Nonmetallic Organic Oxygen Containing Patents (Class 502/125)
  • Patent number: 6992036
    Abstract: A polymerization catalyst system and process, which utilizes a Group 14 and Group 16 containing non-crystalline compound to solubilize or emulsify polymerization catalyst components, is disclosed.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: January 31, 2006
    Assignee: Univation Technologies, LLC
    Inventor: David E. Gindelberger
  • Patent number: 6989343
    Abstract: A granular photocatalytic material in the form of pellets or tablet is produced by compressing a photocatalyst mixture containing photocatalytic particles and a filler in air, a vacuum, or an inert gas at a temperature of 0 to 200° C., a pressure of 500 to 6000 kg/cm2, and a pressing time of 0.01 to 60 seconds. An alkali slurry is applied on the surface of the granular photocatalytic material. A method of restoring a function of granular photocatalytic material comprises washing the surface of the granular photocatalytic material with the slurry or an alkali solution of sodium hydroxide An apparatus for decomposing and removing toxic organic matter comprises a means of bringing the granular photocatalytic material into contact with the toxic organic matter in a liquid or air, and a means of irradiating the granular photocatalytic material with light having a wavelength of 400 nm or less.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: January 24, 2006
    Assignee: Yamaha Corporation
    Inventors: Akira Osawa, Yoichi Nagasaki, Jun Yamamoto, Kunimasa Muroi
  • Patent number: 6989342
    Abstract: A solid titanium complex catalyst for polymerization and copolymerization of ethylene is prepared by the process comprising: (1) preparing a magnesium solution by reacting a halogenated magnesium compound with an alcohol; (2) reacting the magnesium solution with a phosphorus compound and a silicon compound having at least one alkoxy group to produce a magnesium composition; and (3) producing a solid titanium catalyst through recrystallization by reacting the magnesium composition solution with a mixture of a titanium compound and a haloalkane compound; and optionally reacting the solid titanium catalyst with an additional titanium compound. The solid titanium complex catalyst for polymerization and copolymerization of ethylene according to present invention exhibits high polymerization activity, and may be advantageously used in the polymerization and copolymerization of ethylene to produce polymers of high bulk density and narrow molecular weight distribution.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: January 24, 2006
    Assignee: Samsung General Chemicals, Co., Ltd.
    Inventors: Chung-Byung Yang, Won-Young Kim, Ji-Yong Park, Weon Lee
  • Patent number: 6982237
    Abstract: A spray-dried catalyst precursor composition and method of making a spray-dried catalyst precursor composition with an inert filler, magnesium, a transition metal, solvent, and one electron donor compound. The catalyst precursor composition is substantially free of other electron donor compounds, the molar ratio of the electron donor compound to magnesium is less than or equal to 1.9, and comprises spherical or substantially spherical particles having a particle size of from about 10 to about 200 ?m. Catalysts made from the spray-dried catalyst precursors and polymerization methods using such catalysts are disclosed.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: January 3, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Burkhard Eric Wagner, Robert James Jorgensen
  • Patent number: 6972270
    Abstract: The present invention relates to the use of at least one acid and at least one base and/or at least one reductant and at least one oxidant that when used with a polymerization catalyst in a polymerization process results in the controllable generation of a catalyst inhibitor that renders the polymerization catalyst substantially or completely inactive.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: December 6, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Dick A. Nagaki, Simon Mawson, David James Schreck, Thomas H. Peterson
  • Patent number: 6960549
    Abstract: The present invention relates to the use of at least one acid and at least one base and/or at least one reductant and at least one oxidant that when used with a polymerization catalyst in a polymerization process results in the controllable generation of a catalyst inhibitor that renders the polymerization catalyst substantially or completely inactive.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: November 1, 2005
    Assignee: Univation Technologies, LLC
    Inventors: Timothy T. Wenzel, Dick A. Nagaki, Simon Mawson, David James Schreck, Thomas H. Peterson
  • Patent number: 6933258
    Abstract: The present invention relates to a catalyst composition and a method for making the catalyst composition which comprises a polymerization catalyst and at least one gelling agent. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: August 23, 2005
    Assignee: Univation Technologies, L.L.C.
    Inventors: Agapios Kyriacos Agapiou, Chi-I Kuo, David M. Glowczwski, Steven K. Ackerman
  • Patent number: 6930156
    Abstract: A single-site catalyst is disclosed. The catalyst comprises a transition metal complex, an activator, and an allylic alcohol-containing polymer. The catalyst has high activity and great capability to incorporate higher ?-olefins into polyethylene. The polyethylene produced has high molecular weight and low density.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: August 16, 2005
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Shao-Hua Guo
  • Patent number: 6921735
    Abstract: Highly active, recoverable and recyclable transition metal-based metathesis catalysts and their organometallic complexes including dendrimeric complexes are disclosed, including a Ru complex bearing a 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene and styrenyl ether ligand. The heterocyclic ligand significantly enhances the catalytic activity, and the styrenyl ether allows for the easy recovery of the Ru complex. Derivatized catalysts capable of being immobilized on substrate surfaces are also disclosed. The present catalysts can be used to catalyze ring-closing metathesis (RCM), ring-opening (ROM) and cross metatheses (CM) reactions, and promote the efficient formation of various trisubstituted olefins at ambient temperature in high yield.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: July 26, 2005
    Assignee: The Trustees of Boston College
    Inventors: Amir H. Hoveyda, Jason Kingsbury, Steven Garber, Brian Lawrence Gray, John T. Fourkas
  • Patent number: 6916759
    Abstract: A method of making an olefin polymerization catalyst is disclosed. The method involves contacting a magnesium halide compound with an alcohol, adding a mineral oil to the product, reacting this product with a hydroxylated ester and an alkoxy silane, then adding a titanium compound and a second silicon compound. The titanium compound is preferably an alkoxy halide, and the second silicon compound is preferably a silicon halide.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: July 12, 2005
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Chun-Byung Yang, Won-Young Kim, Weon Lee
  • Patent number: 6914028
    Abstract: A method of making an olefin polymerization catalyst is disclosed. The method first combines a magnesium halide with an alcohol, then adds a hydroxylated ester and a silicon alkoxide, followed by a titanium compound and another silicon compound to result in a solid composition. This solid composition is then reacted with an aluminum compound and an alkyl halide, followed by reaction with a second titanium compound which may be the same as or different from the first. The second silicon compound is preferably a silicon halide, and the titanium compounds are preferably halides and alkoxides. The aluminum compounds preferably have chloride and alkyl ligands bonded to them.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: July 5, 2005
    Assignee: Samsung Atofina Co., Ltd.
    Inventors: Chun-Byung Yang, Sang-Yull Kim, Weon Lee
  • Patent number: 6906154
    Abstract: The present invention relates to catalyst components for the polymerization of olefins comprising a titanium compound, having at least a Ti-halogen bond, and at least two electron donor compounds supported on a Mg dihalide, said catalyst component being characterized by the fact that at least one of the electron donor compounds is selected from ethers containing two or more ether groups which are further characterized by the formation of complexes with anhydrous magnesium dichloride in an amount less than 60 mmoles per 100 g of MgCl2 and by the failure of entering into substitution reactions with TiCl4 or by reacting in that way for less than 50% by moles, and at least another electron donor compound is selected from esters of mono or polycarboxylic acids. Said catalyst components are able to produce propylene polymers which, for high values of xylene insolubility, show a broad range of isotacticity.
    Type: Grant
    Filed: November 12, 2001
    Date of Patent: June 14, 2005
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Masaki Fushimi, Hirotoshi Takahashi
  • Patent number: 6903041
    Abstract: There are provided; (i) a solid catalyst component obtained by contacting a trivalent titanium atom-containing solid catalyst component precursor (C) with a halogeno compound (A) of the 13 or 14 group of elements in the periodic table of the elements and an electron donor (B), or a solid catalyst component obtained by contacting an intermediate product with a titanium-halogen bond-carrying compound (D), the intermediate product being obtained by contacting the solid catalyst component precursor (C) with a halogeno compound (A?) of the 14 group of elements in the periodic table of the elements and the electron donor (B), or a solid catalyst component comprising a magnesium atom, a titanium atom, a halogen atom and an electron donor and having a relative surface area of not more than 30 m2/g, the catalyst component being superior in a particle form, and (ii) a catalyst comprising the solid catalyst component and an organoaluminum compound, the catalyst being high in polymerization activity.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: June 7, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shin-ichi Kumamoto, Makoto Satoh, Hideki Ohshima
  • Patent number: 6900152
    Abstract: A catalyst used for trimerization of ethylene into 1-hexene is descrobed, which comprises (i) a specific organometallic complex having a neutral multidentate ligand having a tripod structure, (ii) an alkylaluminoxane, and an optional ingredient selected from: (iii) a halogenated inorganic compound, (iv) a specific alkyl group-containing compound, (v) a combination of a halogenated inorganic compound with a specific alkyl group-containing compound, (vi) an amine compound and/or an amide compound, and (vii) a combination of an amine compound and/or an amide compound with a specific alkyl group-containing compound.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 31, 2005
    Assignee: Tosoh Corporation
    Inventors: Toru Yoshida, Toshihide Yamamoto, Hisanori Okada, Hideyuki Murakita
  • Patent number: 6881696
    Abstract: A solid titanium complex catalyst for polymerization and copolymerization of ethylene is prepared by the process comprising: (1) preparing a magnesium solution by reacting a halogenated magnesium compound with an alcohol; (2) reacting the magnesium solution with an ester compound having at least one hydroxyl group and a boron compound having at least one alkoxy group to produce a magnesium composition; and (3) producing a solid titanium catalyst through recrystallization by reacting the magnesium composition solution with a mixture of a titanium compound and a haloalkane compound; and optionally reacting the solid titanium catalyst with an additional titanium compound.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: April 19, 2005
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Ji-Yong Park, Yong-Bok Lee, Weon Lee
  • Patent number: 6878787
    Abstract: Supported stereospecific catalysts and processes for the stereotactic propagation of a polymer chain derived from ethylenically unsaturated monomers such as the polymerization of propylene to produce syndiotactic polypropylene or isotactic polypropylene. The supported catalyst comprises a stereospecific metallocene catalyst component and a co-catalyst component comprising an alkylalumoxane. Both the metallocene catalyst component and the co-catalyst component are supported on a particulate polyamide support comprising spheroidical particles of a polyamide having an average diameter with the range of 5-60 microns, and a porosity permitting distribution of a portion of the co-catalyst within the pore volume of the polyamide particles while retaining a substantial portion on the surface of the particles. The polyamide support is characterized by relatively low surface area, specifically a surface area less than 20 square meters per gram.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: April 12, 2005
    Assignee: Fina Technology, Inc.
    Inventors: David John Rauscher, William John Gauthier, Shady Nader Henry, Kai Hortmann
  • Patent number: 6878659
    Abstract: A solid catalyst component for olefin polymerization characterized by being formed from (a) a magnesium compound, (b) titanium tetrachloride, (c) a phthalic diester and a derivative thereof, and either (d1) a hydroxylated hydrocarbon compound (phenol, etc.) represented by a specific formula or (d2) a mercapto-containing hydrocarbon compound (thiophenol, etc.) represented by a specific formula. With a catalyst obtained from this solid catalyst component, an olefin polymer can be obtained in extremely high yield. In particular, a propylene polymer which retains high stereoregularity can be obtained in extremely high yield.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: April 12, 2005
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Kunihiko Tashino, Isa Nishiyama, Takuma Yoshida, Yukihiro Suzuki, Hayashi Ogawa, Maki Sato
  • Patent number: 6864208
    Abstract: A catalyst solid for olefin polymerization comprising A) at least one magnesium halide, B) at least one metallocene complex and C) at least one compound capable of forming metallocenium ions, is prepared by i) firstly preparing finely divided support particles consisting of the magnesium halide A) and an C1-C8-alcohol having a mean particle diameter of from 1 to 200 ?m from an adduct of the magnesium halide A) and a C1-C8-alcohol, where the adduct contains from 1.5 to 5 mol of the C1-C8-alcohol per mole of magnesium halide, ii) then depositing the compound C) capable of forming metallocenium ions on the finely divided support particles and iii) subsequently bringing the reaction product hereby obtained into contact with the metallocene complex B). This catalyst solid can be used for the polymerization or copolymerization of olefins.
    Type: Grant
    Filed: December 11, 2000
    Date of Patent: March 8, 2005
    Assignee: Basell Polyolefine GmbH
    Inventors: Carsten Süling, Wolf Spaether, Nicola Paczkowski, Joachim Rösch, Joachim Wulff-Döring, Wolfgang Bidell
  • Patent number: 6858685
    Abstract: There is provided a process for producing a catalyst for olefin polymerization, which comprises the step of contacting (1) an organ aluminum compound, (2) an external electron donor compound and (3) a solid catalyst component obtained by a process comprising the steps of; (i) reducing a titanium compound represented by the following formula [I] with an organomagnesium compound in the presence of a fine particle and an organosilicon compound having an Si—O bond to obtain a solid product, and (ii) contacting the solid product, a halogenocompound having halogenation ability and an internal electron donor compound to obtaining the solid catalyst component.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: February 22, 2005
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Ken Yoshimura, Shin-ichi Kumamoto, Makoto Satoh
  • Patent number: 6855654
    Abstract: The invention relates to a process for uniformly dispersing a transition metal metallocene complex on a carrier comprising (1) providing silica which is porous and has a particle size of 1 to 250 microns, having pores which have an average diameter of 50 to 500 Angstroms and having a pore volume of 0.5 to 5.0 cc/g; (2) slurrying the silica in an aliphatic solvent having a boiling point less than 110° C.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: February 15, 2005
    Assignee: ExxonMobil Oil Corporation
    Inventors: Yury V. Kissin, Robert I. Mink, Thomas E. Nowlin, Pradeep P. Shirodkar, Sandra D. Schregenberger, Grace O. Tsien
  • Patent number: 6841502
    Abstract: New ligands and compositions with bridged bis-aromatic ligands are disclosed that catalyze the polymerization of monomers into polymers. These catalysts with metal centers have high performance characteristics, including higher comonomer incorporation into ethylene/olefin copolymers, where such olefins are for example, 1-octene, propylene or styrene. The catalysts also polymerize propylene into isotactic polypropylene.
    Type: Grant
    Filed: April 23, 2003
    Date of Patent: January 11, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Thomas R. Boussie, Oliver Brümmer, Gary M. Diamond, Christopher Goh, Anne M. LaPointe, Margarete K. Leclerc, James A. W. Shoemaker
  • Patent number: 6841633
    Abstract: A lower ?-alkene polymerization heterogeneous solid catalyst which comprises a hydrated magnesium chloride derived procatalyst, a cocatalyst comprising an organoaluminium compound and a selectivity control agent comprising an ester or ether. The procatalyst comprises a titanium tetrahalide supported on a magnesium chloride ester complex precursor. Magnesium chloride alcoholate is reacted with an activated carbonyl compound in the presence of a hydrocarbon and/or halohydrocarbon solvent to generate insitu an internal electron donor ester component of the precursor. The precursor is reacted with a titanium tetrahalide optionally in the presence of a hydrocarbon and/or halohydrocarbon solvent.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: January 11, 2005
    Assignee: Reliance Industries Limited
    Inventors: Sumit Bhaduri, Virendra Kumar Gupta
  • Publication number: 20040266610
    Abstract: A MgCl2.mEtOH.nH2O adducts, where 3.4<m≦4.4, 0≦n≦0.7, characterized by an X-ray diffraction spectrum, taken under the condition set forth above, in which, in the range of 2&thgr; diffraction angles between 5° and 10°, at least two diffraction lines are present at diffraction angles 2&thgr; of 9.3±0.2°, and 9.9±0.2°, the most intense diffraction lines being the one at 2&thgr; of 9.3±0.2°, the intensity of the other diffraction line being less than 0.4 times the intensity of the most intense diffraction line. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and/or porosity with respect to the catalysts prepared from the adducts of the prior art.
    Type: Application
    Filed: May 17, 2004
    Publication date: December 30, 2004
    Inventors: Daniel Evangelisti, Gianni Collina, Ofelia Fusco, Mario Sacchetti
  • Publication number: 20040254063
    Abstract: The present invention relates to an adduct comprising MgCl2, an alcohol (ROH) in which R is a C1-C10 hydrocarbon group, and a compound containing a transition metal M selected from the Groups 3 to 11 or the lanthanide or actinide groups of the Periodic Table of the Elements (new IUPAC version) in an amount such as to give a weight of M atoms lower than 10% based on the total weight of the adduct. The catalyst components that are obtained by reacting the adducts with halogenating agents show very high specific activity.
    Type: Application
    Filed: April 22, 2004
    Publication date: December 16, 2004
    Inventors: Mario Sacchetti, Daniele Evangelisti, Diego Brita, Gianni Collina
  • Patent number: 6828396
    Abstract: There are provided: (I) a solid catalyst component (A-1) for olefin polymerization, which is obtained by a process comprising the step of contacting: (a-1) a carrier of carboxyl group-carrying polymer particles having an average particle diameter of from 1 to 300 &mgr;m, and (b) a transition metal compound of the number 4 group of metals in the periodic table of elements; (II) a catalyst for olefin polymerization, which is obtained by a process comprising the step of contacting: (A-1) the above solid catalyst component, and (B) at least one compound selected from the group consisting of an organoaluminum compound and an organoaluminumoxy compound; (III) a process for producing an olefin polymer, which comprises the step of polymerizing an olefin in the presence of the above catalyst; and (IV) a process for producing the above solid catalyst component (A-1), which comprises the step of contacting: (a-1) the above carrier, and (b) the above transition metal compound.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: December 7, 2004
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Tatsuya Miyatake, Masaaki Nabika, Seiki Kiuchi
  • Publication number: 20040235644
    Abstract: Process for preparing an olefin polymerisation catalyst component in the form of particles having a predetermined size range, said process comprising the steps of a) preparing a solution of a complex of a Group 2 metal and an electron donor by reacting a compound of said metal with said electron donor or a precursor thereof in an organic liquid reaction medium; b) adding said solution of said complex to at least one compound of a transition material to produce an emulsion, the dispersed phase of which contains more than 50 mol % of the Group 2 metal in said complex; c) agitating the emulsion, optionally in the presence of an emulsion stabilizer, in order to maintain the droplets of said dispersed phase within the average size range 5 to 200 m; d) solidifying said droplets of the dispersed phase; and e) recovering the solidified particles of the olefin polymerisation catalyst component, wherein a turbulence minimizing agent (TMA) is added to the reaction mixture before solidifying said droplets of the disperse
    Type: Application
    Filed: July 6, 2004
    Publication date: November 25, 2004
    Inventors: Peter Denifl, Timo Leinonen
  • Publication number: 20040229748
    Abstract: The present invention is to provide a composite carrier, which is spheric particles obtainable by contacting magnesium halide with one or more electron donor compounds to form a solution, then mixing the solution with silica material having an average particle size of less than 10 microns to form a mixture, and drying the mixture through spray drying process. The present invention is also to provide a catalyst component comprising said composite carrier. When the catalyst component is used together with a cocatalyst component in propylene polymerization, it exhibits higher polymerization activity and stereospecificity, and can be used to prepare high impact resistant ethylene-propylene copolymer having high ethylene content.
    Type: Application
    Filed: February 19, 2004
    Publication date: November 18, 2004
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY
    Inventors: Wei Chen, Tianyi Zhang, Hongbin Du, Xianzhi Xia, Tongxuan Zhang, Lixin Yan, Yisen Wang, Xinsheng Wang, Jiyu Li, Ping Gao, Maoping Yin, Luqiang Yu, Qingshan Ma, Xiaodong Wang
  • Patent number: 6806222
    Abstract: Disclosed is a solid titanium catalyst component which is obtained by a process comprising the steps of bringing (a) a liquid magnesium compound into contact with (b) a liquid titanium compound in the presence of (c) an organosilicon compound having no active hydrogen in an amount of 0.25 to 0.35 mol based on 1 mol of the magnesium compound (a), elevating the temperature of the resulting contact product to a temperature of 105 to 115° C. and maintaining the contact product at this temperature. The contact product may be further brought into contact with not more than 0.5 mol of the organosilicon compound having no active hydrogen (c). Also disclosed are an ethylene polymerization catalyst formed from the solid titanium catalyst component and an organometallic compound and an ethylene polymerization process using the catalyst. By the use of the solid titanium catalyst component, ethylene can be polymerized with high activities and an ethylene polymer having excellent particle properties can be prepared.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: October 19, 2004
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Tsuneo Yashiki, Shuji Minami
  • Patent number: 6803430
    Abstract: The present invention relates to a process for polymerizing olefin(s) in the presence of metallocene-type catalyst compound, an activator and an inorganic oxide support, a Group 13 containing compound and a carboxylic acid, where the carboxylic acid is added to the polymerization reactor separately. The invention also relates to a process for transitioning from one polymerization catalyst to another.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: October 12, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Agapios K. Agapiou, Chi-I Kuo
  • Patent number: 6803428
    Abstract: A process is provided for preparing a catalyst support for polymerizing &agr;-olefins comprising the steps of: (i) reacting, in the presence of a first electron donor, a chlorine-containing organic compound and a prior mixture of an alkylmagnesien and an aluminoxane and/or aluminosiloxane and/or alkylaluminum and, optionally, a second electron donor; and (ii) activating a product from step (i) in suspension in an inert liquid by means of an activation electron donor, together with the support thus obtained, a catalyst for polymerizing &agr;-olefins, comprising this catalyst support and a group IV transition metal halide, and a process for polymerizing &agr;-olefins, particularly propylene, comprising contacting the &agr;-olefin with the catalyst.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: October 12, 2004
    Assignee: Atofina
    Inventors: Thierry Saudemont, Jean Malinge, Jean-Loup Lacombe, Daniel Cochard, Henri Violle
  • Patent number: 6803427
    Abstract: The present invention relates to a method for producing a polymer and copolymer of ethylene, and more particularly to a method for producing an ethylene polymer and copolymer by reacting a compound of an organic metal of Group 2, 12, or 13 on the periodic table of elements with an alkoxy silane compound in the presence of a titanium catalyst, the said titanium catalyst being produced by a process of preparing a magnesium compound by contact-reacting a halogenated magnesium compound and alcohol, of reacting the said solution with an ester compound which contains at least one hydroxy group and a silicon compound containing an alkoxy group, and also of reacting it with a solid matter obtained by reaction of a mixture of a titanium compound and a silicon compound with a titanium compound.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: October 12, 2004
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Sang-Yull Kim, Weon Lee
  • Patent number: 6800703
    Abstract: A method for producing propylene polymers having a broad molecular weight distribution (MWD) is disclosed. The method uses a Ziegler catalyst and one silane donor. The silane donor is selected from vinyltrimethoxysilane or dicyclohexyldimethoxysilane. The polymers made by the method have an MWD greater than or equal to 7.0.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: October 5, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Mark K. Reinking, Douglas D. Klendworth
  • Patent number: 6770586
    Abstract: Solid catalyst components and catalysts which contain (a) magnesium compound, (b) titanium tetrachloride, and (c) a phthalic acid diester or its derivative are useful in the synthesis of olefin polymers in high yields. Particularly, propylene polymers can be obtain in very high yields while retaining high stereoregularity.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: August 3, 2004
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Kunihiko Tashino, Yukihiro Suzuki, Isa Nishiyama, Hayashi Ogawa, Takuma Yoshida, Motoki Hosaka, Maki Sato
  • Patent number: 6770718
    Abstract: A process is provided for the preparation of a solid catalyst component for the polymerization of olefins, comprising continuously feeding a liquid containing a titanium compound having at least one titanium-halogen bond into a vessel containing a solid comprising a magnesium halide and continuously discharging liquid from the vessel, whereby the concentration of the solid is maintained within the range of between 80 and 300 g/l, and the product between the average residence time of the liquid in the vessel and the concentration of the solid is maintained below 10,000 min*g/l. An advantage of the process is the reduced time and reactor volume necessary to prepare the catalysts, which show good activity and stereospecificity.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: August 3, 2004
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Massimo Covezzi, Anna Fait, Almerinda Di Benedetto
  • Patent number: 6767857
    Abstract: A pre-catalyst is formed by reacting butylethylmagnesium with an alcohol to form a magnesium alkoxide compound, followed by contacting the magnesium alkoxide compound with a phosporous compound to form a magnesium alkoxide phosphorous compound mixture. The magnesium alkoxide phosphorous compound mixture is subsequently reacted with TiCl4 to form a MgCl2 support. The MgCl2 support is then contacted with an internal donor while being heated to form a first catalyst slurry, which is then contacted with TiCl4 while being heated to form a second catalyst slurry. The second catalyst slurry is next contacted with TiCl4 while being heated to form a third catalyst slurry, which is washed and dried, resulting in a highly active pre-catalyst with controlled morphology. The pre-catalyst may be combined with one or more co-catalysts and optionally one or more external electron donors to form an active catalyst system, which may be used for polymerization of olefins.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: July 27, 2004
    Assignee: Fina Technology, Inc.
    Inventor: Joseph Lyndon Thorman
  • Publication number: 20040138054
    Abstract: A supported catalyst composition comprising the reaction product of i) a magnesium halide, ii) a solvent, iii) an electron donor compound, iv) and a transition metal compound; an inert support; and a cocatalyst composition wherein the supported catalyst is substantially free of other alcohols and wherein the molar ratio of the first alcohol to magnesium is less than or equal to 1.9. Methods of making supported catalyst compositions and methods of making polymers with supported catalysts.
    Type: Application
    Filed: July 15, 2002
    Publication date: July 15, 2004
    Inventors: Burkhard Eric Wagner, Michael D. Awe
  • Patent number: 6762145
    Abstract: The present invention relates to a catalyst for polymerization and co-polymerization of ethylene. More particularly, the present invention relates to a solid titanium catalyst containing magnesium, wherein said catalyst is produced by preparing a magnesium solution by contact-reacting a halogenated magnesium compound with alcohol; reacting said solution with an ester compound having at least one hydroxy group, or a phosphorous compound and a silicon compound having alkoxy groups; producing a solid component with an adjusted particle morphology by adding a mixture of a titanium compound and a silicon compound; reacting the same with an aluminum compound; and then reacting the same with a titanium compound, or a titanium compound and a vanadium compound. As a result, the catalyst of the present invention has high catalytic activity with excellent catalyst morphology.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: July 13, 2004
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Weon Lee, Sang-Yull Kim
  • Publication number: 20040132611
    Abstract: Supported catalyst composition for polymerization of olefins comprising: (i) a titanium compound, a magnesium compound and at least one electron donor compound; (ii) an oxygen containing polymer support; and (iii) a cocatalyst comprising at least one aluminum compound.
    Type: Application
    Filed: February 17, 2004
    Publication date: July 8, 2004
    Inventors: Mansour I. Taftaf, Serajudin F. Ahmed
  • Patent number: 6759361
    Abstract: Single-site catalyst systems useful for polymerizing olefins are disclosed. The catalyst systems comprise an organometallic complex and an activator. The complex includes a Group 3-10 transition metal, M, and at least one indenoindolyl ligand that is pi-bonded to M. The activator is a reaction product of an alkylaluminum compound and an organoboronic acid. Catalyst systems of the invention significantly outperform known catalyst systems that employ a metallocene complex and similar aluminoboronate activators.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: July 6, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Michael W. Lynch, Craig C. Meverden, Sandor Nagy, Karen L. Neal-Hawkins
  • Publication number: 20040127349
    Abstract: The invention provides a catalyst component for ethylene polymerization, comprising an inorganic oxide support, and at least one alkyl metal compound, at least one halide, at least one dihydrocarbyl magnesium compound, at least one difuntional compound that reacts with the dihydrocarbyl magnesium compound and at least one titanium compound. The invention also relates to a process for preparing the catalyst component and use thereof. The catalyst comprising the catalyst component exhibits good hydrogen response and activity balance, and that the amount of static charges carried by the catalyst solid component powders is remarkably reduced will facilitate the industrial-scale operation of polymerization.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 1, 2004
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, BEIJING RESEARCH INSTITUTE OF CHEMICAL INDUSTRY
    Inventors: Kejing Gao, Dongbing Liu, Wei Chen, Guirong Fan, Xinping Lu, Jingyan An, Ying Guan, Jun Zhang, Qinfang Zhao
  • Patent number: 6750170
    Abstract: Single site catalysts which contain a transition metal, a cyclopentadienyl may be activated with alumoxanes in the gas, solution or group-containing ligand, and a phosphinimine ligand slurry phase polymerization of olefin. Alumoxanes contain residual aluminum alkyls which may poison the catalysts. The residual aluminum alkyls may be bound and/or removed from the alumoxanes by treatment with carbohydrates such as cellulose, starch or sugar.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: June 15, 2004
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Peter Phung Minh Hoang, Dusan Jeremic, Jason Roy Kearns, Iain McLaren Coulter, Robert D. Donaldson
  • Publication number: 20040106513
    Abstract: The present invention relates to a catalyst composition for polymerization of olefins comprising: (a) a solid catalyst pre cursor comprising at least one vanadium compound, at least one magnesium compound and a polymeric material or a solid catalyst precursor comprising at least one vanadium compound, at least one further transition metal compound and/or at least one alcohol, at least one magnesium compound and a polymeric material; and (b) a cocatalyst comprising at least one aluminum compound; and to a method for preparing a catalyst composition according to the present invention, comprising the steps of: (a) combining the components of the solid catalyst precursor; and (b) activating the catalyst precursor with aluminum compound.
    Type: Application
    Filed: January 8, 2004
    Publication date: June 3, 2004
    Inventors: Akhlaq A. Moman, Khalid Al-Bahily, Atieh Abu-Raqabah, John Ledford, Orass M Hamed
  • Patent number: 6734134
    Abstract: A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation that includes treating a magnesium dialkoxide compound with two halogenating/titanating agents, the second stronger than the first, an organoaluminum preactivating agent, and a heat treatment. The catalyst may be used in the polymerization of olefins, particularly ethylene, to control the molecular weight distribution of the resulting polyolefins.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: May 11, 2004
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy
  • Publication number: 20040087435
    Abstract: Supported catalyst composition for polymerization of olefins comprising: (i) a titanium compound, a magnesium compound and at least one electron donor compound; (ii) a chlorine containing polymer support; and (iii) a cocatalyst comprising at least one aluminum compound, wherein the magnesium loading on the final catalyst is between about 0.20 and 6% by weight.
    Type: Application
    Filed: December 18, 2003
    Publication date: May 6, 2004
    Inventors: Mansour I. Taftaf, Serajudin F. Ahmed
  • Publication number: 20040077490
    Abstract: Process for the polymerization of olefins CH=CHR, in which R is hydrogen or a hydrocarbon radical with 1-12 carbon atoms, carried out in the presence of a catalyst component (A) comprising Mg, Ti and halogen as essential elements and of a catalyst component (B) capable to produce, under the same polymerization conditions, a polymer with an average particle size lower than that obtainable with the said catalyst component A. The said process provides polymers with increased bulk density.
    Type: Application
    Filed: September 26, 2003
    Publication date: April 22, 2004
    Inventors: Gianni Collina, Ofelia Fusco, Eduardo Chicote Carrion, Alberto Gil, Volker Dolle, Horst Klassen, Karl-Heinz Kagerbauer
  • Patent number: 6713585
    Abstract: The present invention provides an ethylene copolymer resin that has unique melt elastic properties not observed in ethylene copolymers heretofore known. Specifically, the ethylene copolymer resin of the present invention when in pelletized form has a reduction in melt elasticity (ER) of 10% or more to a final value of 1.0 or less upon rheometric low shear modification or solution dissolution. Moreover, the resin of the present invention when in reactor-made form exhibits at least a partially reversible increase of 10% or more in ER when pelletizing the same. An ethylene polymerization catalyst, a process of preparing the ethylene copolymer resin and a high-impact film are also provided herein.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: March 30, 2004
    Assignee: Equistar Chemicals, LP
    Inventors: Harilaos Mavridis, Mark K. Reinking, Ramesh N. Shroff, Joel A. Mutchler, Charles S. Holland, Keta M. Lindstrom, Kiran M. Gupte, Michael H. Treptau, Francis M. Mirabella
  • Publication number: 20040054101
    Abstract: This process for preparing a catalyst support for the homopolymerization or copolymerization of ethylene and &agr;-olefins is characterized in that at least one organochlorine compound and a premix of at least one alkylmagnesium and of at least one organoaluminum compound chosen from aluminoxanes, aluminosiloxanes and alkylaluminums are reacted together, in the presence of at least one aliphatic diether as electron donor.
    Type: Application
    Filed: September 9, 2003
    Publication date: March 18, 2004
    Inventors: Thierry Saudemont, Jean Malinge, Jean-Loup Lacombe
  • Patent number: 6706655
    Abstract: The invention relates to a new process for the preparation of an olefin polymerization catalyst component, as well as a new polymerization catalyst component and its use. In the process, a magnesium dialkyl or diahlide or alkyl alkoxide is reacted with an alcohol and the reaction product is reacted with an unsaturated dicarboxylic acid dihalide and a titanium tetrahalide. Especially good catalyst activity and morphology are achieved by using a polyhydric alcohol such as ethylene glycol.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: March 16, 2004
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Timo Leinonen, Sirpa Ala-Huikku
  • Publication number: 20040048736
    Abstract: Bimetallic catalyst for producing polyethylene resins with a bimodal molecular weight distribution, its preparation and use. The catalyst is obtainable by a process which includes contacting a support material with an organomagnesium component and carbonyl-containing component. The support material so treated is contacted with a non-metallocene transition metal component to obtain a catalyst intermediate, the latter being contacted with an aluminoxane component and a metallocene component. This catalyst may be further activated with, e.g., alkylaluminum cocatalyst, and contacted, under polymerization conditions, with ethylene and optionally one or more comonomers, to produce ethylene homo- or copolymers with a bimodal molecular weight distribution and improved resin swell properties in a single reactor. These ethylene polymers are particularly suitable for blow molding applications.
    Type: Application
    Filed: May 29, 2003
    Publication date: March 11, 2004
    Inventors: Robert Ivan Mink, Thomas Edward Nowlin, Pradeep P. Shirodkar, Gary M. Diamond, David Bruce Barry, Chunming Wang, Hitesh A. Fruitwala, Shih-May Christine Ong
  • Patent number: 6703455
    Abstract: A process for the preparation of an olefin polymerization catalyst component containing a magnesium dihalide, a titanium tetrahalide, and a dicarboxylic acid di- oligo- or polyester as internal electron donors is disclosed. A catalyst component and its use for the polymerization of &agr;-olefins such as propene are also disclosed.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: March 9, 2004
    Assignee: W. R. Grace & Co.-CONN
    Inventors: Thomas Garoff, Timo Leinonen, Sirpa Ala-Huikku