Molybdenum Containing Patents (Class 502/206)
  • Patent number: 4797381
    Abstract: Disclosed is a method of making an active and abrasion resistant catalyst composition comprising at least 5 weight percent alumina support and at most 95 percent of a complex oxide composition having the empirical formula:VSb.sub.m A.sub.a H.sub.b C.sub.c O.sub.x,whereA is one or more of W, Sn, Mo, B, P and Ge;H is one or more of Cu, Ag, Nb, Ta, Ti, Fe, Co, Ni, Cr, Pb, Mn, Zn, Se, Te, Ga, In and As;C is one or more of an alkali metal, alkaline earth metal, and rare earths; andwhere m is from 0.01 and up to 20; a is 0-10; b is 0-20; c is 0-20 (usually 0-1); the ratio (a+b+c):(1+m) is 0.01-6; wherein x is determined by the oxidation state of the other elements, which method comprises mixing a hydrosol or gel of boehmite with a slurry or solution containing the other batch materials containing the elements of said formula, and thereafter drying and calcining the resultant solid.
    Type: Grant
    Filed: July 30, 1987
    Date of Patent: January 10, 1989
    Assignee: The Standard Oil Company
    Inventors: Joseph P. Bartek, Andrew T. Guttmann, James F. Brazdil
  • Patent number: 4788173
    Abstract: Ammoxidation of C.sub.3 to C.sub.5 acyclic alkanes with NH.sub.3 and O.sub.2 using (1) a mole ratio of alkane:NH.sub.3 in the range from 2 to 16 and a mole ratio of alkane:O.sub.2 in the range 1 to 10 and (2) a mixture of particulate catalyst compositions, the first being especially effective to promote formation of an unsaturated nitrile and an olefin from the paraffin, and the second catalyst composition being especially effective to promote the conversion of the olefin to the unsaturated nitrile. Catalytic compositions useful in the process are disclosed.
    Type: Grant
    Filed: July 21, 1986
    Date of Patent: November 29, 1988
    Assignee: The Standard Oil Company
    Inventors: Linda C. Glaeser, James F. Brazdil
  • Patent number: 4783545
    Abstract: Ammoxidation of C.sub.3 to C.sub.5 acyclic alkanes with NH.sub.3 and O.sub.2 using (1) a mole ratio of alkane:NH.sub.3 in the range from 2 to 16 and a mole ratio of alkane:O.sub.2 in the range 1 to 10 and (2) a mixture of particulate catalyst compositions, the first being especially effective to promote formation of an unsaturated nitrile and an olefin from the paraffin, and the second catalyst composition being especially effective to promote the conversion of the olefin to the unsaturated nitrile. Catalytic compositions useful in the process are disclosed.
    Type: Grant
    Filed: December 23, 1987
    Date of Patent: November 8, 1988
    Assignee: The Standard Oil Company
    Inventors: Linda C. Glaeser, James F. Brazdil, Jr., Mark A. Toft
  • Patent number: 4757044
    Abstract: A new catalyst system for the conversion of short-chain aliphatic alcohols to hydrocarbon having the formula[M].sup.m+ [X.sup.p+ Y.sub.a Z.sub.12-a O.sub.40 ].sup.-(8-p)wherein M is selected from at least one element from Group IIIA including lanthanides and actinides, or mixtures thereof,X is at least one element selected from P, Si, As, Ti, Zr, B, Co, Cu or Sn,Y and Z are independently selected from W, Mo, or V, P=is the valence of X usually within 2 to 5,m=8-pO<a.ltoreq.12.
    Type: Grant
    Filed: April 17, 1985
    Date of Patent: July 12, 1988
    Assignee: The Standard Oil Company
    Inventors: Arthur J. Cooper, Frederick A. Pesa, Janie K. Currie
  • Patent number: 4755497
    Abstract: The invention is a solid state preparation of copper aluminum borate catalyst comprising: dry mixing solid reagents comprising suitable precursors of copper oxide (CuO), aluminum oxide (Al.sub.2 O.sub.3) and boron oxide (B.sub.2 O.sub.3) with a solid binder which aids compaction of the solid reagents, is essentially inert to said reagents, and burns away upon calcination, said dry mixing resulting in formation of a superficially dry copper aluminum borate precursor; compacting the dry precursor; and calcining the precursor at a sufficiently high temperature to form crystalline copper aluminum borate.
    Type: Grant
    Filed: October 28, 1986
    Date of Patent: July 5, 1988
    Assignee: Amoco Corporation
    Inventors: Richard E. De Simone, Eric J. Moore, Bruce I. Rosen
  • Patent number: 4752623
    Abstract: Mixed alcohols are produced from carbon monoxide and hydrogen gases using an easily prepared catalyst/co-catalyst metal catalyst. The catalyst metals are molybdenum, tungsten or rhenium. The co-catalyst metals are cobalt, nickel or iron. The catalyst is promoted with a Fischer-Tropsch promoter like an alkali or alkaline earth series metal or a smaller amount of thorium and is further treated by sulfiding. The composition of the mixed alcohols fraction can be selected by selecting the extent of intimate contact among the catalytic components.
    Type: Grant
    Filed: December 17, 1986
    Date of Patent: June 21, 1988
    Assignee: The Dow Chemical Company
    Inventors: Rex R. Stevens, Mark M. Conway
  • Patent number: 4746641
    Abstract: Disclosed is a process for ammoxidation of paraffins containing 2-5 C atoms over a vanadium-antimony oxide catalyst, the catalyst, and a precursor slurry for making such catalyst.
    Type: Grant
    Filed: April 17, 1985
    Date of Patent: May 24, 1988
    Assignee: Standard Oil Company
    Inventors: Andrew T. Guttmann, Robert K. Grasselli, James F. Brazdil
  • Patent number: 4743574
    Abstract: A cobalt-molybdenum catalyst and a method for preparing same, said catalyst useful for the hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of distillates of petroleum. The catalyst is supported by aluminum phosphate or an aluminum borate. In a preferred embodiment the catalyst has a low cobalt content, between 0.5% and 2.0% by weight calculated as CoO, and a molybdenum content of between 10% and 20% by weight, calculated as MoO.sub.3. The phosphorus or boron compounds added to the aluminum before the impregnation of the active metals prevents the formation of undesirable compounds of the CoAl.sub.2 O.sub.4 type, which is inactive in HDS. It is for that reason that the catalyst has a formulation with 70% less cobalt than the previous state-of-the-art catalysts. Very small crystals, highly dispersed on the surface of the catalyst, whose formula is CoMoO.sub.4, are responsible for the stability and the high level of activity in HDS and HDN which results.
    Type: Grant
    Filed: January 9, 1986
    Date of Patent: May 10, 1988
    Assignee: Intevep, S.A.
    Inventors: Alfredo L. Morales, Juan J. Garcia
  • Patent number: 4729979
    Abstract: Copper aluminum borate which is reducible under Temperature Programmed Reduction at a temperature no more than 350.degree. C. and/or has a surface area of at least 5 m.sup.2 /g and a pore volume of at least 0.04 cc per gram.
    Type: Grant
    Filed: March 11, 1985
    Date of Patent: March 8, 1988
    Assignee: Amoco Corporation
    Inventor: Alex Zletz
  • Patent number: 4724226
    Abstract: A boria promoted hydrotreating catalyst is made having a microporous region with high surface area for desulfurization and preferably a macroporous region to transport large metal containing molecules into the interior of the catalyst particle. The alumina support has 0.1 to 5% boria to form a hydrotreating catalyst which minimizes the formation of tetrahedrally coordinated boron. It is calcined to a temperature of 1400.degree. F. or less to maintain a high desulfurization activity. Conventional hydrotreating catalytic elements from Groups VB, VIB, VIIIB and VA of the Periodic Table are added. Less than 75% of the boron is in tetrahedral coordination as measured by Magic Angle Spinning .sup.11 B NMR.
    Type: Grant
    Filed: September 23, 1986
    Date of Patent: February 9, 1988
    Assignee: W. R. Grace & Co.
    Inventors: Wu-Cheng Cheng, Carmo J. Pereira
  • Patent number: 4720474
    Abstract: The addition of redox-active metal components and ligands, alternatively or simultaneously, results in increased conversion and selectivity in the palladium-catalyzed oxidation of olefins to carbonyl products in the presence of polyoxoanions. In preferred modes, heteropolyoxoanions and isopolyoxoanions containing tungsten, molybdenum and vanadium, individually or in combination, are described. The use of copper as the redox-active metal component shows reduced allylic reactivity. The elimination of chloride from the catalyst system provides substantial engineering advantages over the prior art, particularly, the reduction of corrosion and chloro-organic by-product formation. The use of redox-active metal components and/or ligands makes the palladium-polyoxoanion catalyst system industrially practicable.
    Type: Grant
    Filed: September 24, 1985
    Date of Patent: January 19, 1988
    Assignee: Catalytica Associates
    Inventors: Janis Vasilevskis, Jacques C. De Deken, Robert J. Saxton, Paul R. Wentrcek, Jere D. Fellmann, Lyubov S. Kipnis
  • Patent number: 4711867
    Abstract: A catalystic composition suitable for producing acrylonitrile from propylene, ammonia and oxygen (or oxygen-containing gas), which composition is represented by the following formula:(Mo).sub.a (W).sub.b (Bi).sub.c (Pb).sub.d (B).sub.e (Sb).sub.f (X).sub.g (O).sub.h(where: X is chromium or iron; a, b, c, d, e, f, g and h denote respectively number of atoms for molybdenum, tungsten, bismuth, lead, boron, antimony, X and oxygen, and wherein, if it is given that a+b=12, 0.ltoreq.b.ltoreq.7, 0.4.ltoreq.c.ltoreq.7, 2.ltoreq.d.ltoreq.12, 0.2/22.ltoreq.e/a.ltoreq.40/22, 0.ltoreq.f/a.ltoreq.25/22, and 0.ltoreq.g/a.ltoreq.3/22; and h denotes the number of oxygen necessary for satisfying the atomic valence for the individual constituent elements other than oxygen).
    Type: Grant
    Filed: February 27, 1986
    Date of Patent: December 8, 1987
    Assignee: Mitsubishi Chemical Industries Limited
    Inventors: Masakatsu Hatano, Kazunori Oshima, Tatsuya Ihara, Kenichi Kiyono
  • Patent number: 4661525
    Abstract: A method is provided for preparing a mixture of lower aliphatic alcohols characterized by containing a substantial proportion of aliphatic alcohols having from 2 to 6 carbon atoms by reacting a mixture of carbon monoxide and hydrogen under suitable conditions of temperature and pressure in the presence of a catalyst comprising molybdenum and a metal from the group consisting of cobalt, iron and nickel, said catalyst being modified by the addition of a promoter from the class consisting of potassium, cesium and rubidium, said promoter being employed at a concentration ranging from about 1.8 to 13.0 micromoles of said alkali per square meter of surface area of said catalyst.
    Type: Grant
    Filed: April 29, 1985
    Date of Patent: April 28, 1987
    Assignee: Texaco Inc.
    Inventors: Michael V. Grazioso, Edwin R. Kerr, deceased
  • Patent number: 4645753
    Abstract: Composition comprising a crystalline aluminum borate and from about 0.05 to 50 wt % at least one compound selected from the group consisting of an alkali metal and alkaline earth metal compound based on the weight of the aluminum borate.
    Type: Grant
    Filed: March 13, 1985
    Date of Patent: February 24, 1987
    Assignee: Standard Oil Company
    Inventors: Alex Zletz, Larry C. Satek, Jeffrey T. Miller
  • Patent number: 4636487
    Abstract: A highly active promoted catalyst, for use in hydrotreating oils, comprising a support, selected from the group consisting of alumina, silica and silica-alumina, and a promoter comprising a hydroxymercaptide of one or more metals, wherein said metals are selected from Group IB, Group VIB, Group VIIB or Group VIII of the Periodic Table, is economically produced without the use of a high temperature calcination or high temperature presulfiding step. In accordance with the invention, the hydroxymercaptide promoter used in said promoted catalyst may be the reaction product of a mercaptoalcohol and one or more metal compounds, wherein said metal compounds comprise metals selected from Group IB, Group VIB, Group VIIB or Group VIII of the Periodic Table.
    Type: Grant
    Filed: September 16, 1985
    Date of Patent: January 13, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Stephen L. Parrott, Simon G. Kukes, Howard F. Efner
  • Patent number: 4607056
    Abstract: A method is provided for preparing a mixture of lower aliphatic alcohols characterized by containing a substantial proportion of aliphatic alcohols having from 2 to 6 carbon atoms by reacting a mixture of carbon monoxide and hydrogen under suitable conditions of temperature and pressure in the presence of a catalyst comprising molybdenum, a metal from the group consisting of cobalt, iron and nickel, and rhenium, said catalyst being modified by the addition of a promoter from the class consisting of potassium, cesium and rubidium, said promoter being employed at a concentration ranging from about 1.8 to 13.0 micromoles of said alkali per square meter of surface area of said catalyst.
    Type: Grant
    Filed: July 3, 1985
    Date of Patent: August 19, 1986
    Assignee: Texaco Inc.
    Inventors: Michael V. Grazioso, David A. Storm
  • Patent number: 4607055
    Abstract: A method is provided for preparing a mixture of lower aliphatic alcohols characterized by containing a substantial proportion of aliphatic alcohols having from 2 to 6 carbon atoms by reacting a mixture of carbon monoxide and hydrogen under suitable conditions of temperature and pressure in the presence of a catalyst comprising molybdenum, a metal from the group consisting of cobalt, iron and nickel, and silver, said catalyst being modified by the addition of a promoter from the class consisting of potassium, cesium and rubidium, said promoter being employed at a concentration ranging from about 1.8 to 13.0 micromoles of said alkali per square meter of surface area of said catalyst.
    Type: Grant
    Filed: July 3, 1985
    Date of Patent: August 19, 1986
    Assignee: Texaco Inc.
    Inventors: Michael V. Grazioso, David A. Storm
  • Patent number: 4596784
    Abstract: Unsaturated carboxylic acids are prepared by the catalytic vapor phase oxidation of unsaturated aldehydes. A novel process for the preparation of these catalysts is disclosed. The catalyst has the following formula:Mo.sub.12 P.sub.a X.sup.1.sub.b V.sub.c As.sub.d Cu.sub.e Sb.sub.f X.sup.2.sub.g O.sub.xwhereina-g represent the number of atoms of the particular element depicted;X.sup.1 and X.sup.2 are other elements; andx is the number of oxygens required to satisfy the valence requirements of the other elements present.
    Type: Grant
    Filed: March 13, 1985
    Date of Patent: June 24, 1986
    Assignee: Rohm and Haas Company
    Inventors: William J. Kennelly, Lawrence S. Kirch
  • Patent number: 4560673
    Abstract: A vapor phase catalytic process for making acrylic acid from acrolein by oxidation thereof with molecular oxygen, optionally in the presence of steam. A new catalyst comprising a complex oxide catalyst of Mo, V and Zr.
    Type: Grant
    Filed: March 20, 1985
    Date of Patent: December 24, 1985
    Assignee: The Standard Oil Company
    Inventor: Wilfrid G. Shaw
  • Patent number: 4556731
    Abstract: Iron-bismuth-molybdate catalysts further containing specific promoter elements have been found to exhibit excellent redox stability even under high stress conditions in the catalytic oxidation of olefins to unsaturated aldehydes and acids.
    Type: Grant
    Filed: April 19, 1982
    Date of Patent: December 3, 1985
    Assignee: The Standard Oil Company
    Inventors: Andrew T. Guttmann, Robert K. Grasselli
  • Patent number: 4552978
    Abstract: A vapor phase catalytic process for making an unsaturated carboxylic acid from an olefinically unsaturated aldehyde, particularly acrylic acid from acrolein, by oxidation thereof with molecular oxygen, optionally in the presence of steam and a new catalyst comprising a complex oxide catalyst of Mo, V and Zr.
    Type: Grant
    Filed: December 12, 1983
    Date of Patent: November 12, 1985
    Assignee: The Standard Oil Company
    Inventor: Wilfrid G. Shaw
  • Patent number: 4544473
    Abstract: A catalytic body which is substantially amorphous is formed from at least two materials vacuum deposited on a cool substrate or sprayed on a cool surface to provide a local order non-equilibrium structural configuration. The amorphous body comprises a composition of at least one metal and a second component which maintains the amorphous character of the composition. The body has an increased number and desired type of catalytically active sites. In most applications, the composition includes at least initially a component which is removed by leaching or vaporization to leave a rough surface with a large surface to volume ratio. The resulting composition is sometimes annealed to relax or modify the local structure thereof to provide a more reactive structural configuration. In an electrode form of the invention, the catalytic body is highly conductive, resistant to corrosion and degradation under current reversal and has low overvoltage characteristics when used in electrochemical cells.
    Type: Grant
    Filed: May 12, 1980
    Date of Patent: October 1, 1985
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Krishna Sapru
  • Patent number: 4537874
    Abstract: A catalyst for the production of unsaturated aldehydes is provided which is represented by the general formulaBi.sub.a W.sub.b Fe.sub.c Mo.sub.d A.sub.e B.sub.f C.sub.g D.sub.h O.sub.xwherein Bi represents bismuth, W represents tungsten, Fe represents iron, Mo represents molybdenum, O represents oxygen, A represents nickel and/or cobalt, B represents at least one element selected from the group consisting of alkali metals, alkaline earth metals and thallium, C represents at least one element selected from the group consisting of phosphorus, arsenic, boron, antimony, tin, cerium, lead and niobium, D presents at least one element selected from the group consisting of silicon, aluminum, zirconium and titanium, a, b, c, d, e, f, g, h and x represent the atomic ratios of the individual elements, and when d is taken as 12, a=0.1-10.0, b=0.5-10.0 (provided that a/b=0.01-6.0), c=0.1-10.0, e=2.0-20.0, f=0.001-10.0, g=0-10.0, and h=0-30, and x takes a number determined by the atomic valences of the individual elements.
    Type: Grant
    Filed: October 18, 1983
    Date of Patent: August 27, 1985
    Assignee: Nippon Shokubai Kagaku Kogyo Co Ltd
    Inventors: Takahisa Sato, Masahiro Takata, Michio Ueshima, Isao Nagai
  • Patent number: 4530916
    Abstract: A catalyst having heteropoly-acid structure and the general formula:Mo.sub.a V.sub.b P.sub.c Cu.sub.d As.sub.e X.sub.f O.sub.gwherein, X represents one or more elements selected from the group consisting of tin, lead, cerium, cobalt, iron, zirconium, thorium, tungsten, germanium, nickel, rhenium, bismuth, antimony, chromium, boron, magnesium, silver, aluminum, zinc and titanium and a, b, c, d, e, f and g represent the atomic ratio of the elements where,a is 10,b is a number of 3 or less than 3 excluding 0,c is a number of 0.5 to 6,d is a number of 3 or less than 3 excluding 0,e is a number of 3 or less than 3 excluding 0,f is a number of 0 to 3,g is a number determined depending on the valency and atomic ratio of other elements.There is also provided a process for producing methacrylic acid by oxidizing methacrolein with molecular oxygen or molecular oxygen-containing gas in the presence of the catalyst defined above.
    Type: Grant
    Filed: November 28, 1983
    Date of Patent: July 23, 1985
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Mutsumi Matsumoto, Hideki Sugi
  • Patent number: 4467113
    Abstract: A catalyst having heteropoly-acid structure and the general formula:Mo.sub.a V.sub.b P.sub.c Cu.sub.d As.sub.e X.sub.f O.sub.gwherein,X represents one or more elements selected from the group consisting of tin, lead, cerium, cobalt, iron, zirconium, thorium, tungsten, germanium, nickel, rhenium, bismuth, antimony, chromium, boron, magnesium, silver, aluminum, zinc and titanium and a, b, c, d, e, f and g represent the atomic ratio of the elements where,a is 10,b is a number of 3 or less than 3 excluding 0,c is a number of 0.5 to 6,d is a number of 3 or less than 3 excluding 0,e is a number of 3 or less than 3 excluding 0,f is a number of 0 to 3,g is a number determined depending on the valency and atomic ratio of other elements.There is also provided a process for producing methacrylic acid by oxidizing methacrolein with molecular oxygen or molecular oxygen-containing gas in the vapor phase in the presence of the catalyst defined above.
    Type: Grant
    Filed: November 19, 1979
    Date of Patent: August 21, 1984
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Mutsumi Matsumoto, Hideki Sugi
  • Patent number: 4424142
    Abstract: A catalyst for the hydrotreatment of heavy hydrocarbon oils, which is prepared by supporting more than 2% by weight of VS.sub.x, wherein x represents about 1.1-1.59 in terms of an atomic ratio of S/V, on a substrate composed of a clay mineral which consists of magnesium silicate as a major component and having a double-chain structure and a process for preparing the catalyst are provided. The catalyst is prepared by accumulating the VS.sub.x on the substrate using a heavy hydrocarbon oil which contains particularly large amounts of vanadium and sulfur.
    Type: Grant
    Filed: March 12, 1981
    Date of Patent: January 3, 1984
    Assignee: Chiyoda Chemical Engineering & Construction Co., Ltd.
    Inventors: Sachio Asaoka, Yoshimi Shiroto, Munekazu Nakamura, Takeo Ono
  • Patent number: 4424141
    Abstract: Bismuth molybdate catalysts formed from a precatalyst slurry which uses an organic liquid or mixture of an organic liquid and water as the liquid medium of the slurry exhibit superior catalytic properties.
    Type: Grant
    Filed: January 5, 1981
    Date of Patent: January 3, 1984
    Assignee: The Standard Oil Co.
    Inventors: Robert K. Grasselli, Dev D. Suresh, Maria S. Friedrich
  • Patent number: 4422960
    Abstract: A catalyst for hydrotreating a heavy hydrocarbon oil containing asphaltenes comprises a porous carrier composed of one or more inorganic oxides of at least one element selected from among those of Groups II, III and IV of the Periodic Table, and at least one catalytic metal component composited with the carrier. The metal of the catalytic metal component is selected from among those of Groups VB, VIB, VIII and IB of the Periodic Table. The catalyst contains about 1 to 30% by weight of such catalytic metal component and has the following pore characteristics with regard to its pores having a diameter of 75 .ANG. or more: an average pore diameter APD of about 180 to 500 .ANG., a total pore volume PV, expressed in cc/g, being equal to or greater than a value X ##EQU1## the volume of pores with a diameter of about 180 to 500 .ANG. being at least about 0.2 cc/g, the volume of pores with a diameter of at least 1,500 .ANG. being not greater than about 0.03 cc/g, and a total surface area being at least about 60 m.
    Type: Grant
    Filed: December 14, 1980
    Date of Patent: December 27, 1983
    Assignee: Chiyoda Chemical Engineering & Construction Co., Ltd.
    Inventors: Yoshimi Shiroto, Takeo Ono, Sachio Asaoka, Munekazu Nakamura
  • Patent number: 4415475
    Abstract: A process for preparing 2-butenolide, a useful product for the manufacture of gamma-butyrolactone, is disclosed which comprises reacting furan with oxygen in the presence of a catalytically effective amount of a catalyst comprising a mixed metal oxide containing titanium, boron and molybdenum.
    Type: Grant
    Filed: June 18, 1982
    Date of Patent: November 15, 1983
    Assignee: National Distillers and Chemical Corporation
    Inventor: Thomas S. Brima