies.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: September 20, 2005
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Osamu Chikagawa, Sadaaki Sakamoto, Yoichi Moriya
  • Patent number: 6939819
    Abstract: A glass ceramic composition which consists essentially of an inorganic material powder having a melting point or a glass transition point of at least 1,000° C. and a glass powder having a glass transition point of from 450 to 800° C., wherein the average of the major axes L of particles of the above inorganic material powder is from 0.5 to 15 ?m, and the average of the ratios L/W of the major axes L to the minor axes W is at most 1.4. Further, a glass ceramic composition which consists essentially of, as represented by mass percentage, from 10 to 58% of an inorganic material powder having a melting point or a glass transition point of at least 1,000° C. and from 42 to 90% of a glass powder having a glass transition point of from 450 to 800° C., wherein the glass powder consists essentially of, as represented by mol %, SiO2: 35 to 70%, B2O3: 0 to 30%, Al2O3: 3 to 18%, MgO: 0 to 40%, CaO: 0 to 19%, BaO: 0 to 35% and ZnO: 0 to 9%.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: September 6, 2005
    Assignee: Asahi Glass Company, Limited
    Inventors: Hiroshi Usui, Hitoshi Onoda, Kazunari Watanabe, Yumi Okuyama, Yasuko Osaki, Katsuyoshi Nakayama
  • Patent number: 6936556
    Abstract: The present invention provides partially crystallizing lead-free and cadmium-free glass enamel composition that fuse at low temperatures. Glass enamel compositions according to the present invention form predominantly bismuth titanate and optionally zinc titanate crystals upon firing. Preferably, glass enamel compositions according to the invention include a glass component that includes by weight from about 11% to about 52% SiO2, from 10.2% to about 40% TiO2, from about 5% to about 75% Bi2O3, up to about 8% B2O3, up to about 14% BaO+SrO, and up to about 45% by weight ZnO, where the sum of Bi2O3 and ZnO comprises from about 30% to about 85% of the glass component by weight.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: August 30, 2005
    Assignee: Ferro Corporation
    Inventors: Srinivasan Sridharan, George C. Korn, Jérôme Anquetil, Robert Blonski, Ivan H. Joyce
  • Patent number: 6911160
    Abstract: A high-gain phosphate glass composition, which can be used to produce ultra-short gain length lasers and optical amplifiers is described wherein the composition of the glass in addition to exhibiting high gain for lasers and amplifiers, also exhibits high thermal shock resistance, high cross section, insignificant concentration quenching, and high solubility for rare earth ions and other properties which enable the material to be fabricated into a new class of ultra-short length micro-laser, fiber laser and amplifier configurations and designs.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: June 28, 2005
    Assignee: Kigre, Inc.
    Inventors: John D. Myers, Michael J. Myers
  • Patent number: 6905990
    Abstract: The present invention provides a ceramic color composition which comprises, as a solid powder, 50 to 90 wt. % of a mixture containing 5 to 95 parts by weight of a first lead-free glass powder comprising at least SiO2, ZnO, and B2O3 as glass components, and 5 to 95 parts by weight of a second lead-free glass powder comprising at least SiO2, Bi2O3, and B2O3 as glass components, 10 to 40 wt. % of an inorganic pigment, and 0 to 10 wt. % of an inorganic filler. The composition is free of lead and exhibits an excellent mold release property during the heat-molding process of a glass plate having the composition printed thereon. After firing, the composition is excellent in acid resistance, coloration in the bus bar portion, and plating resistance.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: June 14, 2005
    Assignee: Okuno Chemical Industries Co., Ltd.
    Inventors: Shigehiro Sanichi, Yoshito Nokami
  • Patent number: 6893991
    Abstract: The invention relates to a melt-formed, high-silver, alkali-free, borosilicate glass that can be used for fabricating optical devices. For gradient index lenses, the glass can be subjected to an ion exchange process in order to introduce a less polarizable ion onto the glass surface having a higher refractive index on the surface relative to the center of the glass. The glass is unique in that the silver ions are not introduced by ion exchange. Rather, the high silver content of the glass is achieved during melting. As melted, the transparent alkali-free, borosilicate glass produced by the inventive method contains a high concentration of silver, exhibits a high refractive index and negligible attenuation at wavelengths longer than about 400 nm, making it particularly suitable for high performance fiber optic components such as gradient index or so-called GRIN lenses.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: May 17, 2005
    Assignee: Corning Incorporated
    Inventors: Roger J. Araujo, Donald M. Trotter, Jr.
  • Patent number: 6887808
    Abstract: Polarized glass articles having a wavelength range that is broadened for high contrast-ratio applications. A method that imparts to a glass article a high contrast ratio of at least 40 dB for use as dichroic glass polarizers over a wavelength range of 880 nm to 1,690 nm while keeping a high transmission value. The method comprises the step of heating the glass article at a temperature ranging from 400 to 450° C. in a reducing atmosphere for a period of time ranging from 12 to 30 hours. Preferably, the reducing atmosphere is hydrogen at atmospheric pressure.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: May 3, 2005
    Assignee: Corning Incorporated
    Inventor: Kenjiro Hasui
  • Patent number: 6835682
    Abstract: The present invention relates to an alkali-containing magnesium borosilicate glass composition comprising, in mole %, 10-25% SiO2, 10-25% B2O3, 5-10% BaO, 40-65% MgO, 0.5-3% ZrO2, 0.3-3% P2O5, and 0.2-5% M2O where M is selected from the group of alkali elements and mixtures thereof. The invention is further directed to a castable dielectric composition comprising a dispersion of finely divided solids comprising, based on solids: (a) 50-90 wt. % the glass composition as described above; (b) 10-50 wt. % ceramic filler; both dispersed in a solution of (c) an organic polymeric binder; and (d) a volatile organic solvent. The invention is still further directed to the castable dielectric composition described above used in a method of forming a high TCE LTCC green tape by casting a thin layer of the castable dispersion onto a flexible substrate and heating the cast layer to remove the volatile organic.
    Type: Grant
    Filed: March 17, 2003
    Date of Patent: December 28, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Yong Cho, Kenneth Warren Hang
  • Patent number: 6828265
    Abstract: An optical glass suitable for precision press molding has a refractive index (nd) of 1.88 or over and an Abbe number (&ngr;d) within a range from 22 to 28, comprises, in mass %, SiO2 15-25% B2O3 0-5% La2O3 0-5% TiO2  5-15% ZrO2  0-10% Nb2O5 30-50% WO3 0-5% CaO  0-10% BaO  0-10% Li2O  3-12% Na2O  0-10% K2O  0-10% Bi2O3  0-15% and has a glass transition point (Tg) within a range from 500° C. to 580° C. The optical glass preferably has a yield point (At) within a range from 550° C. to 640° C.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: December 7, 2004
    Assignee: Kabushiki Kaisha Ohara
    Inventor: Susumu Uehara
  • Patent number: 6816235
    Abstract: The optical glass of the present invention comprises a composition in terms of weight ratio within the range of 0 to 14.8 wt % of SiO2, 30 to 60 wt % of B2O3, 0 to 17.5 wt % of Al2O3, 0 to 0.4 wt % of Li2O, 0 to 3 wt % of Na2O, 0 to 3 wt % of K2O, 0 to 5 wt % of MgO, 0 to 30 wt % of CaO, 0 to 30 wt % of SrO, 0 to 35 wt % of BaO, where RO (MgO+CaO+SrO+BaO) is 8 to 35 wt %, 0 to 20 wt % of ZnO, 0 to 6.5 wt % of La2O3, 0 to 15 wt % of Gd2O3, 0 to 15 wt % of Y2O3, 0 to 10 wt % of Ta2O3, 0 to 9.5 wt % of ZrO2, 0 to 1 wt % of As2O3, and 0 to 0.5 wt % of Sb2O3; and has a refractive index (nd) of 1.52 to 1.65, an Abbe number (vd) of 55 to 61, and an 80% transmission wavelength (at a thickness of 10 mm including no reflection loss) of 330 nm or shorter.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: November 9, 2004
    Assignee: Nikon Corporation
    Inventors: Kazuhiro Kido, Masahiko Sugisaki, Shizuo Matsumaru
  • Publication number: 20040220040
    Abstract: An optical glass suitable for precision mold pressing has a refractive index (nd) of 1.
    Type: Application
    Filed: June 2, 2004
    Publication date: November 4, 2004
    Inventor: Susumu Uehara
  • Patent number: 6753278
    Abstract: The optical glass has an index of refraction (nd) greater than or equal to 1.70, an Abbé number (&ngr;d) greater than or equal to 35 and a density (&rgr;) less than or equal to 4.5 g/cm3. Optical elements made with this optical glass are especially desirable in optical data transfer applications, particularly in read-write devices with movable read-write heads. The glass compositions required to make optical glass with these properties are described.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: June 22, 2004
    Assignee: Schott Glas
    Inventors: Silke Wolff, Ute Woelfel, Ulrich Siepe
  • Publication number: 20040079258
    Abstract: The invention relates to the use of ions of weakly basic oxides as linking ions for polyacids in cements, preferably polyelectrolyte cements. Suitable ions comprise elements of the scandium series, for example, Sc3+, Y3+, La3+, Ce4+ and all subsequent tri- and tetra-valent lanthanides and the ions Mg2+, Zn2+, Ga2+, In2+. The application of said ions permits a regulation of the cement reaction without surface treatment of the glass powder.
    Type: Application
    Filed: December 8, 2003
    Publication date: April 29, 2004
    Inventors: Stefan Hoescheler, Markus Mikulla, Gabriele Rackelmann, Volker Bambach
  • Patent number: 6713417
    Abstract: An insulative ceramic compact is composed of a fired mixture of (A) a MgAl2O4, Mg3B2O6 and/or Mg2B205 ceramic powder, and (B) a glass powder including from about 13 to 50% by weight of silicon oxide in terms of SiO2, from 8 to 60% by weight of boron oxide in terms of B2O3, about 20% by weight or less of aluminum oxide in terms of Al2O3, and from about 10 to 55% by weight of magnesium oxide in terms of MgO. The insulative ceramic compact can be obtained by firing at low temperatures of about 1000° C. or less, can be obtained by sintering with Ag or Cu, has a low dielectric constant and a high Q value, and is suitable for use in the high-frequency range.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: March 30, 2004
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Osamu Chikagawa, Naoya Mori, Yasutaka Sugimoto
  • Patent number: 6709998
    Abstract: The invention relates to lead-free optical glasses which have refractive indices nd of between 1.65 and 1.80 and Abbe numbers &ngr;d of between 21 and 33 and possess the following composition (in % by weight, based on oxide): SiO2 27-40; B2O3 0-<0.5; Al2O3 0-6; Na2O 7-18; K2O 1-10; BaO 1-10; SrO 0-3; CaO 0.5-5; MgO 0-3; with BaO+SrO+CaO+MgO<15; TiO2 21-37; ZrO2 0-7; Nb2O5 5-17; WO3 0.1-7.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: March 23, 2004
    Assignee: Schott Glas
    Inventors: Silke Wolff, Ute Woelfel
  • Patent number: 6703333
    Abstract: There is provided an optical glass suitable for mold pressing having optical constants of a refractive index (nd) within a range from 1.60 to 1.69 and Abbe number (&ngr;d) within a range from 35 to 45, having a glass transition point (Tg) within a range from 400° C. to 500° C., being free from devitrification when the optical glass is held at a temperature which is higher by 100° C. than the glass transition point (Tg) for 30 minutes, and comprising in mass % on oxide basis: SiO2 20-less than 40% B2O3  5-20% Al2O3  0-5% ZrO2 more than 3%-15% Nb2O5 10-30% MgO + CaO  0-less than 5% in which MgO  0-less than 5% CaO  0-less than 5% SrO  0-10% BaO  0-10% ZnO  0-18% Li2O  1-15% Na2O  1-10% K2O  1-10% Sb2O3  0-1%.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: March 9, 2004
    Assignee: Kabushiki Kaisha Ohara
    Inventor: Susumu Uehara
  • Publication number: 20040029703
    Abstract: The present invention provides partially crystallizing lead-free and cadmium-free glass enamel composition that fuse at low temperatures. Glass enamel compositions according to the present invention form predominantly bismuth titanate and optionally zinc titanate crystals upon firing. Preferably, glass enamel compositions according to the invention include a glass component that includes by weight from about 11% to about 52% SiO2, from 10.2% to about 40% TiO2, from about 5% to about 75% Bi2O3, up to about 8% B2O3, up to about 14% BaO+SrO, and up to about 45% by weight ZnO, where the sum of Bi2O3 and ZnO comprises from about 30% to about 85% of the glass component by weight.
    Type: Application
    Filed: April 7, 2003
    Publication date: February 12, 2004
    Inventors: Srinivasan Sridharan, George C. Korn, Jerome Anquetil, Robert Blonski, Ivan H. Joyce
  • Patent number: 6667259
    Abstract: An optical colored glass with a composition (in percent by weight based on oxide) of SiO2 30-75; K2O 5-35; TiO2 0-5; B2O3>4-17; ZnO 5-37; F 0.01-10 MIMIIIY2II 0.1-3, whereby MI=Cu+, Ag+, MIII=In3+, Ga3+, Al3+, YII=S2−, Se2−, Te2−, as well as the use of this glass as a long-pass cutoff filter.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: December 23, 2003
    Assignee: Schott Glas
    Inventors: Rolf Clasen, Monika Gierke, Jochen Freund, Simone Ritter, Uwe Kolberg
  • Patent number: 6667256
    Abstract: When ceramic electronic parts such as multilayer ceramic substrates that have a substrate body and metal wiring conductors comprising silver are manufactured, a composition comprising not only a borosilicate glass powder and a ceramic powder, but also an additive powder comprising at least one of cerium oxide, bismuth, bismuth oxide, antimony and antimony oxide is used as a composition for preparing the substrate body. Gray discoloration of the substrate body and yellow discoloration in the vicinities of the metal wiring conductors can be prevented.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: December 23, 2003
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Kenji Masuko
  • Publication number: 20030224923
    Abstract: The present invention relates to an alkali-containing magnesium borosilicate glass composition comprising, in mole %, 10-25% SiO2, 10-25% B2O3, 5-10% BaO, 40-65% MgO, 0.5-3% ZrO2, 0.3-3% P2O5, and 0.2-5% M2O where M is selected from the group of alkali elements and mixtures thereof. The invention is further directed to a castable dielectric composition comprising a dispersion of finely divided solids comprising, based on solids: (a) 50-90 wt. % the glass composition as described above; (b) 10-50 wt. % ceramic filler; both dispersed in a solution of (c) an organic polymeric binder; and (d) a volatile organic solvent. The invention is still further directed to the castable dielectric composition described above used in a method of forming a high TCE LTCC green tape by casting a thin layer of the castable dispersion onto a flexible substrate and heating the cast layer to remove the volatile organic.
    Type: Application
    Filed: March 17, 2003
    Publication date: December 4, 2003
    Inventors: Yong Cho, Kenneth Warren Hang
  • Patent number: 6656584
    Abstract: A glass fiber comprising core glass and clad glass, wherein the core glass consists essentially of from 25 to 70 mol % of Bi2O3, from 5 to 74.89 mol % of B2O3+SiO2, from 0.1 to 30 mol % of Al2O3+Ga2O3, and from 0 to 10 mol % of CeO2.
    Type: Grant
    Filed: November 24, 2000
    Date of Patent: December 2, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Naoki Sugimoto, Setsuro Ito
  • Patent number: 6653251
    Abstract: An optical amplifying glass having Er doped in an amount of from 0.01 to 10% as represented by mass percentage to a matrix glass comprising, by mol %, BiO2: 20 to 80, B2O3+SiO2: 5 to 75, Ga2O3+WO3+TeO2: 0.1 to 35, Al2O3≦10, GeO2≦30, TiO2≦30, and SnO2≦30, and containing no CeO2.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: November 25, 2003
    Assignee: Asahi Glass Company, Limited
    Inventors: Naoki Sugimoto, Setsuro Ito
  • Publication number: 20030207745
    Abstract: When ceramic electronic parts such as multilayer ceramic substrates that have a substrate body and metal wiring conductors comprising silver are manufactured, a composition comprising not only a borosilicate glass powder and a ceramic powder, but also an additive powder comprising at least one of cerium oxide, bismuth, bismuth oxide, antimony and antimony oxide is used as a composition for preparing the substrate body. Gray discoloration of the substrate body and yellow discoloration in the vicinities of the metal wiring conductors can be prevented.
    Type: Application
    Filed: May 2, 2003
    Publication date: November 6, 2003
    Applicant: Murata Manufacturing Co., Ltd.
    Inventor: Kenji Masuko
  • Patent number: 6632759
    Abstract: The present invention relates generally to UV (ultraviolet) photosensitive bulk glass, and particularly to batch meltable alkali boro-alumino-silicate glasses. The photosensitive bulk glass of the invention exhibits photosensitivity to UV wavelengths below 250 nm. The photosensitivity of the alkali boro-alumino-silicate bulk glass to UV wavelengths below 250 nm provide for the making of refractive index patterns in the glass. With a radiation source below 250 nm, such as a laser, refractive index patterns are formed in the glass. The inventive photosensitive optical refractive index pattern forming bulk glass allows for the formation of patterns in glass and devices which utilize such patterned glass.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: October 14, 2003
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borelli, George B. Hares, Charlene M. Smith
  • Publication number: 20030191008
    Abstract: An optical glass suitable for precision press molding has a refractive index (nd) of 1.
    Type: Application
    Filed: April 1, 2003
    Publication date: October 9, 2003
    Inventor: Susumu Uehara
  • Patent number: 6630417
    Abstract: The porcelain of the present invention comprises 5 to 70% by weight of a non-oxide ceramic filler and 30 to 95% by weight of a borosilicate glass having a glass transition temperature of 800° C. or lower, wherein a weight loss per unit surface area of said non-oxide ceramics is not more than 0.15 g/cm2 after dipping said non-oxide ceramic having purity of not less than 96% by weight for five minutes in a glass melt obtained by melting said borosilicate glass with heating at 1200° C. Since the porcelain composition can be fired at a low temperature together with a low-resistance metal, the resulting porcelain has a high thermal conductivity, a low dielectric constant, a high heat dissipation property and a reduced apparent signal delay in a high frequency signal and is suited for use as an insulating board in a wiring board.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: October 7, 2003
    Assignee: Kyocera Corporation
    Inventors: Shinya Kawai, Hiromi Iwachi, Yoshitake Terashi