And Group Vi Metal (i.e., Cr, Mo, W Or Po,) Patents (Class 502/210)
  • Patent number: 10563134
    Abstract: A catalyst and its use for selectively desulfurizing sulfur compounds present in an olefin-containing hydrocarbon feedstock to very low levels with minimal hydrogenation of olefins. The catalyst comprises an inorganic oxide substrate containing a nickel compound, a molybdenum compound and optionally a phosphorus compound, that is overlaid with a molybdenum compound and a cobalt compound. The catalyst is further characterized as having a bimodal pore size distribution with a large portion of its total pore volume contained in pores having a diameter less than 250 angstroms and in pores having a diameter greater than 1000 angstroms.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: February 18, 2020
    Assignee: SHELL OIL COMPANY
    Inventors: Opinder Kishan Bhan, David Andrew Komar
  • Patent number: 10323569
    Abstract: Core assemblies and methods for manufacturing components of gas turbine engines include a first core body having a first trunk configured to attach to a first location of a cavity core structure, a first branch extending from the first trunk and configured to form a first portion of a first cooling circuit, the first branch having a first joining surface, and a second core body having a second trunk configured to attach to a second location of a cavity core structure, a first branch of the second core body extending from the second trunk and configured to form a first portion of a second cooling circuit in the component. The first branches of the core bodies joined to form a junction. The junction defines a merger of the first cooling circuit and the second cooling circuit proximate to an exit of the first and second cooling circuits.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: June 18, 2019
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventor: Christopher King
  • Patent number: 10077406
    Abstract: Disclosed is a method of hydrotreating a heavy hydrocarbon feedstock using a hydrotreating catalyst having specific properties that make it effective in converting nitrogen, sulfur and micro-carbon residue of a heavy hydrocarbon feedstock. The catalyst comprises a calcined support particle impregnated with a Group 6 metal component (e.g., molybdenum), a nickel component, and a phosphorus component present at concentrations in the catalyst such that the atomic ratio of the Group 6 metal-to nickel metal are within a specified range. The nickel metal acid extractability property of the catalyst is at least 50 percent.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: September 18, 2018
    Assignee: SHELL OIL COMPANY
    Inventor: Opinder Kishan Bhan
  • Patent number: 9815748
    Abstract: Provided are a catalyst whereby isobutylene can be produced at high yield in a lower-temperature environment, and a method for producing isobutylene using the catalyst. The catalyst for producing isobutylene is an oxide including at least one element selected from molybdenum and tungsten, and at least one element selected from tantalum, niobium, and titanium.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: November 14, 2017
    Assignees: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY, Mitsubishi Chemical Corporation
    Inventors: Wataru Ueda, Toru Murayama, Ken Ooyachi, Wataru Ninomiya, Toshiya Yasukawa
  • Patent number: 9517460
    Abstract: The present application relates to a method for fabricating hollow nano particles supported on carrier.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: December 13, 2016
    Assignee: LG CHEM, LTD.
    Inventors: Jun Yeon Cho, Sang Hoon Kim, Gyo Hyun Hwang, Kwanghyun Kim
  • Patent number: 9517450
    Abstract: The present specification relates to hollow metal nano particles supported on a carrier.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: December 13, 2016
    Assignee: LG CHEM, LTD.
    Inventors: Jun Yeon Cho, Sang Hoon Kim, Gyo Hyun Hwang, Kwanghyun Kim
  • Publication number: 20150141667
    Abstract: The present invention provides catalysts, methods, and reactor systems for converting oxygenated hydrocarbons to oxygenated compounds. The invention includes methods for producing cyclic ethers, monooxygenates, dioxygenates, ketones, aldehydes, carboxylic acids, and alcohols from oxygenated hydrocarbons, such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like, using catalysts containing palladium, molybdenum, tin, and tungsten. The oxygenated compounds produced are useful in the production of liquid fuels, chemicals, and other products.
    Type: Application
    Filed: December 30, 2014
    Publication date: May 21, 2015
    Inventors: Brian Blank, Randy Cortright, Taylor Beck, Elizabeth Woods, Mike Jehring
  • Publication number: 20150108039
    Abstract: Disclosed is a method of hydrotreating a heavy hydrocarbon feedstock using a hydrotreating catalyst having specific properties that make it effective in converting nitrogen, sulfur and micro-carbon residue of a heavy hydrocarbon feedstock. The catalyst comprises a calcined support particle impregnated with a Group 6 metal component (e.g., molybdenum), a nickel component, and a phosphorus component present at concentrations in the catalyst such that the atomic ratio of the Group 6 metal-to nickel metal are within a specified range. The nickel metal acid extractability property of the catalyst is at least 50 percent.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 23, 2015
    Inventor: Opinder Kishan BHAN
  • Patent number: 9012349
    Abstract: A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: April 21, 2015
    Assignee: UT-Battelle LLC
    Inventors: Jae Soon Choi, Beth L. Armstrong, Viviane Schwartz
  • Patent number: 9006130
    Abstract: The invention relates to a hydrodesulfurization nanocatalyst, use of the hydrodesulfurization nanocatalyst in a hydrodesulfurization process and a process for producing the hydrodesulfurization nanocatalyst. The hydrodesulfurization nanocatalyst can include a nanostructured alumina material, at least one metal selected from group VI B of the periodic table of elements, and at least one metal selected from group VIII B of the periodic table of elements.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: April 14, 2015
    Assignee: Research Institute of Petroleum Industry (RIPI)
    Inventors: Fereshteh Rashidi, Alimorad Rashidi, Kheirollah Jafari Jozani, Ali Nemati Kharat Ghaziani, Morteza Rezapour, Hamidreza Bozorgzadeh
  • Patent number: 8993473
    Abstract: Embodiments of the present invention include improved shaped catalyst structures containing catalytic material comprised of mixed oxides of vanadium and phosphorus and using such shaped catalyst structures for the production of maleic anhydride.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: March 31, 2015
    Assignee: Huntsman Petrochemical LLC
    Inventors: Larry E. Melde, William A. Smith
  • Patent number: 8962905
    Abstract: Process for the continuous hydrogenation of triglyceride containing raw materials in a fixed bed reactor system having several catalyst beds arranged in series and comprising at least one hydrogenation catalyst comprising an active phase constituted by a nickel and molybdenum element. The raw material feed, hydrogen containing gas and diluting agent are passed together through the catalyst beds at hydrogenation conditions. The raw material feed stream as well as the stream of hydrogen containing gas are divided into an equal number of different partial streams. These are each passed to one catalyst bed in such a manner that the weight ratio of diluting agent to raw material feed is essentially the same at the entrance of all catalyst beds and does not exceed 4:1. The claimed process is preferably conducted at low temperatures and allows the utilization of existing units due to the low recycle ratio.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: February 24, 2015
    Assignee: IFP Energies Nouvelles
    Inventors: Thierry Chapus, Nathalie Dupassieux, Antoine Daudin
  • Publication number: 20150024927
    Abstract: A hydrogenation catalyst and process using the catalyst for converting a mixture comprising acetic acid and ethyl acetate to ethanol at a first temperature, and the catalyst desorbs ethyl acetate, in the absence of hydrogen, at a second temperature that is greater than the first temperature. The catalyst has a suitable chemisorption of ethyl acetate at the first temperature in the absence of hydrogen. In one embodiment, the first temperature ranges from 125° C. to 350° C. and the second temperature ranges from 300° C. to 600° C. The catalyst comprises one or more active metals or oxide thereof on a support that comprises tungsten or an oxide thereof. The one or more active metals are selected from the group consisting of cobalt, copper, gold, iron, nickel, palladium, platinum, iridium, osmium, rhenium, rhodium, ruthenium, tin, zinc, lanthanum, cerium, manganese, chromium, vanadium, and molybdenum.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 22, 2015
    Inventors: Zhenhua Zhou, Heiko Weiner, Dheeraj Kumar, Xiaoyan Tu, Victor J. Johnston, Radmila Wollrab
  • Patent number: 8921254
    Abstract: A method of preparing a hydroprocessing catalyst that may have a high metals loading and has a particularly high activity for hydrodenitrogenation. The method uses several metal impregnations in combination with different intermediate treatment steps so as to provide a catalyst composition that includes a mix of different types of catalytically active sites. The method of the invention allows for the optimization and control of the relative ratio of the different types of active catalyst sites on the catalyst composition in order to give certain desired results and improved catalytic performance. The catalyst composition comprises a one or more active metals or active metal precursors that are incorporated onto a support material.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: December 30, 2014
    Assignee: Shell Oil Company
    Inventor: John Anthony Smegal
  • Publication number: 20140367311
    Abstract: Alumina support compositions comprising at least 0.1 wt % of silica are disclosed. The alumina support are characterized by a pore volume of greater than 0.60 cc/g, a median pore size ranging from about 70 to about 120, a pore size distribution such that at least 90% of the total pore volume falls within the range of about 20 to about 250, and a pore size distribution width of no less than about 40. Alumina compositions of the present invention exhibit a primary peak mode at a pore diameter less than the median pore diameter. Also provided are catalysts made from the alumina supports, and processes of preparing and using the supports and catalysts.
    Type: Application
    Filed: November 20, 2012
    Publication date: December 18, 2014
    Applicant: Advanced Refining Technologies LLC
    Inventors: Xianghua Yu, Bruno C. Nesci, Roberto Romero, Gill M. Malick, Jifei Jia, Cecelia A. Radlowski
  • Patent number: 8865614
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 21, 2014
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Publication number: 20140308177
    Abstract: A hydrogen separation membrane including: a metal layer including the at least one Group 5 element; and a transition metal catalyst layer on the metal layer, the transition metal catalyst layer including at least one transition metal and at least one of phosphorus (P) or boron (B).
    Type: Application
    Filed: February 11, 2014
    Publication date: October 16, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Keun woo Cho, Hyeon Cheol PARK, Kyoung-Seok MOON, Kwang Hee KIM, Jae-Ho LEE, Eun Seog CHO
  • Patent number: 8846563
    Abstract: The present invention relates to apatite that includes metal atoms having a photocatalytic function and other metal atoms, and the metal atoms having a photocatalytic function include metal atoms that absorb energy corresponding to light energy of visible light. By applying the apatite as a base material of various products to be arranged indoors, the photocatalytic function can be exhibited indoors as well.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: September 30, 2014
    Assignees: Fujitsu Limited, The University of Tokyo
    Inventors: Toshiya Watanabe, Masato Wakamura, Yasuo Naganuma
  • Patent number: 8822367
    Abstract: Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: September 2, 2014
    Assignee: Emory University
    Inventors: Craig L Hill, Yurii V Gueletii, Djamaladdin G. Musaev, Qiushi Yin, Bogdan Botar
  • Publication number: 20140228208
    Abstract: A metal substrate for flue gas-denitration catalyst that, like SUS304, can be used without corroding is provided by improving the corrosion resistance of SUS430 substrate that is inexpensive and can easily be supplied stably. A method for producing the metal substrate for flue gas-denitration catalyst, wherein the method comprising the steps of: lath-processing a band-shaped steel plate made of ferrite stainless steel into a band-shaped metal lath; (1) degreasing process oil adhering to the metal lath; (2) passing the metal lath through a solution containing phosphoric acid and surfactant to load the solution; (3) draining off the excess solution; and (4) drying and heating the solution-loaded metal lath to react the phosphoric acid with the substrate, in which respective steps are carried out sequentially to form a film of phosphate compound on a surface of the substrate.
    Type: Application
    Filed: June 28, 2011
    Publication date: August 14, 2014
    Applicant: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Naomi Imada, Keiichiro Kai, Kotoe Matsuyama
  • Publication number: 20140206527
    Abstract: An object of the present invention is to provide a catalyst for glycerin dehydration reaction for producing unsaturated aldehyde and unsaturated carboxylic acid at higher yield by a dehydration reaction of glycerin, and that can reduce a decrease in time of the conversion ratio of glycerin and the yields of unsaturated aldehyde and of unsaturated carboxylic acid. Another object of the present invention is to provide a catalyst for glycerin dehydration reaction that can produce acrolein and acrylic acid at higher yield by the dehydration reaction of glycerin, and the catalyst has a longer life. Still another object of the present invention is to provide a method for preparing the catalysts above.
    Type: Application
    Filed: July 30, 2012
    Publication date: July 24, 2014
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Kimito Okumura, Yasushi Kobayashi, Ryota Hiraoka, Jean-Luc Dubois
  • Patent number: 8772551
    Abstract: Disclosed herein are mixed oxide catalysts for the catalytic gas phase oxidation of alkanes, or mixtures of alkanes and olefins, for the production of aldehydes and carboxylic acids with air or oxygen in the presence of inert gases at elevated temperatures and pressure, and a method for the production of catalysts.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: July 8, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Achim Fischer, Weimin Lu, Christoph Weckbecker, Klaus Huthmacher
  • Patent number: 8772196
    Abstract: Disclosed is a composition useful in the saturation of aromatics contained in a hydrocarbon feedstock. The composition includes a support composition having a high macroporosity of greater than 51 percent. The support composition comprises an amorphous silica-alumina having unique properties.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: July 8, 2014
    Assignee: Shell Oil Company
    Inventors: Russell Craig Ackerman, Christian Gabriel Michel, John Anthony Smegal, Johannes Anthonius Robert Van Veen
  • Publication number: 20140179513
    Abstract: The invention relates to a catalytic material which is used as an optofluidic reactor, and also a method for production thereof. In this case, first a reticulated plastic foam can be fabricated which then is coated with at least one first metal or metal alloy layer. Subsequently, a photocatalytic substrate is then applied to the metal or metal alloy layer. The photocatalytic substrate eliminates bacteria, viruses and other harmful substances, as well as fine dust or fungal spores, when the optofluidic reactor is used.
    Type: Application
    Filed: May 25, 2012
    Publication date: June 26, 2014
    Inventor: Wolfgang Kollmann
  • Patent number: 8702973
    Abstract: One exemplary embodiment can be a process for upgrading one or more hydrocarbons boiling in a naphtha range including less than about 5%, by weight, one or more alkenes and about 2,000-about 5,000 wppm, S, comprised in one or more sulfur-containing compounds, based on the weight of the one or more hydrocarbons. The process can include contacting the one or more hydrocarbons with a catalyst. The catalyst may include about 0.1-about 10%, by weight, NiO, about 5-about 50%, by weight, MoO3, and about 0.1-about 10%, by weight, P, with the balance of the catalyst comprising Al2O3. The process can obtain an upgraded one or more hydrocarbons having a thiol concentration of no more than about 20 wppm, S, based on the sulfur comprised in one or more thiol compounds divided by the weight of the upgraded one or more hydrocarbons.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: April 22, 2014
    Assignee: UOP LLC
    Inventors: Colleen Costello, Suheil F. Abdo, Keith Adrian Holder, Ashley James Austin, Willie J. Morrissette, Jr.
  • Patent number: 8697598
    Abstract: The present invention provides a hydrogenation catalyst, containing a carrier, metal components of nickel, molybdenum and tungsten supported thereon, and an adjuvant component selected from the group consisting of fluorine and phosphor and combination thereof. In another embodiment, the present invention provides a hydrogenation catalyst, containing a carrier and metal components of nickel, molybdenum and tungsten supported thereon, wherein said carrier contains a molecular sieve. The present invention provides further use of said catalyst in the process for hydrogenating hydrocarbon oil. In comparison with a hydrogenation catalyst according to the prior art, the catalyst according to the present invention has a much higher activity.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: April 15, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Xiangyun Long, Xuefen Liu, Hong Nie, Kui Wang, Jing Xin, Qinghe Liu, Xiaodong Gao, Zhihai Hu, Yahua Shi, Dadong Li
  • Patent number: 8685354
    Abstract: The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen oxide (NO) with ammonia (NH3) or a nitrogen containing compound selected from ammonium salts, urea or a urea derivative or a solution thereof as reductant.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: April 1, 2014
    Assignee: Danmarks Tekniske Universitet
    Inventors: Siva Sankar Reddy Putluru, Anders Riisager, Rasmus Fehrmann
  • Patent number: 8669201
    Abstract: The invention is to a process for producing an acrylate product. The process includes the steps of contacting an alkanoic acid and an alkylenating agent over a catalyst composition under conditions effective to produce the acrylate product. The catalyst composition comprises vanadium, titanium and tungsten. Preferably, the catalyst comprises vanadium to tungsten at a molar ratio of at least 0.02:1, in an active phase.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: March 11, 2014
    Assignee: Celanese International Corporation
    Inventors: Dick Nagaki, Tianshu Pan, Craig J. Peterson, Heiko Weiner, Elizabeth Bowden, Josefina T. Chapman, Sean Mueller
  • Publication number: 20140005031
    Abstract: Inorganic material having at least two elementary spherical particles, each of said spherical metallic particles: a polyoxometallate with formula (XxMmOyHh)q?, where H is hydrogen, O is oxygen, X is phosphorus, silicon, boron, nickel or cobalt and M is one or more vanadium, niobium, tantalum, molybdenum, tungsten, iron, copper, zinc, cobalt and nickel, x is 0, 1, 2 or 4, m is 5, 6, 7, 8, 9, 10, 11, 12 or 18, y is 17 to 72, h is 0 to 12 and q is 1 to 20.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 2, 2014
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, IFP ENERGIES NOUVELLES, UNIVERSITE PIERRE ET MARIE CURIE
    Inventors: Alexandra Chaumonnot, Clement Sanchez, Cedric Boissiere, Frederic Colbeau-Justin, Karin Marchand, Elodie Devers, Audrey Bonduelle, Denis Uzio, Antoine Daudin, Bertrand Guichard, Denis Uzio, Antoine Daudin
  • Publication number: 20130310526
    Abstract: A process for preparing a catalyst, and catalysts prepared thereby. The process includes selecting a catalyst support and mixing it with one or more chromium containing compounds oxidizable to a Cr+6 state or already in a Cr+6 state, and with with one or more transition metal catalyst component, and calcining the catalyst support while oxidizing any chromium containing compound to a Cr+6 state, and spray drying the catalyst support to form catalyst particles. The catalyst supports are characterized by a surface area greater than 50 m2/gram and a pore volume greater than 0.5 cc/gram at the time of mixing the catalyst support gels with the chromium containing compound.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 21, 2013
    Applicant: UNION CARBIDE CHEMICALS & PLASTICS TECHNOLOGY LLC
    Inventor: Robert James Jorgensen
  • Publication number: 20130303363
    Abstract: Catalytic processes to produce a reaction product comprising 1-butanol by contacting a reactant comprising ethanol with a catalyst composition under suitable reaction conditions are provided. The catalyst to composition may comprise a hydroxyapatite of the Formula (MwM?xM?yM??z)5(PO4)3(OH), wherein M is Mg; M? is Ca; M? is Sr; M?? is Ba; w is any number between 0 and 1 inclusive; x is any number from 0 to less than 0.5; y is any number between 0 and 1 inclusive; z is any number between 0 and 1 inclusive; and w+x+y+z=1. Base-treated catalyst compositions may be used. Also provided are processes for contacting an initial catalyst composition comprising the hydroxyapatite with a base to produce a base-treated catalyst composition, and the base-treated catalyst compositions so obtained.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: PAUL JOSEPH FAGAN, Thomas G. Calvarese, Ronald James Davis, Ronnie Ozer
  • Publication number: 20130303362
    Abstract: Catalytic processes to produce a reaction product comprising 1-butanol by contacting a reactant comprising ethanol with a catalyst composition under suitable reaction conditions are provided. The catalyst composition may comprise a hydroxyapatite of the Formula (MwM?xM?yM??z)5(PO4)3(OH), wherein M is Mg; M? is Ca; M? is Sr; M?? is Ba; w is any number between 0 and 1 inclusive; x is any number from 0 to less than 0.5; y is any number between 0 and 1 inclusive; z is any number between 0 and 1 inclusive; and w+x+y+z=1. Base-treated catalyst compositions may be used. Also provided are processes for contacting an initial catalyst composition comprising the hydroxyapatite with a base to produce a base-treated catalyst composition, and the base-treated catalyst compositions so obtained.
    Type: Application
    Filed: July 16, 2013
    Publication date: November 14, 2013
    Inventors: Paul Joseph Fagan, Thomas G. Calvarese, Ronald James Davis, Ronnie Ozer
  • Patent number: 8557449
    Abstract: An air cathode for a metal-air battery is disclosed which contains a catalyst chosen to make the metal air battery more easily rechargeable. This catalyst is based on cobalt phosphate, cobalt borate mixed metal cobalt phosphates, mixed metal cobalt borates, or mixed metal cobalt phosphate borates.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: October 15, 2013
    Inventors: Wilson Hago, Ivan Marc Lorkovic
  • Publication number: 20130244867
    Abstract: The present invention relates to a novel catalyst for producing N-substituted carbamates, the preparation of the catalyst and an improved method for producing N-substituted carbamates from these novel catalysts. The active component of the catalyst is a heteropoly acid and the catalyst support comprises a metal oxide or a metalloid oxide. The catalyst can be used to promote the reaction of carbamate and amine, thereby generating N-substituted carbamates with high yield. In the presence of the catalyst, the reaction conditions are relatively mild, the catalytic activity and selectivity of the reaction are high, and the reaction time is relatively short. Furthermore, the catalyst can be conveniently separated from the reaction system and recycled, therefore, the catalyst can be used to facilitate the further scale-up test and commercial application.
    Type: Application
    Filed: May 2, 2013
    Publication date: September 19, 2013
    Inventors: Stefan Wershofen, Stephan Klein, Hongchao Li, Xinkui Wang, Qifeng Li, Maoquing Kang
  • Publication number: 20130211150
    Abstract: A hydrogenation catalyst and process using the catalyst for converting a mixture comprising acetic acid and ethyl acetate to ethanol at a first temperature, and the catalyst desorbs ethyl acetate, in the absence of hydrogen, at a second temperature that is greater than the first temperature. The catalyst has a suitable chemisorption of ethyl acetate at the first temperature in the absence of hydrogen. In one embodiment, the first temperature ranges from 125° C. to 350° C. and the second temperature ranges from 300° C. to 600° C. The catalyst comprises one or more active metals or oxide thereof on a support that comprises tungsten or an oxide thereof. The one or more active metals are selected from the group consisting of cobalt, copper, gold, iron, nickel, palladium, platinum, iridium, osmium, rhenium, rhodium, ruthenium, tin, zinc, lanthanum, cerium, manganese, chromium, vanadium, and molybdenum.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner, Dheeraj Kumar, Xiaoyan Tu, Victor J. Johnston, Radmila Jevtic
  • Publication number: 20130186806
    Abstract: Preparation of a catalyst having at least one metal from group VIII, at least one metal from group VIB and at least one support; in succession: i) one of i1) contacting a pre-catalyst with metal from group VIII, metal from group VIB and support with a cyclic oligosaccharide naming at least 6 ?-(1,4)-bonded glucopyranose subunits; i2) contacting support with a solution containing a precursor of metal from group VIII, a precursor of said metal from group VIB and a cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits; or i3) contacting support with a cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits followed by contacting solid derived therefrom with a precursor of metal from group VIII and a precursor of metal from group VIB.
    Type: Application
    Filed: June 24, 2011
    Publication date: July 25, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Fabrice Diehl, Elodie Devers, Karin Marchand, Bertrand Guichard
  • Patent number: 8481448
    Abstract: The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst. Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, David Sullivan, James W. Kauffman, Clark Rea, Joe Linzer, Shahid Shaikh
  • Patent number: 8476181
    Abstract: The present invention relates to catalyst systems and a process for the simultaneous trimerization and tetramerization of olefinic monomers using those ligands.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: July 2, 2013
    Assignee: Shell Oil Company
    Inventors: Eric Johannes Maria De Boer, Harry Van Der Heijden, Quoc An On, Johan Paul Smit, Arie Van Zon
  • Publication number: 20130164205
    Abstract: The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen oxide (NO) with ammonia (NH3) or a nitrogen containing compound selected from ammonium salts, urea or a urea derivative or a solution thereof as reductant.
    Type: Application
    Filed: August 29, 2011
    Publication date: June 27, 2013
    Applicant: DANMARKS TEKNISKE UNIVERSITET
    Inventors: Siva, Sankar, Reddy Putluru, Anders Riisager, Rasmus Fehrmann
  • Patent number: 8470728
    Abstract: To overcome the problem of a conventional catalyst and to provide an exhaust gas purifying catalyst that meets the requirement concerning Hg oxidation activity and SO2 oxidation activity; i.e., an exhaust gas purifying catalyst which specifically reduces percent SO2 oxidation, while maintaining percent Hg oxidation at a high level. The invention provides an exhaust gas purifying catalyst which comprises a composition containing oxides of (i) titanium (Ti), (ii) molybdenum (Mo) and/or tungsten (W), (iii) vanadium (V), and (iv) phosphorus (P), wherein the catalyst contains Ti, Mo and/or W, and V in atomic proportions of 85 to 97.5:2 to 10:0.5 to 10, and has an atomic ratio of P/(sum of V and Mo and/or W) of 0.5 to 1.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: June 25, 2013
    Assignee: Babcock Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Naomi Imada
  • Patent number: 8461072
    Abstract: This invention relates to a series of novel late transition metal catalysts for olefin oligomerization, the catalysts demonstrating high activity and selectivity for linear ?-olefins. The catalysts contain a Group-8, -9, or -10 transition metal, M, excluding palladium; an ancillary ligand comprising: a terminal amine comprising two independently selected hydrocarbyl radicals, R1 and R2; a terminal phosphine comprising two independently selected hydrocarbyl radicals, R3 and R4; and a hydrocarbyl bridge, Y, comprising a backbone wherein the hydrocarbyl bridge connects between the terminal amine and the terminal phosphine and wherein the backbone comprises a chain that is four or more carbon atoms long; and an abstractable ligand, X. For example this invention relates to a composition of matter with the following formula: wherein M, R1, R2, R3, and R4, Y, and X are as defined above.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: June 11, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Baiyi Zhao, Smita Kacker, Jo Ann Marie Canich
  • Publication number: 20130116488
    Abstract: The present invention relates to a catalyst composition for conversion of vegetable oils to hydrocarbon products in the diesel boiling range, comprising a porous support; Group III A or VA element in the range of 1-10 wt %; Group VI B elements in the range of 1 to 20 wt %; Group VIII B elements in range of 0.01 to 10 wt %. The present invention further provides the process for preparing the catalyst composition for conversion of vegetable oils to hydrocarbon products in the diesel boiling range. The present invention also provides the process for conversion of vegetable oils to hydrocarbon products in the diesel boiling range using the catalyst composition or discarded refinery spent hydro-treating catalyst.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 9, 2013
    Applicant: BHARAT PETROLEUM CORPORATION LIMITED
    Inventor: BHARAT PETROLEUM CORPORATION LIMITED
  • Publication number: 20130116345
    Abstract: A catalyst comprising NiO, a metal mixture comprising at least one of MoO3 or WO3, a mixture comprising at least one of SiO2 and Al2O3, and P2O5. In this embodiment the metal sites on the catalyst are sulfided and the catalyst is capable of removing tar from a synthesis gas while performing methanation and water gas shift reactions at a temperature range from 300° C. to 600° C.
    Type: Application
    Filed: September 13, 2011
    Publication date: May 9, 2013
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Sourabh S. Pansare, Joe D. Allison, Steven E. Lusk, Albert C. Tsang
  • Patent number: 8435923
    Abstract: Compositions, materials incorporating the compositions, and methods of use thereof, for the protection and/or decontamination of contaminants are disclosed.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: May 7, 2013
    Assignee: Emory University
    Inventors: Nelya Okun, Craig Hill, Zhen Luo
  • Patent number: 8415268
    Abstract: A process for producing a ringlike oxidic shaped body by mechanically compacting a pulverulent aggregate introduced into the fill chamber of a die, wherein the outer face of the resulting compact corresponds to that of a frustocone.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: April 9, 2013
    Assignee: BASF SE
    Inventors: Knut Eger, Jens Uwe Faust, Holger Borchert, Ralf Streibert, Klaus Joachim Mueller-Engel, Andreas Raichle
  • Patent number: 8410013
    Abstract: Provided is a catalyst for treating exhaust gas capable of reducing the amount of a highly corrosive mercury-chlorinating agent to be added while keeping the mercury oxidation efficiency high in an exhaust gas treatment. By the catalyst for treating exhaust gas, nitrogen oxide in the exhaust gas is removed upon contact with ammonia serving as a reducing agent, and mercury is oxidized using a halogen serving as an oxidant. The catalyst includes: TiO2 as a support; an oxide of at least one selected from the group consisting of V, W and Mo, which is supported as an active component on the support; and at least one selected from the group consisting of Bi, P, and compounds containing Bi and/or P, which is supported as a co-catalyst component on the support.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: April 2, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Yoshiaki Obayashi, Masashi Kiyosawa
  • Publication number: 20130072735
    Abstract: The present invention relates to solid phosphoric acid (SPA) catalysts, processes for making the catalysts, and processes for conversion of hydrocarbons using the catalysts, such as oligomerization of propylene. In an exemplary embodiment, the catalyst comprises a calcined extrudate of phosphoric acid, diatomaceous earth, and niobic acid. Methods for converting hydrocarbons to olefins comprise contacting a hydrocarbon feedstock with the catalyst at hydrocarbon conversion conditions.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 21, 2013
    Inventors: Wayne Turbeville, Greg Korynta
  • Patent number: 8399580
    Abstract: Systems and methods for the maintenance of active chromium-based catalysts and their use in polymerization processes are described. In one embodiment, a system for the introduction of multiple polymerization components to activate a chromium based catalyst within a mix tank is described. Other described features may include materials and methods to purify the liquid medium of a catalyst slurry so that the catalyst slurry maintains a high level of activity. The active chromium-based catalyst may provide polyolefins with a number of desirable properties in a reliable, consistent, and predictable manner.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: March 19, 2013
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins
  • Publication number: 20130066100
    Abstract: A process for preparing a catalyst used in a production of acrolein and acrylic acid by dehydration reaction of glycerin, characterized by the steps of mixing a solution of heteropolyacid or constituents of heteropolyacid, a solution of at least one metal selected from elements belonging to Group 1 to Group 16 of the Periodic Table of Elements or its onium and a carrier to obtain a solid substance, and then of effecting at least one time of calcination before said solid substance is used in the dehydration reaction of glycerin. A catalyst obtained by the process for use in a production of acrolein and acrylic acid by dehydration reaction of glycerin. A process for preparing acrolein by catalytic dehydration of glycerin carried out in the presence of the catalyst and under a pressurized condition. A process for preparing acrylic acid obtained by oxydation of acrolein obtained. A process for preparing acrylonitrile obtained by ammoxidation of acrolein obtained.
    Type: Application
    Filed: October 15, 2010
    Publication date: March 14, 2013
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Yasuhiro Magatani, Kimito Okumura, Jean-Luc Dubois
  • Publication number: 20130053595
    Abstract: A catalyst composition comprising at least an heteropolyacid deposited on a porous titania carrier. A catalyst composition comprising at least an heteropolyacid in which protons in the heteropolyacid may be partially exchanged by at least one cation selected from elements belonging to Group 1 to Group 16 of the Periodic Table of Elements that have been deposited on a porous titania carrier. A method for preparing the catalyst composition, comprising impregnating a titania carrier with a solution of at least one metal selected from elements belonging to the Group 1 to Group 16 of the Periodic Table of Elements or onium, drying and firing the resulting solid mixture, secondly impregnating the resulting solid mixture with a solution of heteropolyacid, drying, and firing the resulting solid mixture. A process for preparing acrolein and acrylic acid by dehydration of glycerin, carried out in the presence of the catalyst.
    Type: Application
    Filed: September 18, 2009
    Publication date: February 28, 2013
    Applicants: ARKEMA FRANCE, NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Yasuhiro Magatani, Kimito Okumura, Jean-Luc Dubois, Jean-Francois Devaux