Elemental Oxygen Or Nonmetallic Inorganic Oxygen-containing Material, Other Than Water Patents (Class 502/120)
  • Patent number: 6569966
    Abstract: Method of preparation of ethylene copolymers suitable for manufacturing films or pipes so characterized that for the initiation of polymerization of ethylene and 1-alkene monomer a substantially innovated catalyst system containing silyl chromate compound is used. The catalyst system, containing a high yield structure A, is prepared by a sequential interaction of the following components: a) a silyl chromate compound completely freed from water and oxygen prior to its contact with the porous support, b) a support containing a suitable type and optimum concentration of hydroxyl groups, and c) an alkylating agent, being a combination of organometal compounds of aluminum (RO)AlR2 and magnesium (R1MgR2), the ratios between the components in the catalyst vary in the following ranges: content of silyl chromate on the support varies from 0.05 to 0.35% of the support weight, ratio between the total amount of organometals (ORG) to silyl chromate (expressed in terms of ORG/Cr) varies between 0.
    Type: Grant
    Filed: January 30, 2001
    Date of Patent: May 27, 2003
    Assignee: Polymer Institute Brno, Spol. S.R.O. & Chemopetrol, A.S.
    Inventors: Pavel {haeck over (S)}indelá{haeck over (r)}, Martin Havránek, Zdenek Salajka, Pavel Pe{haeck over (s)}ta, Kv{haeck over (e)}toslava {haeck over (S)}t{haeck over (e)}pánková, Ladislav Jansa
  • Patent number: 6562918
    Abstract: A catalyst for olefin polymerization, which is obtained by contacting (A) a compound of a transition metal of Groups 4 to 6 of the Periodic Table, (B) an organoaluminiumoxy compound, and optionally (C) a carrier with each other, and for which they are exposed to elastic waves at least in any step of contacting them with each other. Preferably, the elastic waves are ultrasonic waves falling between 1 and 1000 kHz. Provided are high-activity metallocene catalysts for olefin polymerization. As having high polymerization activity, they are favorable to vapor-phase or slurry polymerization for producing olefinic polymers.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: May 13, 2003
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Yutaka Minami, Masami Kanamaru
  • Patent number: 6559090
    Abstract: The present invention is directed to a coordinating catalyst system comprising at least one metallocene or constrained geometry pre-catalyst transition metal compound, (e.g., di-(n-butylcyclopentadienyl)zirconium dichloride), at least one support-activator (e.g., spray dried silica/clay agglomerate), and optionally at least one organometallic compound (e.g., triisobutyl aluminum), in controlled amounts, and methods for preparing the same. The resulting catalyst system exhibits enhanced activity for polymerizing olefins and yields polymer having very good morphology. The support-activator is a layered material having a negative charge on its interlaminar surfaces and is sufficiently Lewis acidic to activate the transition metal compound for olefin polymerization.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: May 6, 2003
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Keng-Yu Shih, Dean Alexander Denton, Michael John Carney
  • Patent number: 6559251
    Abstract: A process for making ethylene copolymers is disclosed. Ethylene copolymerizes with an &agr;-olefin in the presence of a catalyst system comprising an activator and a silica-supported, bridged indenoindolyl metal complex having “open architecture.” The supported complex incorporates comonomers with exceptional efficiency, and the process gives ethylene copolymers having high molecular weights (Mw>100K) and very low densities (<0.910 g/cm3). Open architecture catalysts that include bridging through the indolyl nitrogen of the indenoindolyl framework are also described.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: May 6, 2003
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Clifford C. Lee, Mark P. Mack, Gregory G. Hlatky, Sandor Nagy, Barbara M. Tsuie
  • Patent number: 6555632
    Abstract: Process for the preparation of a catalytic system according to which a mixture of a halogenated neutral metallocene derived from a transition metal chosen from groups IIIB, IVB, VB and VIB of the Periodic Table and of an organoaluminium compound is prepared and an ionising agent is added thereto. (Co)polymerisation process according to which a mixture of a halogenated neutral metallocene as defined above and of an organoaluminium compound is prepared, the olefin is brought into contact with this mixture and an ionising agent is added thereto.
    Type: Grant
    Filed: July 8, 1998
    Date of Patent: April 29, 2003
    Assignee: Solvay Polyolefins Europe-Belgium (Societe Anonyme)
    Inventor: Nicola Zandona
  • Patent number: 6544920
    Abstract: Solid catalyst component for the polymerization of olefins, includes the product of the direct reaction, with no subsequent reactions with reducing organometallic compounds, between a titanium compound and a support obtained by contacting a metal oxide containing hydroxyl groups with a solution containing A) a magnesium chloride; B) from 1 to 6 moles of an alcohol per mole of magnesium chloride, in a halogenated hydrocarbon or aromatic hydrocarbon organic solvent C) capable of bringing the magnesium chloride in solution in quantities greater than or equal to 5 grams per liter in the presence of the above-mentioned quantities of alcohol B), the solvent not being able to form adducts with the magnesium chloride.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: April 8, 2003
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Gianni Pennini, Arrigo Arletti, Giampiero Morini
  • Patent number: 6538080
    Abstract: A gas phase fluidized bed process is described for producing ethylene polymers having improved processability and an MWD of less than about 2.9. Multiple reactors in series or parallel may be used to produce in-situ blended polymers. Each reactor can separately have a constrained geometry catalyst or a conventional Ziegler-Natta catalyst as needed for obtaining in-situ blended polymer with the desired properties as long as there is a constrained geometry catalyst in at least one reactor. Olefin polymers can be produced according to this invention which have low susceptibility to melt fracture, even under high shear stress conditions.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: March 25, 2003
    Assignee: BP Chemicals Limited
    Inventors: Robert D. Swindoll, Bruce A. Story, Brian W. S. Kolthammer, Kevin P. Peil, David R. Wilson, James C. Stevens
  • Patent number: 6531550
    Abstract: A process of using a catalyst composition to polymerize at least one monomer to produce a polymer. The process comprising contacting the catalyst composition, at least one monomer in a polymerization zone under polymerization conditions to produce the polymer. The catalyst composition is produced by a process comprising contacting at least one organometal compound, at least one solid mixed oxide compound, and at least one organoaluminum compound. The solid mixed oxide compound comprises oxygen and at least two elements selected from the group consisting of groups 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 of the periodic table, including lanthanides and actinides.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: March 11, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Shirley J. Martin, Kathy S. Collins, Marvin M. Johnson
  • Patent number: 6528448
    Abstract: A process to produce a first catalyst composition is provided. The process comprises contacting at least one first organometal compound, oxygen bridged mono-cyclopentadienyl transition metal dimer, and at least one activator to produce the first catalyst composition. The activator is selected from the group consisting of aluminoxanes, fluoro-organo borates, and treated solid oxide components in combination with at least one organoaluminum compound. In another embodiment of this invention, a process to produce a second catalyst composition for producing bimodal polymers is provided. The process comprises contacting at least one first organometal compound, at least one activator, and at least one second organometal compound to produce the second catalyst composition. The first and second catalyst compositions are also provided as well as polymerization processes using these compositions to produce polymers.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: March 4, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Michael D. Jensen, Max P. McDaniel, Elizabeth A. Benham, Anthony P. Eaton, Joel L. Martin, Gil R. Hawley, Tony R. Crain, Martha J. Tanner
  • Publication number: 20030031885
    Abstract: An accelerated wine aging process comprises wrapping a container of wine with a substrate coated with spinel, AB2O4, said spinel irradiates an electromagnetic wave length 3-30 micron.
    Type: Application
    Filed: August 1, 2001
    Publication date: February 13, 2003
    Inventors: Yen-Kuen Shiau, Chung-Hsun Wu
  • Patent number: 6518444
    Abstract: A method to synthesize a Group 15 containing metal polymerization catalyst is disclosed. The method includes an efficient high temperature synthesis of Group 15 containing ligands, especially arylamine ligands, for use in preparing polymerization catalysts and catalyst systems.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: February 11, 2003
    Assignee: Univation Technologies, LLC
    Inventors: David H. McConville, Jaimes Sher
  • Patent number: 6509288
    Abstract: Catalyst system suitable for preparing substantially terminally unsaturated atactic polymers or copolymers of &agr;-olefins having a molecular weight (Mn) in the range 200-500,000. The catalyst system includes a metallocene of the formula: [RmCpH(5-m)][RnCpH(5-n)]M(Z)Y wherein CpH is a cyclopentadienyl ligand, each R represents an alkyl or an aryl substituent on the CpH ligand or two R's may be joined together to form a ring, or the Rs in each CpH group when taken together represents an Si or C bridging group linking two CpH groups wherein the Si or C group may itself be substituted by hydrogen atoms or C1-C3 alkyl groups, M is a metal selected from hafnium, zirconium and titanium, Z is selected from a hydrogen atom, a trifluoromethane sulphonate, an alkyl and an aryl group, Y is selected from a, 1,3-diketonate and a &bgr;-ketoester arion, and each of m and n is same or different and has a value from 0 to 5.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: January 21, 2003
    Assignee: BP Chemicals Limited
    Inventors: Birgit Angelika Dorer, Christopher Sharp, Richard Henry Weatherhead
  • Patent number: 6509426
    Abstract: Disclosed are a novel transition metal compound represented by the following general formula (I), a catalyst component for olefin polymerization comprising same, a catalyst for olefin polymerization comprising said catalyst component, and a process for the preparation of an a-olefin polymer: where the definition of formula (I) is described in the specification.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: January 21, 2003
    Assignee: Japan Polychem Corporation
    Inventors: Taku Kato, Sugio Nishimura, Toshihiko Sugano
  • Patent number: 6506919
    Abstract: The present invention relates to a metallocene compound and the olefin polymerization using the same, particularly to a metallocene compound and the olefin polymerization using this compound on which supported catalysts are easily prepared by the reaction of the ligand containing —(CR12)a—O—SiRbYc ligand (wherein each Y, which can be the same as or different from other Y, is a hydrogen, halogen, alkoxy, aryloxy, amide, or silyloxy radical, each R1, which can be the same as or different from other R1, is a hydrogen radical, or an alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl, or arylalkenyl radical having from 1 to 40 carbon atoms, each R, which can be the same as or different from other R, is an alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl, or arylalkenyl radical having from 1 to 40 carbon atoms, a is an integral number from 1 to 40, c is 1, 2, or 3, and the sum of b and c is 3) with a support.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: January 14, 2003
    Assignee: LG Chemical Co., Ltd.
    Inventors: Jae-Seung Oh, Bun-Yeoul Lee, Joo-Eun Lee, Do-Hoon Lee
  • Patent number: 6506858
    Abstract: A process for the preparation of a catalyst material and the resultant catalyst material. The process comprises the steps of: (a) treating a particulate support material with an alkylating agent; (b) contacting the alkylating agent treated support material with a procatalyst; optionally (c) contacting the support material with an ionic catalyst activator, and optionally (d) recovering the catalyst-carrying support material. The process allows the simple and effective alkylation of procatalysts, such as metallocene procatalysts. The procatalyst comprises at least one triaza containing ligand.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: January 14, 2003
    Assignee: Borealis A/S
    Inventors: Hikka Knuuttila, Kallee Kallio, Ove Andell
  • Patent number: 6486089
    Abstract: The invention relates to a process for uniformly dispersing a transition metal metallocene complex on a carrier comprising (1) providing silica which is porous and has a particle size of 1 to 250 microns, having pores which have an average diameter of 50 to 500 Angstroms and having a pore volume of 0.5 to 5.0 cc/g; (2) slurrying the silica in an aliphatic solvent having a boiling point less than 110° C.; (3) providing a volume of a solution comprising metallocene and alumoxane wherein the volume of solution is less than that required to form a slurry of the silica, wherein the concentration of alumoxane, expressed as Al weight percent, is 5 to 20; (4) contacting the silica slurry (2) with said volume of said solution (3) and allowing the solution to impregnate the pores of silica and, to disperse the metallocene in and on the carrier; (5) evaporating the solvents from the contacted and impregnated silica to recover dry free-flowing catalyst particles.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: November 26, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Yury V. Kissin, Robert I. Mink, Thomas E. Nowlin, Pradeep P. Shirodkar, Sandra D. Schregenberger, Grace O. Tsien
  • Patent number: 6482903
    Abstract: The present invention relates to a composition of carboxylate metal salt and a flow improver useful in combination with a polymerization catalyst to improve the flowability and bulk density of the catalyst. The invention also relates to a polymerization process using the catalyst.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: November 19, 2002
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, Chi-I Kuo
  • Patent number: 6469113
    Abstract: The present invention relates to a method for producing supported metallocene catalyst and an olefin polymerization process using same, and more particularly to a method for manufacturing supported metallocene catalyst by reacting metallocene catalyst having an alkoxysilane group at a part of a ligand with a support having a highly reactive siloxane group at the surface, and the olefin polymerization process using the same.
    Type: Grant
    Filed: December 9, 1999
    Date of Patent: October 22, 2002
    Assignee: LG Chemical Ltd.
    Inventors: Bun-Yeoul Lee, Jae-Seung Oh
  • Publication number: 20020147285
    Abstract: A process for producing high density polyethylene having a bimodal molecular weight distribution, the process comprising pre-contacting a chromium-based catalyst with an alkyl metal oxane, the chromium-based catalyst comprising chromium oxide on a silica-containing support, to form a catalyst system wherein the atomic ratio of the metal of the oxane to the chromium is less than 1, and polymerizing ethylene or copolymerizing ethylene and an alpha-olefinic comonomer comprising from 3 to 10 carbon atoms in the presence of the catalyst system. A catalyst system for polymerizing ethylene or copolymerizing ethylene and an alpha-olefinic comonomer comprising from 3 to 10 carbon atoms to produce high density polyethylene, the catalyst system comprising in combination a chromium-based catalyst comprising chromium oxide on a silica-containing support and an alkyl metal oxane with which the chromium-based catalyst has been precontacted whereby the atomic ratio of the metal of the oxane to the chromium is less than 1.
    Type: Application
    Filed: January 4, 2002
    Publication date: October 10, 2002
    Inventors: Guy Debras, Phillipe Bodart
  • Patent number: 6448356
    Abstract: An ethylene-&agr;-olefin copolymer which is a copolymer of ethylene with a C3-20 &agr;-olefin and which satisfies the following conditions (a) to (c): (a) the density (D) is from 0.850 to 0.950 g/cm3, (b) the relation between the melt tension (MT) and the melt flow rate (MFR) at 190° C. satisfies the following formula (1): log(MT)≧−0.91×log(MFR)+0.06   (1), and (c) the following three formulae (2), (3) and (4) are satisfied: Tmax≦972D−813   (2) logW60≦−0.114 Tmax+9.48   (3) logW90≧0.0394 Tmax−2.95   (4) where D is the density, Tmax is the elution peak temperature (°C.) by the cross fractionation measurement, W60 is the weight percentage (wt %) of a soluble content at 60° C. or lower, and W90 is the weight percentage (wt %) of a soluble content at 90° C. or higher.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: September 10, 2002
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yumito Uehara, Yoshiyuki Ishihama, Yukitaka Goto
  • Publication number: 20020115801
    Abstract: A process for the preparing of a meso/racemic-(bis(indenyl)ethanel zirconium dichloride compound comprising (a) reacting zirconium tetrachloride with the solid reaction product of the bis(indenyl)ethane ligand with an alkyllithium in a solvent as reaction medium and (b) recovering a solid mixture of lithium chloride and meso/racemic composition of [bis(indenyl)ethane] zirconium dichloride, characterized in that the solvent used as reaction medium in a reaction (a) is an ether, pentane or a mixture thereof.
    Type: Application
    Filed: April 22, 2002
    Publication date: August 22, 2002
    Inventor: Abbas Razavi
  • Patent number: 6433111
    Abstract: In a process for preparing a supported catalyst which comprises the following steps: A) reacting an inorganic support material with an organometallic compound I B) reacting the support material obtained as described in A) with a metallocene complex and a compound capable of forming metallocenium ions and C) subsequently reacting the resulting material with an organometallic compound II, the supported catalyst obtained in this way or its precursor is brought into contact with a Lewis base in an amount of from 0.1 to <10 mole per mole of metallocene complex.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: August 13, 2002
    Assignee: Basell Polyolefine GmbH
    Inventors: Marc Oliver Kristen, Heike Gregorius, Ursula Rief
  • Patent number: 6432860
    Abstract: Supported stereospecific catalysts and processes for the stereotactic propagation of a polymer chain derived from ethylenically unsaturated monomers which contain three or more carbon atoms or which are substituted vinyl compounds, such as styrene and vinyl chloride. One application is the stereospecific propagation of C3-C4 alpha olefins, particularly the polymerization of propylene to produce syndiotactic polypropylene over a supported metallocene catalyst comprising a stereospecific metallocene catalyst component incorporating a metallocene ligand structure having two sterically dissimilar cyclopentadienyl ring structures coordinated to the central transition metal atom. Both of the cyclopentadienyl groups are in a relationship with one another by virtue of bridge or substituent groups, which provide a stereorigid relationship relative to the coordinating transition metal atom to prevent rotation of said ring structures.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: August 13, 2002
    Assignee: Fina Technology, Inc.
    Inventors: Edwar S. Shamshoum, Margarito Lopez
  • Publication number: 20020099152
    Abstract: The present invention relates to the use of thermally triggered compounds that when used with a polymerization catalyst in a polymerization process results in the controllable generation of one or more catalyst inhibitors that renders the polymerization catalyst substantially or completely inactive.
    Type: Application
    Filed: November 30, 2000
    Publication date: July 25, 2002
    Inventors: Timothy T. Wenzel, Dick Alan Nagaki, Thomas Henry Peterson, David James Schreck
  • Patent number: 6423659
    Abstract: &pgr;-complex compounds and in particular metallocene compounds of formula (Ia)(Ib), in which &pgr;I and &pgr;II represent &pgr;-systems, D designates a donor atom and A designates an acceptor atom, D and A being linked by a reversible coordinative bond such that the donor group assumes a positive (partial) charge and the acceptor group assumes a negative (partial) charge, at least one of D and A being part of the associated &pgr;-system in each case, M stands for a transition metal of the 3rd, 4th, 5th or 6th subgroup of the (Mendelian) periodic system of elements, X designates an anion equivalent and n designates the number zero, one, two three or four depending on the charges of M and those of &pgr;I and &pgr;II, are novel and can be used as catalysts for the (co)polymerization of olefins, i-olefins, alkines and/or diolefins or for ring-opening polyaddition.
    Type: Grant
    Filed: October 1, 1999
    Date of Patent: July 23, 2002
    Assignee: Bayer Aktiengesellschaft
    Inventors: Karl-Heinz Aleksander Ostoja Starzewski, Warren Mark Kelly
  • Patent number: 6420298
    Abstract: A catalyst composition for the polymerization of one or more 1-olefins (e.g., ethylene) comprises a transition metal catalyst precursor and a cocatalyst, the transition metal catalyst precursor comprising a contact product of an unsubstituted metallocene compound and an aluminum alkyl compound in a hydrocarbon solvent solution. In another embodiment, the transition metal catalyst precursor is bimetallic and contains a non-metallocene transition metal catalyst component. When a bimetallic catalyst precursor is used, the resin product exhibits improved properties, and has a bimodal molecular weight distribution, long chain branching (LCB), and good bubble stability.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: July 16, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Robert I. Mink, Thomas E. Nowlin, Sandra D. Schregenberger, Kenneth G. Schurzky, Pradeep P. Shirodkar
  • Patent number: 6420501
    Abstract: A supported metallocene catalyst comprising solid fine particles which comprise a reaction product of a metallocene compound and aluminoxane supported on the finely particulate inorganic support, said solid fine particles being produced by carrying out in order of the following steps: (a) reacting a metallocene compound with an aluminoxane in an aromatic hydrocarbon solvent to form a reaction product, (b) contacting the reaction product with a finely particulate inorganic support at a temperature of 85 to 150° C. in the presence of any aromatic hydrocarbon solvent to form a solid product, and (c) washing the solid product with an aliphatic hydrocarbon solvent at a temperature of −50° C. to +30° C.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: July 16, 2002
    Assignee: Chisso Corporation
    Inventors: Toshihiro Uwai, Tsuyoshi Yahata, Jun Saito
  • Patent number: 6417131
    Abstract: A process for producing high density polyethylene having a bimodal molecular weight distribution, the process comprising pre-contacting a chromium-based catalyst with an alkyl metal oxane, the chromium-based catalyst comprising chromium oxide on a silica-containing support, to form a catalyst system wherein the atomic ratio of the metal of the oxane to the chromium is less than 1, and polymerising ethylene or copolymerising ethylene and an alpha-olefinic comonomer comprising from 3 to 10 carbon atoms in the presence of the catalyst system. A catalyst system for polymerising ethylene or copolymerising ethylene and an alpha-olefinic comonomer comprising from 3 to 10 carbon atoms to produce high density polyethylene, the catalyst system comprising in combination a chromium-based catalyst comprising chromium oxide on a silica-containing support and an alkyl metal oxane with which the chromium-based catalyst has been precontacted whereby the atomic ratio of the metal of the oxane to the chromium is less than 1.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: July 9, 2002
    Assignee: Fina Research, S.A.
    Inventors: Guy Debras, Phillipe Bodart
  • Patent number: 6413900
    Abstract: Stabilized alumoxane solutions are provided as well as a method for producing such solutions. The method generally involves the use of metallocene catalyst component(s) that when mixed with alumoxane solutions reduce the tendency for such solutions to form gels.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: July 2, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Agapios Kyriacos Agapiou, Patrick Brant
  • Patent number: 6410474
    Abstract: A make-up catalyst of at least one metallic component of a bimetallic catalyst component is used in conjunction with a bimetallic catalyst to control the proportion of weight fractions in broad or bimodal molecular weight distribution olefin resin product. The bimetallic catalyst which is formed with at least one metallocene of a transition metal, produces broad or bimodal molecular weight distribution polyolefin resin whose composition depends on the ratio of the concentration of the two catalyst components producing the HMW/LMW components. The make-up catalyst consisting of a single metal component is added in proportion necessary to make-up the deficiencies in the amount of the HMW/LMW component. The type of make-up catalyst added depends on whether increase of the HMW or LMW component produced by the bimetallic catalyst is sought.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: June 25, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Thomas E. Nowlin, Sandra D. Schregenberger, Pradeep P. Shirodkar, Grace O. Tsien
  • Patent number: 6407026
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients including an iron-containing compound, a hydrogen phosphite, and a mixture of two or more organoaluminum compounds. This catalyst composition is particularly useful for polymerizing conjugated dienes. When this catalyst composition is used to polymerize 1,3-butadiene into syndiotactic 1,2-polybutadiene the ratio of the organoaluminum compounds can be adjusted to vary the melting temperature and molecular weight of the polymer product.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: June 18, 2002
    Assignee: Bridgestone Corporation
    Inventor: Steven Luo
  • Patent number: 6399535
    Abstract: The present invention is directed to a coordinating catalyst system comprising at least one bidentate or tridentate ligand containing pre-catalyst transition metal compound, (e.g., 2,6-bis (2,4,6-trimethylarylamino)pyridyl iron dichloride), at least one support-activator (e.g., spray dried silica/clay agglomerate), and optionally at least one organometallic compound (e.g., triisobutyl aluminum), in controlled amounts, and methods for preparing the same. The resulting catalyst system exhibits enhanced activity for polymerizing olefins and yields polymer having very good morphology.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: June 4, 2002
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Keng-Yu Shih, Michael John Carney, Dean Alexander Denton
  • Patent number: 6391989
    Abstract: A catalyst system comprising a) at least one support, b) at least one metallocene and c) at least one compound of the formula (I)  where M1 is an element of group IIa, IIIa, IVa or Va of the Periodic Table of the Elements, x is 0 or 1, y is 0 or 1, z is 0 or 1, A is a cation of group Ia, IIa, IIIa of the Periodic Table of the Elements, a carbenium, oxonium, phosphonium or sulfonium cation or a quaternary ammonium compound, Q1, Q2, Q3 are each a ligand system based on a biphenyl framework bound to M1 via the positions 2 and 12 and having the formula (II)  where R1, R2, R3, R4, R5, R6, R7 and R8 are identical or different and are each a hydrogen atom, a halogen atom, a C1-C40 group, or an OSiR39 group, where R9 are identical or different and are each a hydrogen atom, a halogen atom, a C1-C40 group and two or more radicals R1 to R8 may be joined to one another so as to form a monocyclic or polycyclic ring system which may be substituted.
    Type: Grant
    Filed: August 16, 2000
    Date of Patent: May 21, 2002
    Assignee: Basell Polypropylen GmbH
    Inventors: Hans Bohnen, Cornelia Fritze, Frank Kueber
  • Patent number: 6388029
    Abstract: Catalytic systems particularly suitable for the polymerization of &agr;-olefins containing from two to 20 carbon atoms, as well as for the copolymerization of ethylene with &agr;-olefins containing from three to 20 carbon atoms, dienes, and cycloalkenes in processes wherein the catalyst is suspended in a solvent, in processes in gas phase, as well as in mass polymerization processes at high temperatures and pressures, are disclosed. The catalytic system is a mixture of a catalyst component A and a co-catalyst component B. The catalyst component A is formed by a functionalized inorganic porous oxide, by an organoaluminium compound and by an organometallic compound of a metal of the groups 3, 4, 5, or 6 of the periodic table. Functionalization of the inorganic oxide is by introduction of functional groups to be used to strongly fix the organoaluminium compound and the organometallic compound.
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: May 14, 2002
    Assignee: Repsol Quimica S.A.
    Inventors: Gerardo Hidalgo Llinas, Bego{overscore (n)}a Pe{overscore (n)}a Garcia, Antonio Mu{overscore (n)}oz-Escalona, Jose Sancho Royo
  • Patent number: 6376416
    Abstract: The present invention provides a method of making a catalyst with the following components: Component (A): A solid catalyst component comprising the following component (A-1) and component (A-2). Component (A-1): A solid component obtained by contacting the following component (A-1-1), component (A-1-2) and component (A-1-3).
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: April 23, 2002
    Assignee: Japan Polychem Corporation
    Inventors: Katsumi Hirakawa, Yumito Uehara
  • Patent number: 6376415
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce said polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted treated solid oxide compound.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: April 23, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, James B. Kimble, Kathy S. Collins, Elizabeth A. Benham, Michael D. Jensen, Gil R. Hawley, Joel L. Martin
  • Patent number: 6369253
    Abstract: A method is provided for synthesizing metallocene compounds useful as polymerization catalysts and the like. The method involves (a) preparation of an amino alcohol-derived ligand by reacting a silane reactant with an amino alcohol in the presence of base, followed by (b) metallation of the ligand so provided. The metallocenes may be provided in chiral form when the amino alcohol contains an asymmetric center, and are thus useful in catalyzing stereospecific polymerization and other stereospecific bond formation reactions.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: April 9, 2002
    Assignee: SRI International
    Inventors: Robert B. Wilson Jr., Gary A. Koolpe
  • Patent number: 6365763
    Abstract: The invention relates to a method for producing rac/meso metallocenes, the rac/meso metallocenes themselves, and their use in the production of polyolefins.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: April 2, 2002
    Assignee: Basell Polyolefin GmbH
    Inventors: Andreas Winter, Carsten Bingel, Volker Fraaije, Frank Kueber
  • Patent number: 6362294
    Abstract: This invention is directed to reduced oxidation state Group 4-6 metal compounds, preferably the first row metals in those groups, suitable for activation as polymerization catalysts and characterized by comprising a substituted hydrotris(pyrazolyl)borate ancillary ligand and a plurality of single or multidentate uninegative ligands, excluding cyclopentadienyl ligands. The invention includes a polymerization process characterized by comprising contacting one or more monomers polymerizable by coordination or insertion polymerization under suitable polymerization conditions with these catalyst compositions.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: March 26, 2002
    Assignee: Exxon Mobil Chemical Patents Inc.
    Inventors: Phillip T. Matsunaga, Rinaldo S. Schiffino
  • Patent number: 6355819
    Abstract: The invention relates to metallocene compounds having the formula (I): (CpYq)mMRnBo  (I) wherein: Cp or each same or different Cp is a non-substituted or substituted, fused or non-fused, homo(iso)cyclic or heterocyclic cyclopentadienyl ligand, indenyl ligand, tetrahydroindenyl ligand, fluorenyl ligand or octahydrofluorenyl ligand, Y or each same or different Y is a substituent at the cyclopentadienyl ring of said ligand Cp having the following structure (II): wherein: D is an element of Group 14 of the Periodic Table (IUPAC), R1, R2 and R3 are the same or different and are each one of a hydrogen, a halogen, a substituted or unsubstituted C1-C10 hydrocarbyl group, a substituted or unsubstituted C1-C10 hydrocarbyloxy group, a C1-C12 organosilicon group, or at least two of R1, R2 and R3 form together with D a C4-C20 ring structure; M is a transition metal of Group 4 of the Periodic Table (IUPAC) and is bound to the ligand Cp or ligands Cp in an &eegr;5 bonding mode; R or each same o
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: March 12, 2002
    Assignee: Borealis Technology Oy
    Inventors: Reko Leino, Hendrik Luttikhedde, Carl-Eric Wilen, Jan Näsman, Kalle Kallio, Hilkka Knuuttila, Jyrki Kauhanen
  • Patent number: 6355818
    Abstract: Racemic isomers of metal complexes of Groups 3, 4 or the Lanthanides, addition polymerization catalysts containing the same and olefin polymerization processes using the same comprising a boratabenzene group or divalent derivative thereof are disclosed.
    Type: Grant
    Filed: February 16, 2000
    Date of Patent: March 12, 2002
    Assignees: The Dow Chemical Company, The Regents of the University of Michigan
    Inventors: Francis J. Timmers, David D. Devore, Arthur J. Ashe, III, Saleem A. Al-Ahmad, Xinggao Fang
  • Patent number: 6352953
    Abstract: Disclosed is a novel transition metal composition of a metaracycle structure represented by the formula wherein M1 is an element of Group IVB in the Periodic Table, M2 is an element of Group IIIA in the Periodic Table, R1 and R2 each are for instance a cyclopentadienyl group, R3 and R4 each are for instance a hydrocarbon group, R5 and R6 each are a hydrogen atom and R7 and R8 indicate an indan ring formed by bonding to each other.
    Type: Grant
    Filed: October 9, 2000
    Date of Patent: March 5, 2002
    Assignee: Japan Polyolefins Co., Ltd.
    Inventors: Takashi Seki, Hiroyuki Shimizu, Akira Sano
  • Publication number: 20020013218
    Abstract: A process for preparing premixed supported boraaryl catalysts having improved shelf life is provided. The process comprises supporting an organometallic compound comprising a group 3-10 transition metal or lanthanide metal and at least one boraaryl ligand an inorganic support which has been chemically and thermally dehydroxylated to remove all hydroxyl from the surface of the support; contacting with an organoaluminum compound utilizing an incipient wetness procedure wherein 90 to 150 percent of the catalyst pore volume is filled with a hydrocarbon solution containing the organoaluminum and provide a molar ratio of aluminum to transition/lanthanide metal of 0.5:1 to 50:1; and recovering the premixed catalyst powder.
    Type: Application
    Filed: February 21, 2001
    Publication date: January 31, 2002
    Inventors: Craig C. Meverden, Michael W. Lynch
  • Publication number: 20020013431
    Abstract: Ethylene is oligomerized with certain catalysts based on iron and cobalt complexes of 2,6-pyridinecarboxaldehydebis(imine) and 2,6-diacylpyridine-bis(imine) tridentate ligands.
    Type: Application
    Filed: December 4, 2000
    Publication date: January 31, 2002
    Inventor: Alison Margaret Anne Bennett
  • Patent number: 6342622
    Abstract: Indenyl compound of formula (1) wherein: M is a transition metal from the lanthanides or from group 3, 4, 5 or 6 of the Periodic System of Elements, Q is an anionic ligand to M, k is the number of Q groups, R is a bridging group and Z and X are substituents, wherein R contains at least one sp2-hybridized carbon atom that is bonded to the indenyl group at the 2-position with the exclusion of Ti(deshydronorbiphenacene) dichloride.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: January 29, 2002
    Assignee: DSM B.V.
    Inventors: Henricus J. Arts, Mirko Kranenburg, Ramon H. A. M. Meijers, Edwin G. Ijpeij, Gerardus J. M. Gruter, Felix H. Beijer
  • Patent number: 6340652
    Abstract: Catalysts for polymerization of &agr;-olefin, composed of a transition metal compound, an inorganic silicate or an ion exchangeable layer compound other than silicate, and optionally an organoaluminum compound, are described.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: January 22, 2002
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Toshihiko Sugano, Naoshi Iwama, Eiji Isobe, Toru Suzuki, Yasuo Maruyama, Satoshi Hayakawa, Hisashi Shoda, Masami Kashimoto, Taku Kato, Takayuki Aoshima, Sugio Nishimura, Yoshinori Suga, Stefan Sieber
  • Patent number: 6333388
    Abstract: Described are an aluminum compound-containing solid catalyst component obtained by bringing a carrier into contact with an organoaluminumoxy compound, followed by bringing this product into contact with a compound having an electron attractive group; a transition metal-containing solid catalyst component obtained by bringing the aluminum compound-containing solid catalyst component into contact with a transition metal compound; a catalyst for olefin polymerization, constituting the aluminum compound-containing solid catalyst component and an organoaluminum compound; and a method for producing an olefin polymer, which includes polymerizing or copolymerizing an olefin using the catalyst for olefin polymerization.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: December 25, 2001
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shin-ichi Kumamoto, Hiroaki Katayama, Akio Imai
  • Patent number: 6331601
    Abstract: A process for making a supported, single-site catalyst is disclosed. The transition metal of the catalyst is tethered through a bridged, bidentate ligand that is covalently bound to the support. The catalyst is prepared in a two-step process that involves preparation of a supported ligand from an amine-functionalized support, followed by reaction of the supported ligand with a transition metal compound to give the “tethered”catalyst. An olefin polymerization process that uses the supported catalyst is also disclosed.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: December 18, 2001
    Assignee: Equistar Chemicals, LP
    Inventor: Gregory G. Hlatky
  • Patent number: 6326493
    Abstract: A metallocene compound is provided wherein to a transition metal compound is bonded a multidentate compound wherein a substituted cycloalkadienyl ring CA1 having therein a heteroaromatic group Ra containing an oxygen, sulfur or nitrogen atom on a cycloalkadienyl ring, preferably the five-membered ring thereof, and an unsubstituted or substituted cycloalkadienyl group CA2 or —(R1)N—, —O—, —S— or —(R1)P—, preferably CA2, more preferably a substituted cycloalkadienyl group identical with CA1 are bonded through a divalent linking group. The metallocene compound is suitable as a principal ingredient of a catalyst for the polymerization of olefins, particularly achieving a very high effect in making the molecular weight of a polypropylene higher.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: December 4, 2001
    Assignee: Chisso Corporation
    Inventors: Seiki Mitani, Masato Nakano, Jun Saito, Hiroshi Yamazaki, Keisuke Kimura
  • Publication number: 20010039241
    Abstract: Complexes of magnesium and titanium alkoxides useful as olefin polymerization procatalyst precursors, procatalysts containing the complexes, and their use as a catalyst component for the polymerization of olefin monomers are disclosed. The complexes are prepared by reacting a magnesium alkoxide and a titanium alkoxide in the presence of a clipping agent to form a solid complex. The solid complex then can be used to form a procatalyst by contacting it with a halogenating agent, optionally a tetravalent titanium halide, and optionally an electron donor. The procatalyst then can be converted to an olefin polymerization catalyst by contacting it with a cocatalyst and optionally a selectivity control agent.
    Type: Application
    Filed: June 20, 2001
    Publication date: November 8, 2001
    Inventor: Robert Charles Job