And Group Viii Metal Containing (i.e., Iron Or Platinum Group) Patents (Class 502/207)
  • Publication number: 20010044376
    Abstract: A catalyst body comprising a carrier and a catalyst layer containing an alkali metal and/or an alkaline earth metal, loaded on the carrier, which catalyst further contains a substance capable of reacting with the alkali metal and/or the alkaline earth metal, dominating over the reaction between the main components of the carrier and the alkali metal and/or the alkaline earth metal. With this catalyst body, the deterioration of the carrier by the alkali metal and/or the alkaline earth metal is prevented; therefore, the catalyst body can be used over a long period of time.
    Type: Application
    Filed: December 14, 2000
    Publication date: November 22, 2001
    Inventors: Naomi Noda, Junichi Suzuki, Takashi Harada
  • Patent number: 6316382
    Abstract: The invention concerns a process for sulphurizing supported catalysts containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB, group VB and group VIB, said process being characterized in that said catalyst is pre-reduced with at least one reducing gas other than hydrogen before sulphurizing said catalyst. The invention also concerns the sulfide catalysts obtained by the process of the present invention as well as the use of the sulfide catalyst in a process for hydrocracking and hydrotreatment of hydrocarbon-containing feeds.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: November 13, 2001
    Assignee: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6251261
    Abstract: The invention relates to a hydrocracking catalyst that comprises at least one oxide-type amorphous or poorly crystallized matrix, at least one element of group VB, preferably niobium, and at least one clay that is selected from the group that is formed by the 2:1 dioctahedral phyllosilicates and the 2:1 trioctahedral phyllosilicates, optionally at least one element that is selected from among the elements of group VIB and group VIII, optionally at least one element that is selected from the group that is formed by P, B, Si, and optionally at least one element of group VIIA. The invention also relates to the use of this catalyst in hydrocracking of feedstocks that contain hydrocarbon.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: June 26, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
  • Patent number: 6242378
    Abstract: The invention concerns a process for sulphurising supported catalysts containing at least one element selected from group IIIB, including the lanthanides and actinides, group IVB and group VB, said process being characterized in that said catalyst is sulphurised using a mixture containing at least one source of elemental sulphur and at least one source of carbon in an autogenous or inert atmosphere. Also disclosed are sulphurised catalysts obtained by the process of the invention, the use of the catalysts in processes for hydrocracking and hydrotreatment of hydrocarbon-containing feeds.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: June 5, 2001
    Assignee: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Patent number: 6197717
    Abstract: A process and catalyst are provided for dehydrogenating a hydrocarbon feedstock and producing an olefinic product. The process comprises contacting the feedstock at dehydrogenation conditions with a dehydrogenation catalyst comprising from about 0.01 weight percent to about 5.0 weight percent of a platinum group metal, from about 0.02 weight percent to about 10.0 weight percent of zinc, and a support component comprising borosilicate and an alkali metal.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: March 6, 2001
    Assignee: BP Amoco Corporation
    Inventors: Bruce D. Alexander, George A. Huff, Jr., Mark P. Kaminsky
  • Patent number: 6194345
    Abstract: The invention relates to a process of activating a supported acid catalyst, and consists in the conversion of Lewis acid-type acid sites which are deposited on a solid substrate into activated acid sites in a non-oxydizing acid medium. The catalyst is exposed to a phase of activation in a medium containing a holohydric acid or a halohydric acid precursor, in the presence of at least one preferably parafinic hydrocarbon or hydrocarbon derivative, at a temperature greater than 20° and preferably between 100° C. and 250° C., and at a pressure of between 105 and 50,106 Pa, for a length of time sufficient to ensure conversion into activated acid sites.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: February 27, 2001
    Assignees: Total Raffinage Distribution S.A., Akzo Nobel N.V.
    Inventors: Peter Mangnus, Alain Milan, Georges Szabo
  • Patent number: 6177380
    Abstract: A carbon supported solid catalyst suitable for the vapor phase carbonylation of lower aliphatic alcohols, ethers, ester, and ester-alcohol mixtures, and desirably, methanol, to produce carboxylic acid, esters and mixtures thereof. The solid supported catalyst includes an effective amount of iridium and gold associated with a solid carbon support, and a halogen promoter.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: January 23, 2001
    Assignee: Eastman Chemical Company
    Inventors: Joseph Robert Zoeller, Andy Hugh Singleton, Gerald Charles Tustin, Donald Lee Carver
  • Patent number: 6149799
    Abstract: The invention concerns a catalyst for hydrorefining and hydroconverting hydrocarbon feeds, comprising a mixed sulphide comprising at least two elements selected from elements with an atomic number selected from the group formed by the following numbers: 3, 11, 12, 19 to 33, 37, to 51, 55 to 83, 87 to 103, characterized in that the mixed sulphide results from a combination of at least one element the sulphide of which has a bond energy between the metal and sulphur of less than 50.+-.3 kcal/mol (209.+-.12 kJ/mol) and at least one element the sulphide of which has a bond energy between the metal and sulphur of more than 50.+-.3 kcal/mol (209.+-.12 kJ/mol), the mixed sulphide thus having a mean bond energy between the metal and sulphur which is in the range 30 to 70 kcal/mol (125 to 293 kJ/mol).
    Type: Grant
    Filed: January 14, 1998
    Date of Patent: November 21, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Pascal Raybaud, Herve Toulhoat, Slavik Kasztelan
  • Patent number: 6114571
    Abstract: A catalyst for preparing vinyl acetate in the gas phase from ethylene, acetic acid and oxygen or oxygen-containing gases with, at the same time, low-high boiler formation which catalyst comprises palladium and/or its compounds, gold and/or its compounds, moron or boron compounds and alkali metal compounds on a particular support.
    Type: Grant
    Filed: November 2, 1998
    Date of Patent: September 5, 2000
    Assignee: Celanese GmbH
    Inventors: Roland Abel, Ioan Nicolau, Erich Hopf, Rainer Kiemel
  • Patent number: 6090745
    Abstract: The invention provides a method for preparing catalysts, containing metals of groups VI and VIII on a carrier. The metals of groups VI and VIII metals are introduced in the form of a compound of formula M.sub.x A B.sub.12 O.sub.40 in which M is cobalt and/or nickel, A is phosphorus, silicon and/or boron, B is molybdenum and/or tungsten and x is 2 or more, 2.5 or more, or 3 or more depending on whether A is respectively phosphorus, silicon or boron. The catalysts thus obtained are useful for hydro-treating hydrocarbon feedstocks.
    Type: Grant
    Filed: March 22, 1999
    Date of Patent: July 18, 2000
    Assignee: Elf Antar France
    Inventors: Jean-Luc DuBois, Edmond Payen, Michel Fournier, Pascal Blanchard, Anne Griboval
  • Patent number: 6051528
    Abstract: An amorphous alloy catalyst containing nickel and phosphorus comprising a porous carrier, a Ni--P amorphous alloy supported on the carrier, and a pre-supported catalytic component for inducing and catalyzing the formation of the Ni--P amorphous alloy onto the carrier. In a preferred embodiment, the catalyst contains 0.15-30 wt % of Ni, based on the total weight of the catalyst, 0.03-10 wt % of P, based on the total weight of the catalyst, 0.01-3.5 wt % of B, based on the total weight of the catalyst. The nickel exists in the form of Ni--P or Ni--B amorphous alloy, the atomic ration Ni/P in the Ni--P amorphous alloy is in range of 0.5-10, the atomic ratio Ni/B in the Ni--B amorphous alloy is in range of 0.5-10. The catalyst may further comprise from 0.01 to 20 wt % of a metal additive (M), based on the total weight of the catalyst. The metal additive (M) refers to one or more metal elements, except Ni, which can be reduced from the corresponding salt into its elemental form.
    Type: Grant
    Filed: June 3, 1998
    Date of Patent: April 18, 2000
    Assignees: China Petro-Chemical Corporation, Research Institue of Petroleum Processing Sinopec
    Inventors: Aizeng Ma, Wanzhen Lu, Enze Min
  • Patent number: 6037301
    Abstract: The present invention discloses an amorphous alloy catalyst containing boron, which is composed of a porous carrier, a Q-B amorphous alloy, and a metal additive (M), the content of Q-B amorphous alloy together with metal additive is from 0.1 to 60 wt %, based on the total weight of the catalyst, in which the atomic ratio (Q+M)/B is 0.5-10, and the Q/M atomic ratio is 0.1-1000; wherein Q represents an metal selected from group VIII and B represents boron; and said metal additive (M) refers to those one or more metal elements which can be reduced to its/their elemental states from the corresponding salts by a solution containing BH.sub.4.sup.- with the exception that M is not the one which is used as Q. Said catalyst exhibits high catalytic hydrogenation activity.
    Type: Grant
    Filed: April 15, 1998
    Date of Patent: March 14, 2000
    Assignees: China Petro-Chemical Corporation, Research Institute of Petroleum Processing Sinopec, Fudan University
    Inventors: Enze Min, Jingfa Deng, Aizeng Ma, Wanzhen Lu
  • Patent number: 6037300
    Abstract: The invention concerns a hydrotreated catalyst comprising a support, at least one group VI metal, silicon, boron, optionally at least one metal from group VIII of the periodic table, optionally phosphorus, and optionally a halogen, also a particular preparation of this catalyst. The invention also concerns the use of the catalyst for hydrotreating hydrocarbon feeds.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: March 14, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Samuel Mignard, Virginie Harle, Nathalie George-Marchal
  • Patent number: 6034027
    Abstract: Disclosed is a catalyst having the general formula ##STR1## where Q is a ligand containing the ring ##STR2## R is hydrogen, N(R').sub.2, OR', or R', each R' is independently selected from alkyl from C.sub.1 to C.sub.10, aryl from C.sub.6 to C.sub.15, alkaryl C.sub.7 to C.sub.15, and aralkyl from C.sub.7 to C.sub.15, each X is independently selected from hydrogen, halogen, alkoxy from C.sub.1 to C.sub.10, dialkylamino from C.sub.1 to C.sub.10, methyl, ##STR3## each R.sub.1 is independently selected from halogen, alkoxy from C.sub.1 to C.sub.10, and R', L is ##STR4## Q, or X, where one .pi.-ligand can be bridged to second .pi.-ligand, B is an optional base, "n" is 0 to 5, and M is a Group 3-10 metal.
    Type: Grant
    Filed: June 10, 1997
    Date of Patent: March 7, 2000
    Assignee: Equistar Chemicals, LP
    Inventors: Ramesh Krishnamurti, Sandor Nagy, Bradley P. Etherton
  • Patent number: 5994257
    Abstract: A composition comprises a hydrogenation catalyst supported on an inorganic support which comprises aluminum, zirconium, and a borate. A process for producing the composition comprises the steps of (1) contacting an aluminum salt, a zirconium salt, and an acidic boron compound under a condition sufficient to effect the production of a solid material comprising aluminum, zirconium, and borate; and (2) combining a hydrogenation catalyst with the inorganic support. Also disclosed is a process for reducing aromatic compounds content in a hydrocarbon-containing fluid which comprises contacting a hydrocarbon-containing fluid, in the presence of a catalyst composition, with hydrogen wherein said catalyst composition comprises a hydrogenation catalyst and an inorganic support wherein said support comprises aluminum, zirconium and a borate.
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: November 30, 1999
    Assignee: Phillips Petroleum Company
    Inventor: Lyle R. Kallenbach
  • Patent number: 5990320
    Abstract: Optically active diphosphine ligands of the formula I, ##STR1## where: R.sup.1 is hydrogen, C.sub.1 -C.sub.10 -acyl, C.sub.1 -C.sub.10 -alkyl, C.sub.2 -C.sub.10 -alkenyl, each of which may be linear or branched, aryl, arylalkyl, in which the ring systems may be substituted in each case, ##STR2## R.sup.2, R.sup.3 independently of one another are C.sub.1 -C.sub.10 -alkyl, which may be linear or branched, aryl, arylalkyl, in which the ring systems may be substituted in each case,R.sup.4, R.sup.5, R.sup.6 independently of one another are C.sub.1 -C.sub.10 -alkyl, which may be linear or branched, aryl, arylalkyl, in which the ring systems may be substituted in each case.
    Type: Grant
    Filed: June 16, 1998
    Date of Patent: November 23, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Gunther Helmchen, Christoph Murmann
  • Patent number: 5972824
    Abstract: A process for the production of a catalyst for preparing vinyl acetate in the gas phase from ethylene, acetic acid and oxygen or oxygen-containing gases which catalyst comprises palladium and/or its compounds, gold and/or its compounds and also alkali metal compounds on a particulate, porous support obtained bya) impregnating the support with soluble palladium and gold compounds,b) converting the soluble palladium and gold compounds into insoluble palladium and gold compounds by addition of an alkaline solution to the support,c) reducing the insoluble palladium and gold compounds on the support with a reducing agent in the liquid or gaseous phase,d) impregnating the support with at least one soluble alkali metal compound ande) finally drying the support at a maximum of 150.degree. C.,wherein the catalyst is brought into contact with at least one peroxidic compound in step b).
    Type: Grant
    Filed: December 2, 1998
    Date of Patent: October 26, 1999
    Assignee: Celanese GmbH
    Inventors: Bernhard Herzog, Roswitha Stein, Karl-Heinz Renkel
  • Patent number: 5958823
    Abstract: A catalyst composition and a process for producing the catalyst composition for use in a hydrocarbon conversion process are disclosed. The composition comprises an inorganic support and a Group VIII metal. The process comprises: (1) combining at least one Group VIII metal compound and an inorganic support to form a mixture, (2) calcining the mixture under a condition sufficient to convert the metal compound to its oxide form to produce a heated mixture, (3) contacting the heated mixture with a boron compound under a condition sufficient to reduce the oxidation state of the metal whereby a boron-treated composition is produced; and (4) contacting the boron-treated composition with a compound comprising aluminum and halogen.
    Type: Grant
    Filed: January 26, 1999
    Date of Patent: September 28, 1999
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5952456
    Abstract: A gas phase process for the preparation of co-polymers comprising reacting carbon monoxide and an ethylenically unsaturated compound in the presence of a catalyst system based on(a) a source of cations of a metal of Group VIII of the Periodic Table;(b) a source of anions which comprise a plurality of boron atoms or a source of organic boron containing anions or an aluminoxane; and(c) a source of ligands.
    Type: Grant
    Filed: September 15, 1995
    Date of Patent: September 14, 1999
    Assignee: Shell Oil Company
    Inventors: Arleen Marie Bradford, Andre Buys
  • Patent number: 5948243
    Abstract: A composition comprises a hydrodesulfurization or hydrodenitrogenation, or both, catalyst component and a support component which comprises aluminum, zirconium, and a borate. A process for making the composition comprises the steps of (1) contacting an aluminum salt, a zirconium salt, and an acidic boron compound under a condition sufficient to effect the production of a support component comprising aluminum, zirconium, and borate and (2) combining a hydrodesulfurization or hydrodenitrogenation, or both, catalyst component with the support component. Also disclosed are processes for removing organic sulfur compounds or organic nitrogen compounds, or both, from hydrocarbon-containing fluids which comprise contacting a hydrocarbon-containing fluid, with a hydrogen-containing fluid, in the presence of a catalyst composition.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: September 7, 1999
    Assignee: Phillips Petroleum Company
    Inventor: Lyle R. Kallenbach
  • Patent number: 5880057
    Abstract: The disclosed is an exhaust gas treatment catalyst and method therefor, which catalyst comprises a support material selected from the group consisting of elements of Group IIa, Group IIIa, Group IIIb, transition elements and rare earth elements and phosphorus, and an active metal supported on the surface of the support material, improved in high activity and high durability.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: March 9, 1999
    Assignee: Next Generation Catalyst Research Institute, Co. Ltd.
    Inventor: Masaharu Hatano
  • Patent number: 5817593
    Abstract: This invention includes catalysts comprising rhenium (atomic number 75), nickel, cobalt, boron and copper and/or ruthenium impregnated on a support material and a process for preparing said catalyst, said process comprising (i) impregnating a mixture of metals comprising rhenium, cobalt, copper and/or ruthenium, boron and nickel on a support material selected from the group consisting of alpha-alumina, silica, silica-alumina, kieselguhrs or diatomaceous earths, and silica-titanias; and (ii) activating said catalyst by heating the catalyst in the presence of hydrogen at an effective temperature preferably in the range of about 150.degree. C. to about 500.degree. C. for a sufficient period preferably of from about 30 minutes to about 6 hours.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: October 6, 1998
    Assignee: The Dow Chemical Company
    Inventors: Dane Chang, Fred A. Sherrod
  • Patent number: 5808143
    Abstract: Catalysts of the formula I?A.sub.a B.sub.b O.sub.x !.sub.p ?C.sub.c D.sub.d Fe.sub.e Co.sub.f E.sub.i F.sub.j O.sub.y !.sub.q I,whereA is bismuth, tellurium, antimony, tin and/or copper,B is molybdenum and/or tungsten,C is an alkali metal, thallium and/or samarium,D is an alkaline earth metal, nickel, copper, cobalt, manganese, zinc, tin, cerium, chromium, cadmium, molybdenum, bismuth and/or mercury,E is phosphorus, arsenic, boron and/or antimony,F is a rare-earth metal, vanadium and/or uranium,a is from 0.01 to 8,b is from 0.1 to 30,c is from 0 to 4,d is from 0 to 20,e is from 0 to 20,f is from 0 to 20,i is from 0 to 6,j is from 0 to 15,x and y are numbers determined by the valency and frequency of the elements other than oxygen in I, and p and q are numbers whose ratio p/q is in the range from 0.001 to 0.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: September 15, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Karrer, Hans-Peter Neumann, Hans-Dieter Eichhorn, Robin Stuart Jarret
  • Patent number: 5783515
    Abstract: A catalyst including a first catalyst ingredient which is at least one element selected from a group consisting of Pt, Pd and Ir, or oxides thereof; and further able to include at least one element selected from a group consisting of Au, Ag, Cu, Fe, Sb, Se, Te and Ta, or oxides thereof, as a second catalyst ingredient, carried on at least one of a silica-boria-alumina composite oxide or a zeolite with a silica-to-alumina molar ratio of more than 30, in amounts of from 0.1 to 10 g of the first catalyst ingredient and from 0.01 to 5 g of the second catalyst ingredient based on one liter of the catalyst with the second to first catalyst ingredient weight ratio being less than 1.
    Type: Grant
    Filed: December 27, 1995
    Date of Patent: July 21, 1998
    Assignees: N.E. Chemcat Corporation, NKK Corporation
    Inventors: Toshihiko Sakurai, Toshihiko Iwasaki, Eiichi Shibuya
  • Patent number: 5705723
    Abstract: A composition comprises nickel and a support material which comprises aluminum borate and zirconium borate. In one embodiment, this composition additionally comprises rhenium. Preferably, the catalyst support material is a coprecipitate of aluminum borate and zirconium borate.The above-described composition is employed as a catalyst for hydrogenating aromatic hydrocarbons to saturated hydrocarbons.
    Type: Grant
    Filed: October 24, 1995
    Date of Patent: January 6, 1998
    Assignee: Phillips Petroleum Company
    Inventors: Lyle R. Kallenbach, Marvin M. Johnson
  • Patent number: 5644023
    Abstract: A process comprising:(a) introducing a mixture comprising one or more alpha-olefins, carbon monoxide, and, optionally, one or more dienes into a reaction zone under polymerization conditions;(b) contacting the mixture with a catalyst prepared by a process comprising:(i) providing a transition metal in the zero valence state adsorbed on a support;(ii) reacting the supported metal with an oxidant to form a supported compound wherein the metal has a positive valence;(iii) ligating the supported compound with a ligand; and(c) introducing a reoxidant into the reaction zone to maintain the positive valence of the metal.
    Type: Grant
    Filed: April 21, 1992
    Date of Patent: July 1, 1997
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Nicholas Joseph Conti, Frederick John Karol, George Norris Foster
  • Patent number: 5556824
    Abstract: A naphtha or a middle distillate hydrocarbon is hydrodearomatized by hydrotreating in the presence of a catalyst containing boron, non-noble Group VIII metal, and Group VIB metal on a carbon support.
    Type: Grant
    Filed: July 6, 1995
    Date of Patent: September 17, 1996
    Assignee: Texaco Inc.
    Inventors: Chakka Sudhakar, Frank Dolfinger, Jr., Max R. Cesar, Jeffrey G. Weissman
  • Patent number: 5531869
    Abstract: A metal catalyst carried on a carrier material is provided, the carrier material being selected from the group consisting of a powder of fine tourmaline crystals possessing polarity and a formed body containing a plurality of fine tourmaline crystals possessing polarity. The catalyst is prepared by immersing the carrier material in an aqueous solution containing at least one metal salt, mixing and stirring the aqueous solution until the at least one metal ion is deposited on poles of the tourmaline crystals of the carrier material, separating the carrier material from the aqueous solution, evaporating off traces of the aqueous solution from the carrier material, and drying the carrier material. The metal catalyst may be prepared by immersing the carrier material in an aqueous solution containing two or more metal ions, wherein the metal ions are deposited on said carrier material in an inverse proportion to the magnitude of the deposition ionization tendencies of the metal ions.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: July 2, 1996
    Assignee: Kubo Technical Office
    Inventor: Tetsujiro Kubo
  • Patent number: 5516740
    Abstract: A catalyst is disclosed comprising a thin outer shell of catalytic material bonded to an inner core of catalytically inert material. The catalyst is made by coating a catalytically inert core such as alpha alumina, with a thin layer of finely divided catalytically active material in a slurry of colloidal boehmite/pseudo boehmite then calcining to convert the boehmite/pseudo boehmite into .gamma. alumina thereby bonding it to the inert core. Catalysts made by this technique containing an outer shell of platinum on fluorided alumina in an inert core of alpha alumina .gamma. are attractive isomerization catalysts.
    Type: Grant
    Filed: March 25, 1993
    Date of Patent: May 14, 1996
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, Mahmoud M. Hafez, David N. Zinkie
  • Patent number: 5494875
    Abstract: A carrier suitable for preparing a catalyst for hydrofining hydrocarbon oils which has a high ability to eliminate metals contained in the hydrocarbon oils and an improved metal tolerance as well as said catalyst are provided.The carrier of the present invention is an alumina-containing carrier which shows a peak at 2.theta. of 27.degree. in the powder X-ray diffraction pattern when carrying Mo and Co or one or more other metals selected from among metals of the groups VIA and VIII in the periodic table together with Mo and Co.
    Type: Grant
    Filed: July 13, 1993
    Date of Patent: February 27, 1996
    Assignees: Cosmo Research Institute, Cosmo Oil Co., Ltd.
    Inventors: Kazushi Usui, Shigenori Nakashizu, Kentarou Ishida, Eiko Kogure
  • Patent number: 5488024
    Abstract: A catalyst composition comprising palladium, silver and a support material (preferably alumina) is contacted at a relatively low temperature (of up to about 60.degree. C.) with a liquid composition comprising an effective reducing agent (preferably an alkali metal borohydride, hydrazine, formaldehyde, formic acid, ascorbic acid, dextrose, aluminum powder). Preferably, at least one alkali metal compound (more preferably KOH, RbOH, CsOH, KF) is also present in the liquid composition. An improved process for selectively hydrogenating acetylene (to ethylene) employs this wet-reduced catalyst composition.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: January 30, 1996
    Assignee: Phillips Petroleum Company
    Inventors: Tin-Tack P. Cheung, Marvin M. Johnson, Scott H. Brown, Stan A. Zisman, James B. Kimble
  • Patent number: 5468708
    Abstract: Catalyst compositions for preparing polyketones comprising(a) a Group VIII metal compound, containing at least one ligand capable of coordinating to the Group VIII metal, and(b) a boron hydrocarbyl compound are disclosed, in particular catalyst compositions wherein the boron hydrocarbyl compound is a Lewis acid of the formula BXYZ where at least one of X, Y and Z is a monovalent hydrocarbyl group. A preferred catalyst composition comprises a palladium complex and B(C.sub.6 F.sub.5).sub.3.
    Type: Grant
    Filed: April 1, 1994
    Date of Patent: November 21, 1995
    Assignee: BP Chemicals Limited
    Inventors: Neil A. Cooley, Adrian P. Kirk
  • Patent number: 5366945
    Abstract: There is provided a catalyst comprising a heteropoly acid, such as phosphotungstic acid, supported on a mesoporous crystalline material, such as M41S. A particular form of this M41S support is designated as MCM-41. There is also provided a method for preparing this catalyst by impregnating the heteropoly acid on the support. There is also provided a process for using this catalyst to catalyze acid catalyzed reactions, such as the isomerization of paraffins and the alkylation of aromatics.
    Type: Grant
    Filed: December 22, 1992
    Date of Patent: November 22, 1994
    Assignee: Mobil Oil Corp.
    Inventors: Charles T. Kresge, David O. Marler, Gayatri S. Rav, Brenda H. Rose
  • Patent number: 5346874
    Abstract: A process and catalyst is provided for the hydrogenation of a hydrocarbon feedstock comprising a substantial portion of a distillate hydrocarbon feedstock, wherein said distillate hydrocarbon feedstock consists essentially of material boiling between about 150.degree. F. and about 700.degree. F. at atmospheric pressure, which comprises reacting the feedstock with hydrogen at hydrogenation conditions in the presence of a catalyst comprising from about 0.1% to about 2.0% by weight of palladium and from about 0.1% to about 2.0% by weight of platinum and a support comprising borosilicate, for producing a hydrogenated product.
    Type: Grant
    Filed: August 10, 1993
    Date of Patent: September 13, 1994
    Assignee: Amoco Corporation
    Inventors: Frederick T. Clark, Simon G. Kukes, P. Donald Hopkins
  • Patent number: 5324702
    Abstract: Compositions comprising certain metal-containing materials distributed interactively on a deboronated HAMS-1B crystalline borosilicate molecular sieve which are useful for catalytically oxidizing or oxidatively dehydrogenating organic compounds such as alkanes, aromatics, and alkyl-substituted aromatics are described. Alkanes are oxidatively dehydrogenated to olefins, and an aromatic compound such as benzene can be oxidized by nitric and/or nitrous oxide to largely phenol or largely nitrobenzene depending upon the oxidation temperature. When the compound is a methylaromatic, oxidation produces an aromatic aldehyde. Alkyl groups larger than methyl oxidatively dehydrogenate to alkenyl groups.
    Type: Grant
    Filed: December 16, 1992
    Date of Patent: June 28, 1994
    Assignee: Amoco Corporation
    Inventors: Jin S. Yoo, Mark S. Kleefisch, John A. Donohue
  • Patent number: 5300472
    Abstract: A catalyst for the selective reduction of nitrous oxide with ammonia contains, in addition to titanium oxide as component (A), at least one oxide of W, Si, B, Al, P, Zr, Ba, Y, La, Ce and at least one oxide of Y, Nb, Mo, Fe, Cu as component (B), whereby the atomic ratio between the elements of components (A) and (B) amounts to 1:0.001 up to 1. The catalyst can be obtained by kneading reactive titanium oxide with a high specific surface of predominantly anatase with the substances of component (B) or their preliminary stages, adding processing agents, winding up with a homogeneous kneaded mass, extruding the latter, drying the extrudate and calcining in air at 300.degree.-800.degree. C.
    Type: Grant
    Filed: December 31, 1992
    Date of Patent: April 5, 1994
    Assignee: Degussa Aktiengesellschaft
    Inventors: Reinhold Brand, Bernd Engler, Wolfgang Honnen, Edgar Koberstein, Johannes Ohmer
  • Patent number: 5275995
    Abstract: A catalyst is described for the preparation of isobutene by dehydroisomerization of n-butane consisting of a solid, granular support of porous gamma-alumina on the surface of which catalytic quantities of platinum, silica and preferably also one or more promotors are deposited. In a preferred form of embodiment this catalyst is used with a second catalyst which may be formed of Boralite B or a solid granular support gamma-alumina on the surface of which catalytic quantities of silica are deposited.The present invention relates also to the process of dehydroisomerization of n-butane to isobutene in which the catalyst is used and the relative operating conditions.
    Type: Grant
    Filed: July 29, 1991
    Date of Patent: January 4, 1994
    Assignees: Eniricere S.p.A., Snamprogetti S.p.A.
    Inventors: Giuseppe Bellussi, Aldo Giusti, Laura Zanibelli
  • Patent number: 5264407
    Abstract: The preparation, structure, and properties of solid inorganic materials containing aluminum, boron, oxygen and at least one Group VIII metallo element, selected from the group consisting of cobalt and nickel is described. Also described is the use of such materials in catalytic compositions for the conversion of organic compounds. In particular, the new materials having the general formula:(x)(M.sub.m :M'.sub.n)O.(y)Al.sub.2 O.sub.3.(z)B.sub.2 O.sub.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: November 23, 1993
    Assignee: Amoco Corporation
    Inventors: Larry C. Satek, Stephen T. McKenna, Vincent F. Smith, Jr.
  • Patent number: 5214017
    Abstract: New catalyst compositions comprise sulfated and calcined mixtures of (1) a support comprising an oxide or hydroxide of a Group IV-A element, (2) an oxide or hydroxide of a Group VI, VII or VIII metal, (3) an oxide or hydroxide of a Group I-B, II-B, III-A, III-B, IV-B, V-A or VI-A metal and (4) a metal of the Lanthanide Series of the Periodic Table. A process for alkylation of acyclic saturated compounds with acyclic unsaturated compounds utilizing such catalyst compositions.
    Type: Grant
    Filed: November 27, 1991
    Date of Patent: May 25, 1993
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Howard P. Angstadt, Elmer J. Hollstein, Chao-Yang Hsu
  • Patent number: 5200382
    Abstract: A catalyst is disclosed comprising a thin outer shell of catalytic material bonded to an inner core of catalytically inert material. The catalyst is made by coating a catalytically inert core such as alpha alumina, with a thin layer of finely divided catalytically active material in a slurry of colloidal boehmite/pseudo boehmite then calcining to convert the boehmite/pseudo boehmite into .gamma. alumina thereby bonding it to the inert core. Catalysts made by this technique containing an outer shell of platinum on fluorided alumina in an inert core of alpha alumina .gamma. are attractive isomerization catalysts.
    Type: Grant
    Filed: November 15, 1991
    Date of Patent: April 6, 1993
    Assignee: Exxon Research and Engineering Company
    Inventors: Ian A. Cody, Mahmoud M. Hafez, David N. Zinkie
  • Patent number: 5198403
    Abstract: A catalyst for the selective reduction of nitrous oxide with ammonia contains, in addition to titanium oxide as component (A), at least one oxide of W, Si, B, Al, P, Zr, Ba, Y, La, Ce and at least one oxide of V, Nb, Mo, Fe, Cu as component (B), whereby the atomic ratio between the elements of components (A) and (B) amounts to 1:0.001 up to 1. The catalyst can be obtained by kneading reactive titanium oxide with a high specific surface of predominantly anatase with the substances of component (B) or their preliminary stages, adding processing agents, winding up with a homogeneous kneaded mass, extruding the latter, drying the extrudate and calcining in air at 300.degree.-800.degree. C.
    Type: Grant
    Filed: November 5, 1991
    Date of Patent: March 30, 1993
    Assignee: Degussa AG
    Inventors: Reinhold Brand, Bernd Engler, Wolfgang Honnen, Edgar Koberstein, Johannes Ohmer
  • Patent number: 5171728
    Abstract: A catalyst for oxidizing a carbon-containing compound comprising a composite oxide powder composed of 4 to 19% by weight of silica, 3 to 10% by weight of boria, and the balance alumina, and palladium in an amount of 3 to 100 g per 1 liter of the powder carried on the composite powder, and a method for producing such a catalyst are described. The composite oxide is thermally stable and prevents reduction of palladium oxide, and the catalyst can be used for an extended period high temperatures.
    Type: Grant
    Filed: December 26, 1991
    Date of Patent: December 15, 1992
    Assignees: N. E. Chemcat Corporation, Sumitomo Metal Mining Co., Ltd.
    Inventors: Toshihiko Sakurai, Toshio Yamaguchi, Takao Suzuki
  • Patent number: 5160452
    Abstract: A metallic colloidal dispersion obtained by reducing a metal of Group VIII of the Periodic Table in a mixed solvent system comprising lower alcohols and aprotic polar compounds.
    Type: Grant
    Filed: June 8, 1989
    Date of Patent: November 3, 1992
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Toshinori Marutsuka, Osamu Hasegawa
  • Patent number: 5139988
    Abstract: A composition which contains as essential components: crystalline iron antimonate and at least one element selected from the group consisting of vanadium, molybdenum, and tungsten; is useful as a catalyst in the oxidation reaction of organic compounds. Also, a process for producing the composition is disclosed.
    Type: Grant
    Filed: September 17, 1991
    Date of Patent: August 18, 1992
    Assignee: Nitto Chemical Industry Co., Ltd.
    Inventors: Yutaka Sasaki, Hiroshi Utsumi, Kenichi Miyaki
  • Patent number: 5120695
    Abstract: A one-piece catalyst for purifying exhaust gases, particularly from internal combustion engines and gas turbines operated above the stoichiometric ratio. The one-piece honeycomb ceramic or metal carrier has a reduction catalyst on its leading-edge portion and an oxidation catalyst on its trailing-edge portion.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: June 9, 1992
    Assignee: Degusaa Aktiengesellschaft (Degussa AG)
    Inventors: Stephan Blumrich, Reinhold Brand, Bernd Engler, Wolfgang Honnen, Edgar Koberstein
  • Patent number: 5034368
    Abstract: A process for the preparation of carboxylic acids or of esters thereof by contacting an olefinically unsaturated compound with CO in the presence of water or an alcohol, respectively, and of a catalytic system prepared by combining a ruthenium compound and a compound having a non-coordinating anion of an acid with a pK.sub.a below 0.5; compositions comprising a ruthenium compound and a salt having a non-coordinating anion of an acid with a pK.sub.a below 0.5 are novel.
    Type: Grant
    Filed: January 22, 1990
    Date of Patent: July 23, 1991
    Assignee: Shell Oil Company
    Inventor: Eit Drent
  • Patent number: 5021388
    Abstract: Process for applying a catalyst layer (4) composed of noble metals and/or noble-metal compounds to a ceramic carrier (1), in which process at least one ceramic intermediate layer (2) based on a glaze is applied, subjected to a heat treatment and cooled down. The catalyst layer (4) is in turn deposited as a chemical, electrochemical or physical deposit. Variants with .gamma.-Al.sub.2 O.sub.3 intermediate layer or with SiO.sub.2 intermediate layer or with Si intermediate layer.
    Type: Grant
    Filed: April 6, 1989
    Date of Patent: June 4, 1991
    Assignee: Comprex AG
    Inventors: Jean-Daniel Fridez, Gabriele Gerharz
  • Patent number: 4990480
    Abstract: The preparation, structure, and properties of solid inorganic materials containing at least one transition element, aluminum, boron and oxygen are described. Also described is the use of such materials in catalytic compositions for the conversion of organic compounds. In particular, new materials comprising(a) crystalline LnAl.sub.1.67+0.67X (B.sub.4 O.sub.10)O.sub.X, and(b) crystalline LnAl.sub.2.67+0.33Z (B.sub.4 O.sub.11)O.sub.Zwhere Ln is at least one transition element, X is a number ranging from 0 to 1, and Z is a number ranging from 0 to 2, each crystalline phase having a characteristic X-ray diffraction pattern are described as well as the use of such materials in various catalyzed processes including oxidative dehydrogenation of hydrocarbons and oxygen-containing hydrocarbons, dehydrogenation to functionalize alkylaromatic compounds, and ammoxidation of alkylaromatic compounds.
    Type: Grant
    Filed: March 29, 1989
    Date of Patent: February 5, 1991
    Assignee: Amoco Corporation
    Inventors: Melvin L. Luetkens, Jr., Larry C. Satek
  • Patent number: 4977129
    Abstract: A catalyst suitable for use as a three-way catalyst having low H.sub.2 S emissions for emission control and with substantially no ceria present is made with a refractory oxide particle or powder support having deposited thereon about 0.5-20% by weight of a non-rate earth oxide stabilizer, at least 0.5 to about 5% by weight of an alkali metal oxide as a promoter, and a catalytically-effective amount of one or more platinum group metals. The preferred refractory oxide is alumina and the non-rare earth oxide stabilizer can be an oxide such as ZrO.sub.2, MgO, CaO, SnO, CaO, Y.sub.2 O.sub.3, TiO.sub.2, ZnO, B.sub.2 O.sub.3, P.sub.2 O.sub.5, SnO.sub.2, Bi.sub.2 O.sub.3, or SiO.sub.2 with the preferred oxide being zirconia.
    Type: Grant
    Filed: March 13, 1989
    Date of Patent: December 11, 1990
    Assignee: W. R Grace & Co.-Conn.
    Inventor: Michael V. Ernest
  • Patent number: 4963521
    Abstract: A catalyst for purifying the exhaust gases of internal combustion engines by means of oxidation and reduction with a reduced tendency to store sulfur oxides and to emit H.sub.2 S contains active Al.sub.2 O.sub.3 as carrier which is charged with CeO.sub.2 and optionally with ZrO.sub.2 as well as with platinum, and/or palladium, and optionally rhodium and also contains in addition 0.7 to 20% by weight B.sub.2 O.sub.3 relative to Al.sub.2 O.sub.3.
    Type: Grant
    Filed: May 1, 1989
    Date of Patent: October 16, 1990
    Assignee: Degussa Aktiengesellschaft
    Inventors: Bernd Engler, Edgar Koberstein, Egbert Lox