Magnesium Containing Patents (Class 502/115)
  • Patent number: 7387979
    Abstract: A magnesium compound obtained by reacting metallic magnesium having a sphericity (S) of less than 4.00, the sphericity (S) being represented by the following formula (I), an alcohol, and a halogen and/or a halogen-containing compound containing halogen atoms in an amount of 0.0001 gram atom or more relative to one gram atom of the metallic magnesium, S=(L1/L2)3??(I) wherein L1 represents the maximum diameter of projection views of metallic magnesium determined by photographing with a scanning electron microscope and thereafter an image processing, and L2 represents a diameter of a circle having an area equal to the area of the projection view of metallic magnesium. A solid catalyst component is obtained from the magnesium compound and a titanium compound, and a catalyst for olefin polymerization is obtained using the solid catalyst component.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: June 17, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Shojiro Tanase, Takanori Sadashima, Hideo Funabashi, Masahiko KJuramoto
  • Patent number: 7365138
    Abstract: A method of modifying a Ziegler-Natta type polyolefin catalyst comprises contacting the Ziegler-Natta catalyst with olefin monomer to form a prepolymerized catalyst. The prepolymerized catalyst can comprise a reduced number of catalyst particles having a size of 40 microns or less. The prepolymerized catalyst can be used in a polymerization process to produce polymer fluff particles with a reduced number of polymer fluff fines than the Ziegler-Natta type catalyst.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: April 29, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J Coffy, Edwar S. Shamshoum, Hong Chen
  • Patent number: 7361621
    Abstract: The present invention provides a process for preparing particles of magnesium halide/alcohol adduct, said process comprising: preparing a melt of magnesium halide/alcohol adduct in an inert liquid medium, dispersing the mixture of the inert liquid medium and the melt of the magnesium halide/alcohol adduct by high-speed rotation under a high-gravity field to obtain a dispersion of magnesium halide/alcohol adduct melt; and the cooling the dispersion of the melt to form the particles of magnesium halide/alcohol adduct. The present invention further relates to the particles of magnesium halide/alcohol adduct prepared by the process of the present invention and the use thereof in the preparation of catalysts for olefin polymerization.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: April 22, 2008
    Assignees: China Petroleum & Chemical Corp., Beijing Research Institute of Chemical Industry
    Inventors: Yuanyi Yang, Zhenhu Li, Hongbin Du, Zhiwu Wang, Zhong Tan, Tianyi Li, Qi Chen, Wei Chen
  • Patent number: 7354981
    Abstract: The present invention discloses a polyethylene catalyst and a process for preparing the same, said catalyst being composed of a main component of catalyst and a cocatalyst, wherein the main component of catalyst is prepared by reacting: (1) a magnesium-alcohol complex, (2) an alkyl aluminum compound having a formula R3nAlCl3-n supported on silica, and (3) a titanium compound having a formula Ti(OR2)mCl4-m, and the cocatalyst is an organic aluminum compound. The catalyst of the present invention has advantages including high polymerization activity, less difference between the polymerization activities at low hydrogen level condition and at high hydrogen level condition, stable polymerization reaction, good particle morphology of catalyst, and less fine powder of polymer product.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: April 8, 2008
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Chemical Industry
    Inventors: Mingwei Xiao, Shijiong Yu, Xiaofeng Ye
  • Patent number: 7351678
    Abstract: The invention relates to the use of nitrogenous aluminium organyl complexes of general formula (I) as co-catalysts in heterogeneous polymerisation reactions of propene. In said formula: R, R?, R1 and R1? independently of one another represent branched or unbranched C1-C7 alkyl, cycloalkyl, alkenyl, cycloalkenyl, aryl or alkynyl; R2 represents unsubstituted, monoalkylated or polyalkylated and/or monofluorinated or polyfluorinated aromatic hydrocarbons from group (II); R3 and R4 independently of one another represent CH2, CF2 oder C(R1)2; m stands for 0, 1 or 2; n stands for 0, 1 or 2; o stands for 0 or 1, all independently of one another.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: April 1, 2008
    Assignee: Merck Patent GmbH
    Inventors: Kartin Köhler, Herbert Schumann, Birgit Corinna Wassermann, Wilfried Wassermann, Katharina Lange, Sebastian Dechert, Markus Hummert, Stefan Schutte, Walter Kaminsky, Andrea Eisenhardt, Björn Heuer, Andre Laban
  • Patent number: 7348383
    Abstract: A Ziegler-Natta catalyst composition comprising a solid mixture formed by halogenation of: Al) a spray-dried catalyst precursor comprising the reaction product of a magnesium compound, a non-metallocene titanium compound, and at least one non-metallocene compound of a transition metal other than titanium, with A2) an organoaluminium halide halogenating agent, a method of preparing, precursors for use therein, and olefin polymerization processes using the same.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: March 25, 2008
    Assignee: Union Carbide Chemicals and Plastics Technology Corporation
    Inventors: Mary T. Zoeckler, Burkhard E. Wagner, Sun-Chueh Kao
  • Patent number: 7332455
    Abstract: The present invention relates to a catalyst component and a catalyst for olefin polymerization. The catalyst component utilizes magnesium halide and silica as composite support, and the particle morphology thereof can be improved by regulating the ratio of magnesium halide to silica. Further, the purpose of stabilizing the rate of catalytic polymerization reaction and improving the particle morphology of polymer so as to meet the requirements on catalyst performance of various polymerization processes can be achieved through the combination of the supports of the catalyst. In the meantime, when used in the polymerization of propylene, the catalyst of the present invention exhibits a relatively high polymerization activity and high stereospecificity.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: February 19, 2008
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Chen Wei, Yuexiang Liu, Xianzhi Xia, Wenbo Song, Hongbin Du, Zifang Guo, Yang Tan, Zhaowen Ma, Weimin Ji, Zhichao Yang, Xiaodong Wang, Lei Guo
  • Patent number: 7329626
    Abstract: A method for making a solid catalytic component for a Ziegler-Natta catalyst includes contacting a particulate porous support with a solution of a hydrocarbon soluble organomagnesium precursor compound in a hydrocarbon solvent; and reacting said hydrocarbon soluble organo-magnesium precursor compound with an amount of aliphatic or aromatic alcohol, said amount being within an acceptable range of a molar equivalent of aliphatic or aromatic alcohol calculated according to formula (I): Equ Alkanol = 2 ? · [ ( mmole ? ? MgR ? / ? g ? ? support ) - 2.1 - 0.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: February 12, 2008
    Assignee: Lummus Novolen Technology GmbH
    Inventors: Frank Wolf Spaether, David Andrew Presken
  • Patent number: 7326757
    Abstract: Disclosed are catalyst systems and methods of making the catalyst systems for the polymerization of an olefin containing a solid titanium catalyst component containing an inorganic titanium compound, a magnesium alcohol adduct made from an inorganic magnesium compound and an alcohol, and a porous support having at least one of a certain specific surface area, a certain pore volume, and a certain median particle size. The catalyst system may further contain an organoaluminum compound and optionally an organosilicon compound. Also disclosed are methods of making polyolefins.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: February 5, 2008
    Assignee: BASF Catalysts LLC
    Inventors: Zhidong Zhu, Main Chang
  • Patent number: 7323525
    Abstract: Polymers of propylene with one or two olefin comonomers are produced through the use of a polymerization catalyst supported on a carrier produced by spray crystallization and having a maximum dimension of 55 ?m. Copolymers of superior properties are obtained, and the production process is de-snagged.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: January 29, 2008
    Assignee: Siemens Aktiengesellschaft
    Inventors: Kauno Alastalo, Päivi Pitkänen, Marita Sutela, Lucas Pelckmans, Harri Hokkanen
  • Patent number: 7307036
    Abstract: A highly active alpha-olefin polymerization catalyst component is disclosed. In the presence of a co-catalyst, the catalyst component is useful for the production of LLDPE resins. The catalyst component is produced by a method whereby organic silicon compounds are reacted with a transition metal complex and active transition metal species is deposited on a silicon-containing MgCl2 that is prepared in situ in the presence of the organic silicon compounds.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: December 11, 2007
    Assignee: Formosa Plastics Corporation U.S.A.
    Inventors: Guangxue Xu, Honglan Lu, Zhongyang Liu, Chih-Jian Chen
  • Patent number: 7307035
    Abstract: The present invention relates to an adduct comprising MgCl2, an alcohol (ROH) in which R is a C1-C10 hydrocarbon group, and a compound containing a transition metal M selected from the Groups 3 to 11 or the lanthanide or actinide groups of the Periodic Table of the Elements (new IUPAC version) in an amount such as to give a weight of M atoms lower than 10% based on the total weight of the adduct. The catalyst components that are obtained by reacting the adducts with halogenating agents show very high specific activity.
    Type: Grant
    Filed: July 4, 2003
    Date of Patent: December 11, 2007
    Assignee: Basell Poliolefine Italia SpA
    Inventors: Mario Sacchetti, Daniele Evangelisti, Diego Brita, Gianni Collina
  • Patent number: 7300902
    Abstract: The present invention provides an ethylene polymerization catalyst. The present invention also provides a process for preparing the ethylene polymerization catalyst, comprising reacting powdered magnesium with an alkyl halide of formula RX in the presence of an ether solvent to form a magnesium compound having a structure represented by the formula (RMgX)p(MgX2)q, in which R is an alkyl group having from 3 to 12 carbon atoms, X is halogen, and molar ratio of q to p is in the range of from larger than 0 to 1, impregnating the magnesium compound onto silica carrier, reacting the silica loading the magnesium compound with an alkyl halide of formula R1X, a titatium compound and an alkyl aluminum compound to form a main catalyst component, contacting the main catalyst component with a cocatalyst component to form catalyst for ethylene polymerization. The present invention also relates to the use of the catalyst in the polymerization of ethylene.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: November 27, 2007
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Chemical Industry
    Inventors: Mingwei Xiao, Shijiong Yu, Xiaofeng Ye, Zixiao Chai
  • Patent number: 7271120
    Abstract: A catalyst for the preparation of dimethyl carbonate from urea and methanol having a composition on weight base of: active component of from 20 to 50 wt %, and carrier of from 80 to 50 wt %, and prepared by equal-volume spraying and impregnating method is disclosed. The method for the synthesis of dimethyl carbonate can be carried out in a catalytic rectification reactor, said method comprising: (1) dissolving urea in methanol to form a methanol solution of urea; and (2) feeding the methanol solution of urea and methanol counter-currently into the reaction zone, wherein the reaction is carried out at conditions including reaction temperature of from 120° C. to 250° C., reaction pressure of from 0.1 MPa to 5 MPa, kettle bottom temperature of from 70° C. to 210° C., stripping section temperature of from 70° C. to 250° C., rectifying section temperature of from 70° C. to 280° C., and reflux ratio of from 1:1 to 20:1.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: September 18, 2007
    Assignees: Institute of Coal Chemistry, Chinese Academy of Sciences, Feicheng Acid Chemicals Co., Ltd.
    Inventors: Yuhan Sun, Wei Wei, Ning Zhao, Baoyuan Sun, Bingsheng Zhang, Yanjun Chen
  • Patent number: 7265074
    Abstract: Single step process for the preparation of lower ?-alkene polymerisation heterogeneous solid catalyst, wherein the procatalyst is obtained by reacting organomagnesium precursor and titanium tetrahalide or titanium haloalkoxo species of the formula Ti(OR)m Xn, with a hydrocarbon or halohydrocarbon solvent and internal electron donor and optionally an acid halide under microwave irradiation of 300 to 1200 W. The mole ratio of the organomagnesium precursor to the titanium tetrachloride or titanium haloalko species is 1:6 to 1:20 and the mole ratios of the electron donor and acid halide to titanium is 0.3 to 1.5 and 0.02 to 0.2, respectively.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: September 4, 2007
    Assignee: Reliance Industries Limited
    Inventors: Sumit Bhaduri, Virendra Kumar Gupta, Krishna Sarma
  • Patent number: 7253132
    Abstract: Solid fine particles which contain a magnesium atom, an aluminum atom and a C1-20 alkoxy group simultaneously, are insoluble in a hydrocarbon solvent, and have an average particle diameter of 3 to 80 ?m, and an olefin polymerization catalyst containing the solid fine particles and a transition metal compound in the groups 3 to 11 in the periodic table, exhibit a very high olefin polymerization activity without combination with an expensive organoaluminum oxy compound or organoboron compound and maintains a high activity in polymerization for a long time, and an olefin polymer excellent in powdery properties can be produced by using the olefin polymerization catalyst. The transition metal compound in the groups 3 to 11 in the periodic table includes a transition metal compound having a ligand containing two or more atoms selected from a boron atom, a nitrogen atom, an oxygen atom, a phosphorus atom and a sulfur atom.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: August 7, 2007
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasushi Nakayama, Hideki Bando, Yoshiho Sonobe, Makoto Mitani, Terunori Fujita
  • Patent number: 7238758
    Abstract: The invention has an object to provide a catalyst for polymerizing or copolymerizing an ?-olefin, catalyst constituent thereof, and method of polymerizing ?-olefins with the catalyst, for production of ?-olefin polymers or copolymers with high hydrogen response, high polymarization reaction rate, high stereoregularity and excellent melt fluidity. The invention discloses a catalyst constituent of the catalyst for polymerizing or copolymerizing an ?-olefin, represented by Formula 37 or 38: Si(OR1)3(NR2R3)Formula 37 (where in Formula 37, R1 is a hydrocarbon group with 1 to 6 carbon atoms; R2 is a hydrocarbon group with 1 to 12 carbon atoms or hydrogen; and R3 is a hydrocarbon group with 1 to 12 carbon atoms) RNSi(OR1)3Formula 38 (where in Formula 38, R1 is a hydrocarbon group with 1 to 6 carbon atoms; and RN is a cyclicl amino group).
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: July 3, 2007
    Assignee: Ube Industries, Ltd.
    Inventors: Motozo Yoshikiyo, Toshifumi Fukunaga, Hiroshi Sato, Toshikazu Machida, Hiroyuki Ikeuchi, Takefumi Yano, Yasuhiro Tanaka
  • Patent number: 7238757
    Abstract: Disclosed are compounds of formula (I) which compounds are useful as cocatalysts in olefinic polymerisation reactions, e.g., as Ziegler-Natta catalysts.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: July 3, 2007
    Assignee: Merck Patent Gesellschaft
    Inventors: Katrin Koehler, Eike Poetsch, Jens Eichhorn, Herbert Schumann, Birgit Wassermann, Sebastiain Dechert, Markus Hummert, Stefan Schutte, Walter Kaminsky, Andrea Eisenhardt, Manfred Arnold
  • Patent number: 7238637
    Abstract: The invention provides a process for producing an olefin polymerization catalyst comprising a catalyst component formed by contacting at least (a) a compound of Group 1 to 3 of the Periodic Table (IUPAC) with (b) a transition metal compound of Group 4 to 10 of the Periodic Table (IUPAC) or a compound of an actinide or lanthanide, in the form of solid catalyst particles, said process comprising: (1) preparing a solution from said compounds; (2) dispersing said solution to a solvent immiscible therewith and inert in relation to said compounds, to obtain an emulsion in which said solution forms the dispersed phase; and (3) solidifying the catalyst component in the dispersed droplets.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: July 3, 2007
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Kari Pesonen, Päivi Waldvogel, Timo V. Laine, Peter Denifl, Jarmo Lindroos
  • Patent number: 7220694
    Abstract: The invention relates to a magnesium compound effective in producing olefin polymers having an increased bulk density and a narrowed particle size distribution, not lowering the stereospecificity of the polymers produced and not lowering the polymerization activity in producing the polymers, to an olefin polymerization catalyst comprising the compound, and to a method for producing such olefin polymers. The olefin polymerization catalyst comprises (A) a solid catalyst component prepared by contacting a magnesium compound having a specific particle size distribution index (P), a titanium compound and an electron donor compound with each other, (B) an organometallic compound, and (C) an electron donor. The olefin polymerization method comprises polymerizing an olefin in the presence of the catalyst to give olefin polymers.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: May 22, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Shohjiroh Tanase, Takehiro Tsuda, Tsuyoshi Ota, Hideo Funabashi
  • Patent number: 7211535
    Abstract: The present invention provides a novel process for preparing a catalyst useful in gas phase polymerization of olefins wherein the physical properties of the polymer and the productivity of the catalyst can be altered depending on the sequence of addition of the catalyst components. The catalyst consists of compounds of Ti, Mg, Al and optionally an electron donor supported on an amorphous support.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: May 1, 2007
    Assignees: Nova Chemicals Corporation, Ineos Europe Limited
    Inventors: Mark Kelly, Shivendra Kumar Goyal, Victoria Ker, Perry Montyn de Wit, Brian Stephen Kimberley, Peter Phung Ming Hoang
  • Patent number: 7211534
    Abstract: A magnesium halide support material for a polyolefin catalysts is disclosed. The magnesium halide of present invention is prepared by reacting magnesium with an alkylhalide in a non-polar hydrocarbon solvent. Preparation of the support does not require the use electron donating solvents and therefore does not require extensive washing to remove the solvent from the support.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: May 1, 2007
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Honglan Lu, Gapgoung Kong, Zhongyang Liu, Chih-Jian Chen
  • Patent number: 7208436
    Abstract: Catalyst components for the polymerization of olefins CH2?CHR, wherein R is hydrogen or a hydrocarbon radical having 1–12 carbon atoms, comprising Mg, Ti, Cl, OR groups, where R is a C1–C10 alkyl group optionally containing heteroatoms, and an ether having two or more ether groups, characterized by the fact that the Mg/Ti weight ratio is lower than 3 from 2 to 6.5 the Cl/Ti weight ratio is from 1.5 to 6, the OR/Ti weight ratio is from 0.5 to 3.5 and at least 50% of the Titanium atoms are in a valence state lower than 4. The said catalyst components allow the preparation of ethylene copolymers with a low content of xylene soluble fractions.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: April 24, 2007
    Assignee: Basell Poliolenfine Italia s.r.l.
    Inventors: Tiziano Dall'Occo, Gianfrancesco Margelli
  • Patent number: 7208435
    Abstract: A solid catalyst component for polymerization of olefins prepared by contacting (a) a dialkoxy magnesium compound, (b) a tetra-valent titanium halide, and (c) an electron donor compound of the formula R1R2C(COOR3)2 suspended in (d) an aromatic hydrocarbon having a boiling point in the range of 50–150° C. The catalyst containing the catalyst component is excellent in the olefin polymerization catalyst activity to hydrogen and can produce a polymer with a high stereoregularity in a high yield.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: April 24, 2007
    Assignee: Toho Catalyst Co., Ltd.
    Inventors: Motoki Hosaka, Maki Sato
  • Patent number: 7202191
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G?) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: April 10, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael R. Wallace
  • Patent number: 7202314
    Abstract: The present invention relates to a solid catalyst component for the polymerization of olefins CH2?CHR in which R is hydrogen or a hydrocarbon radical with 1–12 carbon atoms, comprising Mg, Ti, halogen and an electron donor selected from succinates, said catalyst component being obtainable by a process comprising the following steps: (a) dissolving a halide of magnesium in a solvent system comprising an organic epoxy compound or an organic phosphorus compound and optionally an inert diluent to form a solution; (b) mixing the obtained solution with a titanium compound to form a mixture; (c) precipitating a solid from the mixture obtained in step (b) in the presence of a succinate and/or an auxiliary precipitant; (d) if a succinate is not used in step (c), contacting the solid obtained in (c) with a succinate, and (e) treating the solid obtained in (c) or (d) with a titanium compound optionally in the presence of an inert diluent.
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: April 10, 2007
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin, Gianni Vitale
  • Patent number: 7196152
    Abstract: The invention relates to a modified Ziegler catalyst for preparing a poly-1-olefin in suspension, in solution or in the gas phase, which catalyst comprises the reaction product of a magnesium alkoxide (component a) with a transition metal compound (component b) and an organometallic compound (component c) together with an additional component (d) comprising a compound of the chemical formula M?Rx where M is an element of main group IV of the Periodic Table, R is halogen or an organic radical such as alkyl having from 1 to 10 carbon atoms, oxyalkyl having from 1 to 10 carbon atoms, cycloalkyl having from 4 to 8 carbon atoms in the ring and, if desired, from 1 to 6 substituents R? on the ring, aryl having from 6 to 10 carbon atoms in the aromatic and, if desired, from 1 to 6 substituents R? on the aromatic, where R? is a halogen or an alkyl radical having from 1 to 4 carbon atoms or an OH group or an NO2 group or an oxyalkyl radical having from 1 to 4 carbon atoms, and x is an integer from 1 to 4.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: March 27, 2007
    Assignee: Basell Polyolefine GmbH
    Inventors: Frank Alt, Ludwig Böhm, Friedhelm Gundert
  • Patent number: 7163905
    Abstract: It has been discovered that using di-sec-butyldialkoxysilanes, such as di-sec-butyldimethoxysilane (DSBDMS), as external electron donors for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties and processing. The catalyst systems of the invention provide high activity, high bulk density, moderate hydrogen response, moderate donor response and high polydispersity (MWD). Suitable di-sec-butyldialkoxysilanes have the formula (sBu)2Si(OR?)2, where R? is independently a straight or branched alkyl group of 1–5 carbon atoms.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: January 16, 2007
    Assignee: Fina Technology, Inc.
    Inventor: Joseph Thorman
  • Patent number: 7157532
    Abstract: A process for preparing olefin homopolymers or copolymers by polymerization of at least one olefin in a hydrocarbon (mixture) in the presence of a molar mass regulator, a mixed catalyst and a substance which increases the electrical conductivity of the hydrocarbon (mixture) and is soluble in the hydrocarbon or the mixture of hydrocarbons or which reacts with components of the mixed catalyst, wherein the mixed catalyst is obtainable by reaction of a magnesium alkoxide with titanium(IV) halide and comprises titanium in the oxidation states four and three and also an organic aluminum compound, where the molar ratio of Ti(IV) to Ti(III) is from 100:1 to 1:100. The process makes it possible to prepare, in particular, polyethylenes having an ultrahigh molecular weight. The formation of deposits on the walls during the polymerization is significantly reduced.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: January 2, 2007
    Assignee: Ticona GmbH
    Inventors: Wolfgang Payer, Jens Ehlers
  • Patent number: 7153803
    Abstract: Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of polyethylene containing a solid titanium catalyst component containing a titanium compound and a support made from a magnesium compound, an alkyl silicate, and a monoester. The catalyst system may further contain an organoaluminum compound. Also disclosed are methods of making various types of polyethylene involving polymerizing ethylene in the presence of hydrogen and a catalyst system containing a support made from a magnesium compound, an alkyl silicate and a monoester.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: December 26, 2006
    Assignee: Engelhard Corporation
    Inventors: Zhidong Zhu, Main Chang, Christopher J. Aarons
  • Patent number: 7153804
    Abstract: The present invention provides a catalyst component for ethylene polymerization, a process for preparing the same, a catalyst comprising the same, and a process for polymerizing ethylene using the catalyst. The catalyst component comprises a reaction product, supported on an inorganic oxide support, of a magnesium complex, a titanium compound, an alcohol compound, and an organoaluminum compound, wherein said magnesium complex is formed by dissolving a magnesium halide in a solvent system comprising an organic epoxy compound and an organo phosphorus compound. The catalyst according to the invention is especially suitable for slurry phase polymerization of ethylene. The catalyst according to the present invention has high catalytic activity, and a good hydrogen response, with the resultant polymer having a more uniform particle size diameter and a narrow particle size distribution.
    Type: Grant
    Filed: April 12, 2005
    Date of Patent: December 26, 2006
    Assignees: China Petroleum & Chemical Corporation, Beijing Reasearch Institute of Chemical Industry
    Inventors: Wei Chen, Zifang Guo, Junling Zhou, Hongxu Yang, Ruixia Li, Ruiping Wang, Yuexiang Liu, Hongtao Wang, Jingmei Zhang, Xiaojing Cheng
  • Patent number: 7151146
    Abstract: The present invention relates to a method for preparing neodymium-carbon-nanotube and a process for preparing 1,4-cis-polybutadiene utilizing the same and more particularly, neodymium-carbon-nanotube. Neodymium is introduced by coordination with carboxylic acid, which is formed on the surface of carbon nanotube. In 1,3-butadiene polymerization with the neodymium-catalyst comprising the neodymium-carbon nanotube, a particular halogen compound, and a particular organometallic compound in an appropriate ratio, high 1,4-cis polybutadiene having molecular weight of 10,000 to 2,000,000 is produced, which exhibits excellent mechanical properties such as elasticity and durability.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: December 19, 2006
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Gwanghoon Kwag, Pilsung Kim, Shin Han, Hyung Kyu Choi, Dong Hwan Kim, Seung Hwa Lee, Sung Hoon Han
  • Patent number: 7151071
    Abstract: The present invention relates to a method for preparing a solid titanium catalyst for olefin polymerization. The method for preparing a solid titanium catalyst for olefin polymerization according to the present invention comprises: preparing a magnesium compound solution by dissolving magnesium halide compound in a solvent mixture of cyclic ether and one or more of alcohol; preparing a carrier by adding titanium halide compound to said magnesium compound solution, then elevating the temperature of the solution and aging the solution to precipitate particles, and then adding titanium halide compound thereto for further reaction; preparing a catalyst by reacting said carrier with titanium compound and electron donor; and washing said catalyst with halogenated saturated hydrocarbon.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: December 19, 2006
    Assignee: Sansung Atofina Co., Ltd.
    Inventors: Sang-Yull Kim, Ki-Hwa Lee, Chun-Byung Yang, Ho-Sik Chang
  • Patent number: 7141634
    Abstract: A catalyst for olefin polymerization comprising (A) a solid catalyst component which is prepared by causing (a) a magnesium compound, (b) a tetravalent titanium halide compound, and (c) an electron donor compound to come in contact with each other, (B) an organoaluminum compound of the formula R1pAlQ3-p, and (C) an organosilicon compound of the formula SiR2R3(OR4)(OR5), and (D) an organosilicon compound of the formula R6xSi(OR7)4-x exhibits a higher hydrogen activity than conventional catalysts.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: November 28, 2006
    Assignee: Toho Catalyst Co., Ltd.
    Inventors: Motoki Hosaka, Hiroyuki Kono, Hayashi Ogawa
  • Patent number: 7138469
    Abstract: Process for the polymerization of olefins CH2?CHR, in which R is hydrogen or a hydrocarbon radical with 1–12 carbon atoms, carried out in the presence of a catalyst component (A) comprising Mg, Ti and halogen as essential elements and of a catalyst component (B) capable to produce, under the same polymerization conditions, a polymer with an average particle size lower than that obtainable with the said catalyst component A. The said process provides polymers with increased bulk density.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: November 21, 2006
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Gianni Collina, Ofelia Fusco, Eduardo Chicote Carrion, Alberto Gil, Volker Dolle, Horst Klassen, Karl-Heinz Kagerbauer
  • Patent number: 7135531
    Abstract: Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of an olefin containing a solid titanium catalyst component having a substantially spherical shape and containing an internal electron donor, a support made from a magnesium compound, an alcohol, an ether, a surfactant, and an alkyl silicate. The catalyst system may further contain an organoaluminum compound and an organosilicon compound. Also disclosed are methods of making an impact copolymer involving polymerizing an olefin to provide a polyolefin matrix and polymerizing a polyolefin rubber using a catalyst component containing a support made from a magnesium compound, an alcohol, an ether, a surfactant, and an alkyl silicate.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: November 14, 2006
    Assignee: BASF Catalysts LLC
    Inventors: Zhidong Zhu, Main Chang
  • Patent number: 7129302
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component, This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: October 31, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong
  • Patent number: 7129303
    Abstract: The present invention provides a method for producing homo- and co-polymers of ethylene, or more particularly a method for producing homo- and copolymers of ethylene in the presence of (a) a solid titanium catalyst produced by preparing a magnesium solution by contact-reacting a halogenated magnesium compound with an alcohol; reacting thereto an ester compound having at least one hydroxyl group and a silicon compound having at least one alkoxy group; and adding a mixture of a titanium compound and a silicon compound; (b) organometallic compounds of Group II or III of the Periodic Table; and (c) an alkoxysilane compound and a haloalkne compound. The catalyst for homo- and co-polymerization of ethylene, produced according to the present invention, exhibits a high activity and the polymers produced by the method of the present invention using said catalyst have the advantages of exhibiting a high bulk density and a narrow molecular weight distribution.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: October 31, 2006
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Chun-Byung Yang, Won-Young Kim, Weon Lee
  • Patent number: 7122497
    Abstract: A catalyst system useful for polymerizing olefins is disclosed. The catalyst system comprises a cocatalyst and a supported transition metal prepared from a halogen-containing Group 4–6 transition metal compound and an organoaluminum-siloxane containing mixture. The latter mixture, which is prepared from an organoaluminum compound and an organomagnesium-siloxane reaction product, incorporates a chelating ligand. The invention includes a method for making the catalyst system and a process for polymerizing olefins using the catalyst system. The process is convenient and avoids expensive catalyst components used in known olefin polymerization processes.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: October 17, 2006
    Assignee: Equistar Chemicals, LP
    Inventors: Sandor Nagy, Barbara M. Tsuie
  • Patent number: 7109143
    Abstract: It has been discovered that using n-butylmethyldimethoxysilane (BMDS) as an external electron donor for Ziegler-Natta catalysts can provide a catalyst system that may prepare polypropylene films with improved properties. The catalyst systems of the invention provide for controlled chain defects/defect distribution and thus a regulated microtacticity. Consequently, the curve of storage modulus (G?) v. temperature is shifted such that the film achieves the same storage modulus at a lower temperature enabling faster throughput of polypropylene film through a high-speed tenter.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: September 19, 2006
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth Paul Blackmon, David J. Rauscher, Michael Ray Wallace
  • Patent number: 7105467
    Abstract: The present invention provides nickel catalysts and solvents which are useful in a cross-coupling reaction between an organomagnesium compound and an aromatic ether compound, such as an anisole derivative.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: September 12, 2006
    Assignee: Pharmacore, Inc.
    Inventor: John W. Dankwardt
  • Patent number: 7098285
    Abstract: The present invention provides a prepolymerized olefin polymerization catalyst and olefin polymerization method using the same. More particularly, the present invention provides a prepolymerized catalyst that is encapsulated with macromonomers produced by polymerizing olefin monomers with a vinyl-terminated polysiloxane compound in the presence of a solid titanium catalyst for olefin polymerization having been previously surface treated with silane compounds containing two or more vinyl groups, and a method for producing polyolefin having a high melt strength using the catalyst.
    Type: Grant
    Filed: December 15, 2001
    Date of Patent: August 29, 2006
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Young-Soo Koo, Yong Chun, Young-Jun Lee, Ho-Sang Son, Ki-Su Ro
  • Patent number: 7098164
    Abstract: A process for the (co) polymerization of olefins of formula CH2?CHR wherein R is a hydrogen atom, a methyl or an ethyl radical, carried out in the presence of a system comprising (a) solid catalyst component comprising a compound of Ti or V not containing Metal-? bonds, Mg, halogen and optionally an electron donor compound; (b) an Al-alkyl compound; and (c) one or more non-polymerizing olefins in an amount up to 1.2% by mol with respect to the total olefins present in the reactor.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: August 29, 2006
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin, Tiziano Dall'Occo
  • Patent number: 7094724
    Abstract: Catalyst solid for olefin polymerization comprising A) at least one calcined hydrotalcite and B) at least one organic transition metal compound, and also a catalyst system comprising the catalyst solid, the use of the catalyst solid for the polymerization or copolymerization of olefins and a process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of the catalyst solid.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: August 22, 2006
    Assignee: Bassell Polyelefine GmbH
    Inventors: Volker Fraaije, Markus Oberhoff, Nicola (Hüsgen) Paczkowski, Markus Schopf, Wolfgang Bidell, Joachim Wulff-Döring, Shahram Mihan
  • Patent number: 7094726
    Abstract: A catalyst composition includes: A) a solid catalyst precursor containing a metallocene compound, a magnesium compound and a particulate polymeric material; and B) a cocatalyst containing aluminum compound. The catalyst is prepared by combining metallocene compound, magnesium compound and particles of polymeric material to form a catalyst precursor; and activating the catalyst precursor with alkylaluminums and/or aluminoxanes. Homopolymeric or copolymeric polyolefins are produced by contacting olefins or olefins and alpha-olefins with the catalyst composition.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: August 22, 2006
    Assignee: Saudi Basic Industries Corp.
    Inventors: Akhlaq Moman, Orass Hamed, Atieh Abu-Raqabah
  • Patent number: 7091289
    Abstract: The present invention provides a catalyst component used for homopolymerization or co-polymerization of ethylene, comprising at least one suitable electron donor compound supported on a composition containing magnesium and titanium, wherein the electron donor compound is selected from the group consisting of aliphatic ethers, alicyclic ethers, aromatic ethers, aliphatic ketones and alicyclic ketones, and wherein the composition containing magnesium and titanium is prepared by dissolving a magnesium compound into a solvent system to form a homogeneous solution and then contacting the solution with a titanium compound in the presence of a precipitation aid to precipitate the composition. The present invention also relates to a method for the preparation of said catalyst component and a catalyst comprising thereof, and to use of the catalyst in homopolymerization of ethylene or co-polymerization of ethylene with at least one C3–C8 ?-olefin.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: August 15, 2006
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Zhiwu Wang, Zhong Tan, Tianyi Li, Xingbo Li, Kai Zhang, Peng Kou, Haixiang Cui, Zhengyang Guo, Liang Pan
  • Patent number: 7087688
    Abstract: A MgCl2·mEtOH·nH2O adducts, where 3.4<m?4.4, 0?n?0.7, characterized by an X-ray diffraction spectrum, taken under the condition set forth above, in which, in the range of 2? diffraction angles between 5° and 10°, at least two diffraction lines are present at diffraction angles 2? of 9.3±0.2°, and 9.9±0.2°, the most intense diffraction lines being the one at 2? of 9.3±0.2°, the intensity of the other diffraction line being less than 0.4 times the intensity of the most intense diffraction line. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and/or porosity with respect to the catalysts prepared from the adducts of the prior art.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: August 8, 2006
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Daniele Evangelisti, Gianni Collina, Ofelia Fusco, Mario Sacchetti
  • Patent number: 7084216
    Abstract: The present invention relates to a process for homopolymerization of ethylene or copolymerization of ethylene with alpha-olefins by contacting ethylene or ethylene and alpha-olefin with a catalyst composition comprising: (a) a solid catalyst precursor comprising at least one vanadium compound, at least one magnesium compound and a polymeric material or a solid catalyst precursor comprising at least one vanadium compound, at least one further transition metal compound and/or at least one alcohol, at least one magnesium compound and a polymeric material; and (b) a cocatalyst comprising an aluminum compound.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 1, 2006
    Assignee: Saudi Basic Industries Corporation
    Inventors: Akhlaq A. Moman, Khalid Al-Bahily, Atieh Abu-Raqabah, John Ledford, Orass M. Hamed, Raju Raghavan, Sameh Rizkallah
  • Patent number: 7084217
    Abstract: An improved supported Ziegler-Natta catalyst especially useful for olefin polymerisation, the catalyst including a carrier, an organomagnesium compound, a borate compound, and one transition metal compound.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: August 1, 2006
    Assignee: B.P. Chemicals Ltd.
    Inventor: Stephen John Dossett
  • Patent number: 7081427
    Abstract: A solid catalyst component for olefin polymerization comprising titanium, magnesium and a compound of the general formula (I) wherein R1 and R2 are independently a C3 straight or branched hydrocarbon group, R3 is hydrogen or a C1-4 straight hydrocarbon group, R4 is a C1-4 straight or branched hydrocarbon group or a C3-4 aliphatic cyclic hydrocarbon group when R3 is hydrogen, R4 is the same C1-4 straight hydrocarbon group as R3 when R3 is a C1-4 straight hydrocarbon group, and n is an integer of 1 to 10. A catalyst for olefin polymerization, containing this catalyst component, obtains a high activity with high stereospecificity.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: July 25, 2006
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Nobuhiro Yabunouchi, Takanori Sadashima, Hideo Funabashi