Fiber Or Fiber Containing Patents (Class 501/95.1)
  • Patent number: 11279836
    Abstract: An intumescent nanostructured material for thermal protection comprising a member including a plurality of nanostructured materials, and an intumescent material associated with the member and configured to react in the presence of a heat source to form a foam for thermally insulating the member from the heat source. The member may be a non-woven sheet, a woven sheet, a yarn, or a network, and may be configured to conduct thermal energy away from a heat source. A solution comprising a plurality of nanostructured materials, an intumescent material, and a solvent, wherein the solution has a viscosity suitable for coating or spraying onto a surface of a substrate. The solution may have a viscosity of about 3000 centipoise to about 6000 centipoise, and possibly less than about 1000 centipoise. The solution, when dried on the substrate, may form a thermally-protective coating on the substrate.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: March 22, 2022
    Assignee: Nanocomp Technologies, Inc.
    Inventors: Peter Antoinette, Mark Schauer, Brian White, Meghann White, Mark A. Banash, David Gailus
  • Patent number: 10869413
    Abstract: A heat-dissipating component, and a method for manufacturing the same, the component provided with a composited portion including a plate-shaped molded body containing silicon carbide, and hole-formation portions formed in a peripheral edge portion of the composited portion; through-holes being formed in the hole formation sections; the hole-formation portions containing inorganic fibers; the molded body and the inorganic fibers being impregnated with an aluminum-containing metal; and the hole-formation portions forming a part of the outer peripheral surface of the heat-dissipating component.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: December 15, 2020
    Assignee: DENKA COMPANY LIMITED
    Inventors: Takeshi Miyakawa, Motonori Kino
  • Patent number: 10295260
    Abstract: A ceramic liner can include a monolithic body having a surface portion and a bulk portion. The surface portion can have a thickness less than the total thickness of the monolithic body. The monolithic body can include an amorphous phase. The amorphous phase can be discontinuous. At least one member of the discontinuous phase can be embedded in the surface portion. The bulk portion can be substantially free of the amorphous phase. A method of forming a ceramic liner can include providing a furnace with a coating and a bulk material of the ceramic liner and heating the bulk material and the coating. In an embodiment, a coated lining form can be used to provide the coating. In a particular embodiment, the coating can be transferred to the bulk material from the coated lining form.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: May 21, 2019
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: John Carl Walsh, III, Michael P. Schnelzer, Edmund A. Cortellini
  • Patent number: 10085336
    Abstract: A multilayer wiring board has a strip structure comprising a core material in which a ground pattern is disposed on one side of an insulating layer and a strip line is disposed on the other side, a prepreg disposed on the strip line of the core material, and a ground pattern disposed on the prepreg. In this multilayer wiring board, the core material is formed with a high frequency-adaptive base material, and the prepreg is formed with a general-purpose material.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: September 25, 2018
    Assignee: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Masahiro Katou, Yasuyuki Koshikawa, Hiroshi Wada
  • Patent number: 9434653
    Abstract: Methods, processes, and systems for producing bulk ceramics from agglomerations of partially cured gelatinous polymer ceramic precursor resin droplets, without using sponge materials to form gas pathways in the polymer bodies. Ceramics can be formed in hours. Resin droplets can be produced with a sprayer where liquid polymer precursors, mixed with a curing agent, are sprayed forming droplets which are partially cured, collected, and compressed into shapes. Ceramic porosity can be varied, droplet particle sizes can be controlled by adjusting liquid and gas pressure, orifice size, during spraying. Partially cured droplets can be formed via an emulsion process and size controlled by emulsion liquid and surfactant selection parameters.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: September 6, 2016
    Assignee: Dynamic Material Systems, LLC
    Inventors: Arnold Hill, William Easter
  • Patent number: 9325006
    Abstract: A method for preparing a positive active material for a lithium ion secondary battery, the method including obtaining a mixture by mixing a lithium containing compound and metal oxide, distributing powder of a lithium containing compound into a furnace, and heat treating the mixture in the furnace, wherein a thermal decomposition temperature of the lithium containing compound power distributed into the furnace is lower than that of the lithium containing compound mixed with the metal oxide.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: April 26, 2016
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Yun Ju Cho, Pil Sang Yun, Mi Sun Lee, Hae In Cho
  • Patent number: 9174875
    Abstract: An inorganic fibrous shaped refractory article having a high bio-solubility which is capable of exhibiting a desired heat resistance without containing expensive ceramic fibers, alumina powder and silica powder can be provided at a low production cost and with a low product price. An inorganic fibrous shaped refractory article includes 2 to 95 mass % of rock wool, 2 to 95 mass % of inorganic powder having a needle-like crystal structure and 3 to 32 mass % of a binder. Preferably, in the an inorganic fibrous shaped refractory article, the inorganic powder having a needle-like crystal structure has an average length of 1 to 3000 ?m and an aspect ratio of 1 to 1000, and more preferably the inorganic powder having a needle-like crystal structure is wollostonite powder or sepiolite powder.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: November 3, 2015
    Assignee: Nichias Corporation
    Inventors: Koji Iwata, Ken Yonaiyama
  • Patent number: 9160456
    Abstract: Methods and apparatus for managing the effects of dispersion in an optical transport system in which some of the system's nodes are connected to one another via inhomogeneous fiber-optic links. In one embodiment, an optical transmitter is configured to apply electronic and/or optical dispersion pre-compensation in the amount selected to cause the peak-to-average-power ratio of the optical signal in the lower-dispersion portion of the link to be relatively low (e.g., close to a minimum value). Advantageously, such dispersion pre-compensation tends to significantly reduce, e.g., in terms of the bit-error rate, the directional anisotropy exhibited by optical transmissions through the inhomogeneous fiber-optic links.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: October 13, 2015
    Assignee: Alcatel Lucent
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan, Peter J. Winzer
  • Patent number: 8940391
    Abstract: Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500° C. to approximately 2000° C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01×102 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: January 27, 2015
    Assignee: Advanced Ceramic Fibers, LLC
    Inventors: John E. Garnier, George W. Griffith
  • Patent number: 8916102
    Abstract: Non-woven mat including magnesium aluminum silicate glass fibers and amorphous refractory ceramic fibers, bio-soluble ceramic fibers, and/or heat-treated silica fibers. Embodiments of the nonwoven mat surprisingly have a Resiliency Value after three thermal cycles from 25° C. to 700° C./400° C. of the Real Condition Fixture Test at least 1.1 times greater than the Resiliency Value of a comparable non-woven mat consisting of any individual type of fibers of the non-woven mat. The non-woven mats are useful, for example, in pollution control devices and other thermal insulation applications.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: December 23, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Anne N. De Rovere, Lahoussaine Lalouch, Richard P. Merry
  • Publication number: 20140370284
    Abstract: Inorganic fiber having the following composition ratio and comprising 40 wt % or less of shots each having a diameter of 45 ?m or more: [Composition ratio of inorganic fiber] SiO2 66 to 82 wt %; CaO 10 to 34 wt %; MgO 0 to 3 wt %; Al2O3 0 to 5 wt %; and the total of SiO2, CaO, MgO and Al2O3 is 98 wt % or more.
    Type: Application
    Filed: November 13, 2012
    Publication date: December 18, 2014
    Inventors: Takashi Nakajima, Ken Yonaiyama, Tetsuya Mihara, Tomohiko Kishiki
  • Publication number: 20140127083
    Abstract: A method of treating tough inorganic fiber bundles including opening a plurality of the tough inorganic fiber bundles such that tough inorganic fibers can be dispersed in a liquid slurry to lay down a homogenous fiber aggregate, wherein the tough inorganic fibers have a crush settle volume of greater than 250 ml, optionally greater than 450 ml. Also, a method of treating tough inorganic fiber bundles including dispersing a plurality of the tough inorganic fiber bundles in a slurry with a dilution of about 0.1% to about 2%, optionally about 0.1% to about 1%, effective to lay down a homogenous fiber aggregate, wherein the tough inorganic fibers have a crush settle volume of greater than 250 ml, optionally greater than 450 ml.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 8, 2014
    Inventors: Kelvin WEEKS, Adam Kelsall
  • Patent number: 8652980
    Abstract: Inorganic fibers including calcia, alumina, potassia and optionally sodia as the major fiber components are provided. Also provided are methods of preparing the inorganic fibers and of thermally insulating articles using thermal insulation comprising the inorganic fibers. The inorganic fibers are soluble in physiological saline solutions, do not form crystalline silica, and are resistant to temperatures of 1260° C. and greater.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: February 18, 2014
    Assignee: Unifax I LLC
    Inventors: Bruce Kendall Zoitos, Michael Joseph Andrejcak
  • Patent number: 8609562
    Abstract: Disclosed is a method of producing a plate brick, which comprises: adding an organic binder to a refractory raw material mixture containing aluminum and/or an aluminum alloy; kneading them; forming the kneaded mixture into a shaped body; and burning the shaped body in a nitrogen gas atmosphere at a temperature of 1000 to 1400° C., wherein: when a temperature of a furnace atmosphere is 300° C. or more, the atmosphere is set to a nitrogen gas atmosphere; and when the temperature of the furnace atmosphere is 1000° C. or more, an oxygen gas concentration in the atmosphere is maintained at 100 volume ppm or less, and a sum of a carbon monoxide gas concentration and a carbon dioxide gas concentration is maintained at 1.0 volume % or less.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: December 17, 2013
    Assignee: Krosakiharima Corporation
    Inventors: Keiichiro Akamine, Katsumi Morikawa, Joki Yoshitomi, Tsuneo Kayama
  • Patent number: 8551897
    Abstract: Provided are inorganic fibers containing calcium and alumina as the major fiber components. According to certain embodiments, the inorganic fibers containing calcia and alumina are provided with a coating of a phosphorous containing compound on at least a portion of the fiber surfaces. Also provided are methods of preparing the coated and non-coated inorganic fibers and of thermally insulating articles using thermal insulation comprising the inorganic fibers.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: October 8, 2013
    Assignee: Unifrax I LLC
    Inventors: Bruce K. Zoitos, Michael J. Andrejcak, Paul M. Boymel
  • Patent number: 8518242
    Abstract: Catalysts are disclosed comprising fibrous substrates having silica-containing fibers with diameters generally from about 1 to about 50 microns, which act effectively as “micro cylinders.” Such catalysts can dramatically improve physical surface area, for example per unit length of a reactor or reaction zone. At least a portion of the silica, originally present in the silica-containing fibers of a fibrous material used to form the fibrous substrate, is converted to a zeolite (e.g., having a SiO2/Al2O3 ratio of at least about 150) that remains deposited on these fibers. The fibrous substrates possess important properties, for example in terms of acidity, which are useful in hydroprocessing (e.g., hydrotreating or hydrocracking) applications.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: August 27, 2013
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Hui Wang
  • Patent number: 8466076
    Abstract: The present invention pertains to a process for producing unmeltable polysilane-polycarbosilane copolymers which are soluble in inert solvents, comprising the steps providing the product of a disproportionation of a methylchlorodisilane or a mixture of several methylchlorodisilanes of the composition Si2MenCl6-n, wherein n=1?4, wherein the disproportionation was carried out with a Lewis base as a catalyst, wherein this product is a chlorine-containing, crude polysilane/oligosilane containing hydrocarbon groups, and thermally postcrosslinking the crude polysilane/oligosilane to a polysilane-polycarbosilane copolymer, characterized in that the chlorine content of the polysilane-polycarbosilane copolymer is lowered by reacting the crude polysilane/oligosilane with a substitution agent, by which chlorine bound therein is replaced with a chlorine-free substituent. Green fibers and low-oxygen/oxygen-free ceramic fibers with a very low chlorine content can be produced using this process.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: June 18, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Arne Ruedinger, Juergen Clade, Heiko Spaniol, Dieter Sporn
  • Patent number: 8357323
    Abstract: A stitching geometry and method for selective interlaminar reinforcement of a CMC wall (20A). The CMC wall is formed of ceramic fiber layers (22) individually infused with a ceramic matrix, stacked, and at least partially cured. A row of holes is formed in the wall, and a ceramic fiber thread (25) is infused with a wet ceramic matrix and passed through the holes to form stitches (28, 30, 31). The stitches are then cured, causing them to shrink more than any remaining wall shrinkage, thus tensioning the stitches and compressing the wall laminae together. The stitches may have through-wall portions (30, 31) that are angled differently in different wall areas as a function of interlaminar shear over interlaminar tension, optimizing wall reinforcement locally depending on magnitude and direction of shear. Alternate rows of stitches (54, 56) may have offsets in a stitch direction (34) and/or different through-wall angles (A1, A2).
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: January 22, 2013
    Assignee: Siemens Energy, Inc.
    Inventors: Jay A. Morrison, Jay E. Lane
  • Publication number: 20120267812
    Abstract: This invention relates to a composition comprising: ceramic refractory particulates made from alumina, one or more rare earth oxides, one or more oxides of a transition metal, the transition metal being Sc, Zn, Ga, Y, Cd, In, Sn, Tl, or a mixture of two or more thereof; an alumina and phosphate containing composition; and water. The composition is free of SiO2 or substantially free of SiO2, and is useful as a mortar or coating for molten aluminum or steel contact refractories.
    Type: Application
    Filed: July 21, 2010
    Publication date: October 25, 2012
    Applicant: STANTON ADVANCED CERAMICS, INC.
    Inventors: Karl-Heinz Schofalvi, Evelyn McGee DeLiso
  • Publication number: 20120207967
    Abstract: An improved ceramic honeycomb structure is comprised of at least two separate smaller ceramic honeycombs that have been adhered together by a cement layer comprised of a cement layer has at least two regions of differing porosity or cement layer where the ratio of toughness/Young's modulus is at least about 0.1 MPa·m1/2/GPa.
    Type: Application
    Filed: October 27, 2010
    Publication date: August 16, 2012
    Inventors: Aleksander J. Pyzik, Nicholas M. Shinkel, Arthur R. Prunier, JR., Janet M. Goss, Kwanho Yang
  • Patent number: 8222171
    Abstract: A method for the production of a ceramic substrate for a semiconductor component, includes the steps of producing paper containing at least cellulose fibers, as well as a filler to be carbonized and/or SiC, pyrolizing the produced paper, and siliconizing the pyrolyzed paper.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: July 17, 2012
    Assignee: Schunk Kohlenstofftechnik GmbH
    Inventors: Marco Ebert, Martin Henrich, Andreas Lauer, Gotthard Nauditt, Thorsten Scheibel, Roland Weiss
  • Patent number: 8153541
    Abstract: A ceramic article comprises ceramic fibers having an aspect ratio of greater than 3:1 and ceramic particles. The ceramic fibers are substantially randomly oriented in three dimensions in the ceramic article. A method of forming the ceramic article includes the step of providing a composition including ceramic fibers having an aspect ratio of greater than 3:1 and ceramic particles. The composition is extruded through a multi-screw extruder having at least three intermeshing screws to form an extrudate. The extrudate is heated to form the ceramic article.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: April 10, 2012
    Assignee: Century, Inc.
    Inventors: Thomas W. McCullough, James E. Schuetz, Thomas D. Wood
  • Patent number: 8105675
    Abstract: There is disclosed a honeycomb structure 1 which is made of a ceramic material and in which a plurality of honeycomb segments 12 having cell structures 5 and porous outer walls 7 on outer peripheries of the cell structures 5 are integrated by bonding the outer walls 7 to one another with a bonding material, each of the cell structures being provided with a plurality of cells 3 constituting fluid channels divided by porous partition walls 2, wherein the bonding material contains a bio-soluble fiber. The honeycomb structure 1 of the present invention has a performance equivalent to that of a honeycomb structure in which a heretofore used ceramic fiber is contained.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: January 31, 2012
    Assignees: NGK Insulators, Ltd., NGK Adrec Co., Ltd.
    Inventors: Naoshi Masukawa, Atsushi Watanabe, Shuichi Ichikawa, Osamu Yamakawa, Tetsuhiro Honjo
  • Patent number: 8038759
    Abstract: A method of manufacturing a fibrous material includes mixing at least two cordierite precursor materials to form a mixture. One or more of the at least two cordierite precursor materials is in a form of a fiber and the mixture includes about 43% to about 51% by weight SiO2, about 36% to about 41% by weight Al2O3, and about 12% to about 16% by weight MgO. The method also includes extruding the mixture to create a fibrous body, and heat treating the fibrous body, at a temperature of about 1200° C. to about 1420° C., to form the fibrous material including about 50% to about 95% by weight cordierite. A fibrous body includes an extruded substrate having a plurality of fibers including about 50% to about 95% by weight cordierite. The extruded substrate has a coefficient of thermal expansion in at least one direction of less than about 3.8·10?6 per ° C.
    Type: Grant
    Filed: July 12, 2008
    Date of Patent: October 18, 2011
    Assignee: Geoz Technologies, Inc.
    Inventors: James Jenq Liu, Bilal Zuberi, Rachel A. Dahl, William M. Carty
  • Patent number: 7951736
    Abstract: An SiC fiber bonded ceramic constituted of both a base material which comprises both inorganic fibers made mainly of a sintered SiC structure containing 0.01 to 1 wt % of oxygen (O) and at least one of Groups 2A, 3A and 3B metals and a 1 to 100-nm and carbon (C)-base boundary layer formed among the fibers and a surface part which is made mainly of an SiC-base ceramic structure and formed on at least part of the surface of the base material, characterized in that the boundary portion between the surface part and the base material takes such a gradient structure that the structure of the base material changes into the structure of the surface part gradually and continuously.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: May 31, 2011
    Assignee: Ube Industries, Ltd
    Inventors: Kenji Matsunaga, Shinji Kajii, Toshihiko Hogami
  • Publication number: 20110118102
    Abstract: Provided are inorganic fibers containing calcium and alumina as the major fiber components. According to certain embodiments, the inorganic fibers containing calcia and alumina are provided with a coating of a phosphorous containing compound on at least a portion of the fiber surfaces. Also provided are methods of preparing the coated and non-coated inorganic fibers and of thermally insulating articles using thermal insulation comprising the inorganic fibers.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 19, 2011
    Inventors: Bruce K. ZOITOS, Michael J. Andrejcak, Paul M. Boymel
  • Patent number: 7938876
    Abstract: A fibrous ceramic material comprises a plurality of fibers having a RxMg2Al4+xSi5?xO18 or RxMg2?xAl4Si5O18 compositional structure. The fibrous ceramic material is form by combining two or more RxMg2Al4+xSi5?xO18 or RxMg2?xAl4Si5O18 precursors in which at least one of the two or more RxMg2Al4+xSi5?xO18 or RxMg2?xAl4Si5O18 precursors is in fiber form. The fibrous ceramic material is shaped to form a fibrous body in which at least about 20% of all fibers therein are aligned in a substantially common direction.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: May 10, 2011
    Assignee: GE02 Technologies, Inc.
    Inventors: James Jenq Liu, William M. Carty, Bilal Zuberi, Sunilkumar C. Pillai
  • Patent number: 7938877
    Abstract: A fibrous ceramic material comprises a plurality of fibers having a modified aluminosilicate compositional structure (i.e., x(RO).y(Al2O3).z(SiO2) or w(MO).x(RO).y(Al2O3).z(SiO2)). The fibrous ceramic material is form by combining two or more x(RO).y(Al2O3).z(SiO2) or w(MO).x(RO).y(Al2O3).z(SiO2) precursors in which at least one of the two or more precursors is in fiber form. The resulting fibrous ceramic material has a low coefficient of thermal expansion (i.e., ?4.7×10-6/° C.).
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: May 10, 2011
    Assignee: GEO2 Technologies, Inc.
    Inventors: James Jenq Liu, William M. Carty, Bilal Zuberi, Sunilkumar C. Pillai
  • Patent number: 7902098
    Abstract: A cubic boron nitride sintered material where wear resistance is suppressed from decreasing having excellent chipping resistance and a cutting tool made thereof are provided. The sintered material is constituted from cubic boron nitride particles that are bound by a binder phase, while the binder phase contains a carbide of at least one kind of metal element selected from among metals of groups 4, 5 and 6 of the periodic table and a nitride of at least one kind of metal element selected from among metals of groups 4, 5 and 6 of the periodic table coexisting therein, and therefore the particles can be suppressed from coming off and the binder phase can be suppressed from wearing and coming off at the same time, thereby making the sintered material having high wear resistance and particularly excellent chipping resistance.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: March 8, 2011
    Assignee: Kyocera Corporation
    Inventors: Kenji Noda, Daisuke Shibata
  • Patent number: 7887917
    Abstract: Provided are inorganic fibers containing calcium and alumina as the major fiber components. According to certain embodiments, the inorganic fibers containing calcia and alumina are provided with a coating of a phosphorous containing compound on at least a portion of the fiber surfaces. Also provided are methods of preparing the coated and non-coated inorganic fibers and of thermally insulating articles using thermal insulation comprising the inorganic fibers.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: February 15, 2011
    Assignee: Unifrax I LLC
    Inventors: Bruce K. Zoitos, Michael J. Andrejcak, Paul M. Boymel
  • Patent number: 7858554
    Abstract: A porous cordierite substrate and a method of forming a porous cordierite substrate including providing a fiber that includes at least one cordierite precursor material and providing at least one organic binder material. The fiber and the organic binder material are mixed with a fluid. The mix of fiber, organic binder material and fluid is extruded into a green substrate. The green substrate is fired to enable the formation of bonds between the fibers and to form a porous cordierite fiber substrate.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: December 28, 2010
    Assignee: Geo2 Technologies, Inc.
    Inventors: James Jenq Liu, Bilal Zuberi, Jerry G. Weinstein, Rachel A. Dahl, William M. Carty
  • Patent number: 7842632
    Abstract: A pulling roll for glass manufacture comprised of a high-temperature millboard material. The millboard comprises aluminosilicate refractory fiber, silicate, mica, and kaolin clay. A method of manufacturing a pulling roll is disclosed, together with a roll produced by the methods disclosed herein. The method comprises forming a pulling roll and densifying at least a portion of the pulling roll by exposing to the pulling roll to high temperatures.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: November 30, 2010
    Assignee: Corning Incorporated
    Inventors: Dean Veral Neubauer, Maurice Lacasse
  • Patent number: 7767733
    Abstract: Clutch lings comprising fiber-reinforced ceramic materials which comprise carbon fibers and whose matrix material is selected from among inorganic polymers, oxidic ceramics, set cements, organoelement polymers and finely divided inorganic solids which are held together by an inorganic or organic binders.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: August 3, 2010
    Assignee: SGL Carbon AG
    Inventors: Andreas Kienzle, Mario Krupka, Gustavo Cabello, Ronald Hüner, Moritz Bauer
  • Publication number: 20100137972
    Abstract: A sintered molded body consisting of a material that contains aluminum oxide with chromium doping, zirconium oxide with Y-stabilization and strontium aluminates with variable Cr-doping, which is particularly suitable for medical applications.
    Type: Application
    Filed: April 25, 2008
    Publication date: June 3, 2010
    Inventors: Meinhard Kuntz, Ana Herrán Fuertes, Kilian Friederich, Norbert Schneider
  • Publication number: 20100113244
    Abstract: A ceramic foam filter for molten aluminum alloys comprising an alumina silicate rich core and a boron glass shell and a chemical composition comprising: 20-70 wt % Al2O3, 20-60 wt % SiO2, 0-10 wt % CaO, 0-10 wt %; MgO and 2-20 wt % B2O3.
    Type: Application
    Filed: April 2, 2007
    Publication date: May 6, 2010
    Applicant: PORVAIR PLC
    Inventors: Feng Chi, David P. Haack, Leonard S. Aubrey
  • Patent number: 7709088
    Abstract: Inorganic fibers consisting substantially of silicon, carbon, oxygen and a transition metal, having a fiber size of no greater than 2 ?m and having fiber lengths of 100 ?m or greater.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: May 4, 2010
    Assignee: Teijin Limited
    Inventors: Ryuji Nonokawa, Takanori Miyoshi, Shinya Komura, Hiroyoshi Minematsu
  • Patent number: 7687132
    Abstract: An ordered ceramic microstructure and a method of making the same. In one embodiment, the ceramic microstructure includes a base structure and one or more ceramic layers. The base structure includes a plurality of first truss elements defined by a plurality of first self-propagating polymer waveguides and extending along a first direction, a plurality of second truss elements defined by a plurality of second self-propagating polymer waveguides and extending along a second direction, and a plurality of third truss elements defined by a plurality of third self-propagating polymer waveguides and extending along a third direction. Here, the first, second, and third truss elements interpenetrate each other at a plurality of nodes to form a continuous material, and the base structure is self-supporting. In addition, the ceramic layers coat a surface of at least one truss element of the first truss elements, the second truss elements, or the third truss elements.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: March 30, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, Alan J. Jacobsen, Robert Cumberland
  • Patent number: 7666344
    Abstract: The disclosed invention relates to ceramic matrix composites with ceramic fiber reinforcements.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: February 23, 2010
    Assignee: Stanton Advanced Ceramics, Inc.
    Inventors: Karl-Heinz Schofalvi, Gerald C. Dodds
  • Patent number: 7629280
    Abstract: The properties of mineral fibres comprising silicon, magnesium, calcium, iron, aluminium and oxygen atoms are improved by exposure to a heat treatment under oxidising conditions which causes migration of MgO, thereby creating an outer layer with increased concentrations of MgO. Batts and other fibrous products containing the fibres have increased resistance to shrinkage and sintering.
    Type: Grant
    Filed: June 11, 2004
    Date of Patent: December 8, 2009
    Assignee: Rockwool International A/S
    Inventor: Soren Lund Jensen
  • Patent number: 7612005
    Abstract: This invention discloses a kind of cerium-based oxide fiber and its fabricating method. The cerium-based hydrate fiber can be synthesized by aging under the boiling point of water for 10 hours to 50 hours by the addition of a chemical modifier. The fibers show a diameter of submicron to micron size, and the aspect ratio is greater than 100. The hydrate fibers can transform to oxide fiber after calcination at high temperature.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: November 3, 2009
    Assignee: National Taiwan University
    Inventors: Wen-Cheng Wei, Jia-Ming Sung, Sung-En Lin, Je-Yan Yu
  • Publication number: 20090156386
    Abstract: A method of making refractory alkaline earth silicate fibres from a melt, including the use as an intended component of alkali metal to improve the mechanical properties of the fibre in comparison with a fibre free of alkali metal.
    Type: Application
    Filed: February 20, 2009
    Publication date: June 18, 2009
    Inventors: Craig John Freeman, Gary Anthony Jubb
  • Publication number: 20090113863
    Abstract: Disclosed are cement compositions for applying to honeycomb substrates. The cement compositions contain an inorganic powder batch composition; a binder; a liquid vehicle; and an elastic modulus reducing additive. The elastic modulus reducing additive can contain a ceramic fiber or a monohydrated alumina. The cement compositions are well suited for forming ceramic diesel particulate wall flow filters. Also disclosed herein are end plugged wall flow filters that include the disclosed cement compositions and methods for the manufacture thereof.
    Type: Application
    Filed: November 4, 2008
    Publication date: May 7, 2009
    Inventors: Yanxia Lu, Isabelle Marie Melscoet-Chauvel
  • Publication number: 20090075808
    Abstract: A carbon-containing refractory is provided, which can improve the thermal shock resistance, the abrasion resistance, and the corrosion resistance without degrading the oxidation resistance. In a carbon-containing refractory composed of a refractory aggregate, a carbon based raw material, and a carbon bond connecting between the refractory aggregate or the carbon based raw material, transition metal-containing nanoparticles having particle diameters of 1,000 nm or less and containing a transition metal are contained in the above-described carbon bond while being dispersed. When the carbon-containing refractory is heat-treated, flexible structures of carbon fiber-shaped textures having diameters of 50 nm or less are formed in the inside of a carbon bond and, thereby, an increase in strength, a reduction in modulus of elasticity, and a reduction in thermal expansion coefficient are facilitated.
    Type: Application
    Filed: April 19, 2006
    Publication date: March 19, 2009
    Applicant: KROSAKI HARIMA CORPORATION
    Inventors: Katsumi Morikawa, Koichi Haren, Joki Yoshitomi, Toshiyuki Hokii, Keisuke Asano
  • Patent number: 7482297
    Abstract: The present invention is generally directed to a method for making sol-gel ceramic nanofibers, and the compositions resulting from practicing such method. Fibers so formed can be used for fabricating filter media and a wide variety of other ceramic fiber structures and devices.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: January 27, 2009
    Assignee: The University of Akron
    Inventors: Lubna Khatri, George C. Chase, Rex D. Ramsier, Prathyusha Katta
  • Publication number: 20090000260
    Abstract: A method of manufacturing a fibrous material includes mixing at least two cordierite precursor materials to form a mixture. One or more of the at least two cordierite precursor materials is in a form of a fiber and the mixture includes about 43% to about 51% by weight SiO2, about 36% to about 41% by weight Al2O3, and about 12% to about 16% by weight MgO. The method also includes extruding the mixture to create a fibrous body, and heat treating the fibrous body, at a temperature of about 1200° C. to about 1420° C., to form the fibrous material including about 50% to about 95% by weight cordierite. A fibrous body includes an extruded substrate having a plurality of fibers including about 50% to about 95% by weight cordierite. The extruded substrate has a coefficient of thermal expansion in at least one direction of less than about 3.8·10?6 per ° C.
    Type: Application
    Filed: July 12, 2008
    Publication date: January 1, 2009
    Applicant: GEO2 Technologies, Inc.
    Inventors: James Jenq Liu, Bilal Zuberi, Rachel A. Dahl, William M. Carty
  • Patent number: 7452837
    Abstract: A method for producing composite ceramic material is provided wherein a core ceramic structure is produced and simultaneously enveloped with a sleeve of similar material.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: November 18, 2008
    Assignee: UChicago Argonne, LLC.
    Inventors: Kenneth C. Goretta, Dileep Singh, Bryant J. Polzin, Terry Cruse, John J. Picciolo
  • Patent number: 7442347
    Abstract: A heat insulating member for an end cone portion of an exhaust gas conversion apparatus is formed by laminating sheets each made of alumina-silica based ceramic fibers to form a matte and subjecting the matte to needling in a lamination direction of the sheets, in which a composition of the ceramic fiber used in the matte is alumina:silica=60-80:40-20.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: October 28, 2008
    Assignee: Ibiden Co., Ltd.
    Inventors: Mitsunori Yoshimi, Yasuhiro Tsuchimoto
  • Publication number: 20080242178
    Abstract: The present invention is generally directed to ceramic fibers, which when employed in sheets to provide flexibility and to methods for making same. In one embodiment, the present invention relates to ceramic fibers that are heat and chemical resistant, and to a method for making same. In another embodiment, the present invention relates to ceramic nanofibers and ceramic nanofiber sheets, and to a method for making same. In still another embodiment, the present invention relates to electrospun ceramic nanofibers and nanofiber sheets, products that include such fibers, and to methods of making same.
    Type: Application
    Filed: September 7, 2006
    Publication date: October 2, 2008
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Darrell Reneker, George Chase, Woraphon Kataphinan, Prathyusha Katta
  • Publication number: 20080241014
    Abstract: A fibrous ceramic material comprises a plurality of fibers having a modified aluminosilicate compositional structure (i.e., x(RO).y(Al2O3).z(SiO2) or w(MO).x(RO).y(Al2O3).z(SiO2)). The fibrous ceramic material is form by combining two or more x(RO).y(Al2O3).z(SiO2) or w(MO).x(RO).y(Al2O3).z(SiO2) precursors in which at least one of the two or more precursors is in fiber form. The resulting fibrous ceramic material has a low coefficient of thermal expansion (i.e., ?4.7×10?6/° C.).
    Type: Application
    Filed: April 17, 2008
    Publication date: October 2, 2008
    Applicant: GEO2 Technologies, Inc.
    Inventors: James Jeng Liu, William M. Carty, Bilal Zuberi, Sunilkumar C. Pillai
  • Patent number: RE42775
    Abstract: Insulation materials suited to high temperature applications, such as the insulation of furnaces, are formed from a mixture of pitch carbon fibers, such as isotropic pitch carbon fibers, and a binder comprising a solution of sugar in water. The sugar solution is preferably at a concentration of from 20-60% sucrose to yield a low density material having high flexural strength and low thermal conductivity when carbonized to a temperature of about 1800° C.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: October 4, 2011
    Assignee: GrafTech International Holdings Inc.
    Inventors: Charles C. Chiu, Irwin Charles Lewis, Ching-Feng Chang