And Group Vi Metal Containing (i.e., Cr, Mo, W Or Po) Patents (Class 502/219)
  • Patent number: 8283279
    Abstract: The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05?y/x?15.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: October 9, 2012
    Assignee: University of Calgary
    Inventors: Pedro Pereira-Almao, Vieman Alberto Ali-Marcano, Francisco Lopez-Linares, Alejandro Vasquez
  • Patent number: 8242043
    Abstract: A process for production of a supported catalyst that, when used for production of lower aliphatic carboxylic acids from oxygen and lower olefins, improves yields of the lower aliphatic carboxylic acids and minimizes production of carbon dioxide gas (CO2) by-product compared to the prior art. A compound comprising at least one element selected from elements of Groups 8, 9 and 10 of the Periodic Table, at least one chloride of an element selected from copper, silver and zinc, and a chloroauric acid salt, are loaded on a carrier, after which there are further loaded a compound comprising at least one element selected from gallium, indium, thallium, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, sulfur, selenium, tellurium and polonium, and a heteropoly acid.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: August 14, 2012
    Assignee: Showa Denko K.K.
    Inventor: Atsuyuki Miyaji
  • Publication number: 20120189681
    Abstract: A layered heterostructured coating has functional characteristics that enable the controlled release of volatile agents. The coating has photocatalytic properties, since it uses titanium dioxide, its derivatives or materials with similar photocatalytic properties (2), which upon solar irradiation open and/or degrade nano or microcapsules (3) and subsequently releases in a controlled form the volatile agents contained in them.
    Type: Application
    Filed: December 11, 2009
    Publication date: July 26, 2012
    Inventors: Carlos José Macedo Tavares, Femando Da Silva Pina
  • Publication number: 20120168350
    Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. The process employs a polar aprotic solvent to mix with the inorganic metal precursor feed to form an oil-dispersible inorganic metal precursor, at a weight ratio of solvent to inorganic metal precursor of 1:1 to 10:1; the oil-dispersible inorganic metal precursor is subsequently sulfided forming the slurry catalyst. In one embodiment, the sulfiding is in-situ upon mixing the oil-dispersible inorganic metal precursor with a hydrocarbon diluent containing a heavy oil feedstock under in-situ sulfiding conditions.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Publication number: 20120172201
    Abstract: A process for preparing a slurry catalyst is provided. The slurry catalyst is prepared from at least a Group VIB metal precursor and optionally at least a Promoter metal precursor selected from Group VIII, Group IIB, Group IIA, Group IVA metals and combinations thereof. The slurry catalyst comprises a plurality of dispersed particles in a hydrocarbon medium having an average particle size ranging from 1 to 300 nm. The slurry catalyst is then mixed with a hydrogen feed at a pressure from 1435 psig (10 MPa) to 3610 psig (25 MPa) and a temperature from 200-800° F. at 500 to 15,000 scf hydrogen per bbl of slurry catalyst for a minute to 20 hours, for the slurry catalyst to be saturated with hydrogen providing an increase of k-values in terms of HDS, HDN, and HDMCR of at least 15% compared to a slurry catalyst that is not saturated with hydrogen.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Applicant: c/o Chevron Corporation
    Inventors: Shuwu Yang, Bruce Edward Reynolds, Julie Chabot, Bo Kou
  • Publication number: 20120168351
    Abstract: An improved process for preparing a slurry catalyst for the upgrade of heavy oil feedstock is provided. The process employs rework material obtained from a process to prepare a hydroprocessing catalyst as part of the metal precursor feed. In one embodiment, the process comprises mixing the rework material with a hydrocarbon diluent to form a slurried metal precursor for subsequent in-situ sulfiding in a heavy oil upgrade process. In another embodiment, the rework is slurried in a hydrocarbon carrier and a sulfiding agent, forming a slurry catalyst. In yet another embodiment, the rework material is mixed directly with a heavy oil feedstock under in-situ sulfiding conditions, forming a slurry catalyst.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Applicant: c/o Chevron Corporation
    Inventors: Erin P. Maris, Oleg Mironov, Julie Chabot
  • Patent number: 8207081
    Abstract: A novel M—Pd—Cr2O3 (M?Pt, Ru, Rh, Os, Au and Ag) nanocomposite cocatalysts and its preparation method. The cocatalysts loaded on CdS photocatalyst enhances the photocatalytic activities toward H2 evolution from aqueous solutions (NH4)2SO3, a regenerable electron donor, under sunlight radiation. An embodiment provides a new and facile method and system for the preparation of M—Pd—Cr2O3 nanocomposite cocatalysts at room temperature. Pd—Cr2O3 loaded CdS photocatalyst has higher hydrogen evolution activity than that of a plain Pd metal loaded CdS and its performance is comparable to that of Pt/CdS photocatalyst. Formation of a Pd—Cr2O3 composite with reduced size of nanoparticles results in an increase in the photocatalyst activity for H2 evolution.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: June 26, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Cunping Huang, Weifeng Yao, Nazim Muradov, Ali Raissi
  • Publication number: 20120152806
    Abstract: A method to upgrade heavy oil feedstock using an ebullated bed reactor and a novel catalyst system is provided. The ebullated bed reactor system includes two different catalyst with different characteristics: an expanded catalyst zone containing particulate catalyst having a particle size of greater than 0.65 mm; and a slurry catalyst having an average particle size ranging from 1 to 300 ?m. The slurry catalyst is introduced to the ebullated bed system with the heavy oil feedstock, and entrained in the upflowing hydrocarbon liquid passing through the ebullated bed reaction zone. The slurry catalyst reduces the formation of sediment and coke precursors in the ebullating bed reactor system. The slurry catalyst is prepared from at least a water-soluble metal precursor and pre-sulfided prior to being introduced with the heavy oil feedstock to the reactor system, or sulfided in-situ in the ebullated bed reactor in another embodiment.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 21, 2012
    Inventors: Bruce E. Reynolds, Julie Chabot, Erin Maris, Sean Solberg, Kaidong Chen
  • Publication number: 20120122656
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and stay in the supernatant. In one embodiment, at least a precipitant is added to the product mixture at a molar ratio of precipitant to metal residuals in the supernatant ranging from 1.5:1 to 20:1 to precipitate at least 50 mole % of metal ions in the residuals forming additional catalyst precursor. The remaining metal residuals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of at least one of the metal residuals. In one embodiment, at least one of the metal residuals is recovered and recycled for use as a metal precursor feed in the co-precipitation reaction.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 17, 2012
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Publication number: 20120122655
    Abstract: In a process for forming a bulk hydroprocessing catalyst by sulfiding a catalyst precursor made in a co-precipitation reaction, up to 60% of the metal precursor feeds do not react to form catalyst precursor and end up in the supernatant. In the present disclosure, the metals can be recovered via any of chemical precipitation, ion exchange, electro-coagulation, and combinations thereof to generate an effluent stream containing less than 50 mole % of metal ions in at least one of the metal residuals, and for at least one of the metal residuals is recovered as a metal precursor feed, which can be recycled for use in the co-precipitation reaction. An effluent stream from the process to waste treatment contains less than 50 ppm metal ions.
    Type: Application
    Filed: October 18, 2011
    Publication date: May 17, 2012
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Patent number: 8173570
    Abstract: A catalyst precursor composition and methods for making such catalyst precursor are disclosed. The catalyst precursor comprises at least a Promoter metal selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, at least one Group VIB metal, at least one organic, oxygen-containing ligand, and a cellulose-containing material. Catalysts prepared from the sulfidation of such catalyst precursors are used in the hydroprocessing of hydrocarbon feeds. In one embodiment, the sulfidation is carried out by contacting the catalyst precursor with hydrogen and a sulfur containing compound, wherein the contacting is carried out ex-situ. Catalysts prepared from such catalyst precursors have a fouling rate of less than 8° F. (4.4° C.) per 1000 hour.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: May 8, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman, Bi-Zeng Zhang, Andrew Rainis, Christopher J. Dillon
  • Patent number: 8168557
    Abstract: A method of restoring catalytic activity to a spent hydroprocessing catalyst that has a first carbon concentration. The concentration of carbon on the spent hydroprocessing catalyst is reduced to provide a carbon-reduced catalyst having a second carbon concentration that is less than the first carbon concentration. The carbon-reduced catalyst is exposed to a solution, comprising a chelating agent and a solvent, for an aging time period sufficient to provide for a restored catalytic activity thereby resulting in an aged catalyst having incorporated therein the chelating agent and the solvent. The aged catalyst is exposed to conditions, including a drying temperature, so as to remove from the aged catalyst a portion of the solvent without removing a significant portion of the chelating agent from the aged catalyst thereby resulting in a dried aged catalyst. The dried aged catalyst is then sulfur treated to thereby provide a restored catalyst.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: May 1, 2012
    Assignee: Shell Oil Company
    Inventors: Josiane Marie-Rose Ginestra, James Dallas Seamans, Kenneth Scott Lee
  • Publication number: 20120021293
    Abstract: The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 26, 2012
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 8080492
    Abstract: A catalyst precursor for preparing a bulk multi-metallic catalyst upon sulfidation is provided. The precursor has an essentially monomodal pore volume distribution with at least 90% of the pores being macropores, and a total pore volume of at least 0.08 g/cc. The bulk multi-metallic prepared from the precursor is particularly suitable for hydrotreating heavy oil feeds having a boiling point in the range of 343° C. (650° F.)—to 454° C. (850° F.), an average molecular weight Mn ranging from 300 to 400, and an average molecular diameter ranging from 0.9 nm to 1.7 nm.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: December 20, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra, Soy Uckung, Darren Fong
  • Patent number: 8062991
    Abstract: A catalyst system for the reduction of NOx comprises a catalyst comprising a metal oxide catalyst support, a catalytic metal oxide comprising at least one of gallium oxide or silver oxide, and at least one promoting metal selected from the group consisting of silver, cobalt, molybdenum, tungsten, indium, bismuth and mixtures thereof. The catalyst system further comprises a gas stream comprising an organic reductant, and a compound comprising sulfur. A method for reducing NOx utilizing the said catalyst system is also provided.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: November 22, 2011
    Assignee: General Electric Company
    Inventors: Jonathan Lloyd Male, Grigorii Lev Soloveichik, Alison Liana Palmatier, Dan Hancu, Gregory Lee Warner, Jennifer Kathleen Redline, Eric George Budesheim, Teresa Grocela Rocha, Stanlee Teresa Buddle
  • Patent number: 8058203
    Abstract: A method for preparing a bulk multi-metallic suitable for hydrotreating heavy oil feeds is provided. In the process of preparing the catalyst precursor which is subsequently sulfided to form the bulk catalyst, non-agglomerative drying is employed to keep the catalyst precursor from aggregating/clumping, resulting in a catalyst precursor with optimum porosity with at least 90% of the pores being macropores, and having a total pore volume of at least 0.08 g/cc.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: November 15, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis Dykstra, Theodorus Maesen, Alexander E. Kuperman, Soy Uckung, Darren Fong
  • Patent number: 8003743
    Abstract: A process for preparing 1-butene polymers comprising polymerizing 1-butene and optionally ethylene, propylene or higher alpha-olefin, in the presence of a catalyst system obtainable by contacting: a) metallocene compound of formula (I): wherein: M is a transition metal; p is an integer from 0 to 3; X, same or different, is a hydrogen atom, a halogen atom, or a hydrocarbon group; L is a divalent C1-C40 hydrocarbon radical; R1 is a C1-C40 hydrocarbon radical; T1, is a moiety of formula (IIa) or (IIb): wherein R2 and R3, are C1-C40 hydrocarbon radicals or they can form together a C3-C7-membered ring; R4 is C1-C40 hydrocarbon radicals; T2 and T3, are a moiety of formula (IIIa) or (IIIb): wherein R6 and R7, equal to or different from each other, are hydrogen atoms or C1-C40 hydrocarbon radicals; R5 is a hydrogen atom or a C1-C40 hydrocarbon radicals; with the proviso that if T1 is a moiety of formula (IIa) at least one between T2 and T3 is a moiety of formula (IIIb), and if T1 is a moiety of formula
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: August 23, 2011
    Assignee: Basell Poliolefine Italia, S.R.L.
    Inventors: Luigi Resconi, Friederike Morhard
  • Patent number: 7964526
    Abstract: A method for preparing a bulk multi-metallic suitable for hydrotreating heavy oil feeds is provided. In the process of preparing the catalyst precursor which is subsequently sulfided to form the bulk catalyst, a catalyst precursor filter cake is treated with at least a chelating agent, resulting in a catalyst precursor with optimum porosity with at least 90% of the pores being macropores, and having a total pore volume of at least 0.12 g/cc.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: June 21, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Maesen, Alexander E. Kuperman, Dennis Dykstra, Soy Uckung, Darren Fong
  • Patent number: 7964525
    Abstract: A stable catalyst with low volumetric shrinkage and a process for making the stable catalyst with low volumetric shrinkage is disclosed. The catalyst is made by sulfiding a catalyst precursor containing at least a Group VIB metal compound; at least a promoter metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, having an oxidation state of either +2 or +4; optionally at least a ligating agent; optionally at least a diluent. In the process of making the catalyst, the catalyst precursor is first shaped then heat treated at a temperature of 50° C. to 200° C. for about 15 minutes to 12 hours, wherein the catalyst precursor still has a low (less than 12%) volumetric shrinkage after exposure to a temperature of at least 100° C. for at least 30 minutes, e.g., in sulfidation or in a hydrotreating reactor.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: June 21, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis Dykstra, Theodorus Maesen, Alexander E. Kuperman, Soy Uckung, Darren Fong
  • Patent number: 7964524
    Abstract: A catalyst and a process for making a catalyst from a precursor composition containing rework materials are disclosed. The catalyst is made by sulfiding a catalyst precursor containing 5-95 wt. % rework material. The catalyst precursor employing rework materials can be a hydroxide or oxide material. Rework can be materials generated in the forming or shaping of the catalyst precursor, or formed upon the breakage or handling of the shaped catalyst precursor. Rework can also be in the form of catalyst precursor feed material to the shaping process, e.g., extrusion process, or catalyst precursor material generated as reject or scrap in the shaping process. In some embodiment, rework may be of the consistency of shapeable dough. In another embodiment, rework is in the form of small pieces or particles, e.g., fines, powder.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: June 21, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra
  • Publication number: 20110139677
    Abstract: Catalytic system which can be used in processes for the hydroconversion of heavy oils by means of hydrotreatment in slurry phase, characterized in that it comprises: a catalyst, having the function of hydrogenating agent, containing MoS2 or WS2 or mixtures thereof in lamellar form or an oil-soluble precursor thereof; a co-catalyst, having nanometric or micronic particle-sizes, selected from cracking and/or denitrogenation catalysts. The co-catalyst preferably consists of zeolites having small-sized crystals and with a low aggregation degree between the primary particles, and/or oxides or sulfides or precursors of sulfides of Ni and/or Co in a mixture with Mo and/or W.
    Type: Application
    Filed: June 8, 2009
    Publication date: June 16, 2011
    Applicant: ENI S.P.A.
    Inventors: Giuseppe Bellussi, Giacomo Rispoli, Angela Carati
  • Patent number: 7955588
    Abstract: Methods and apparatus relate to catalysts and preparation of the catalysts, which are defined by sulfides of a transition metal, such as one of molybdenum, tungsten, and vanadium. Precursors for the catalysts include a metal ion source compound, such as molybdenum trioxide, and a sulfide ion source compound, such as thioacetamide. Once the precursors are dissolved if solid and combined in a mixture, homogenous precipitation from the mixture forms the catalysts. Exemplary uses of the catalysts include packing for a methanation reactor that converts carbon monoxide and hydrogen into methane.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: June 7, 2011
    Assignee: ConocoPhillips Company
    Inventors: Madhu Anand, Brian C. Dunn, Glenn W. Dodwell
  • Patent number: 7947623
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h,, wherein M is at least one group VIB metal; promoter metal L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale).
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: May 24, 2011
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jaime Lopez, Axel Brait, Bruce Reynolds, Kaidong Chen
  • Patent number: 7897537
    Abstract: The present invention relates generally to ultradispersed catalyst compositions and methods for preparing such catalysts. In particular, the invention provides catalyst composition of the general formula: BxMyS[(1.1 to 4.6)y+(0.5 to 4)x] where B is a group VIIIB non-noble metal and M is a group VI B metal and 0.05?y/x?15.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: March 1, 2011
    Assignee: University of Calgary
    Inventors: Pedro Pereira-Almao, Vieman Alberto Ali-Marcano, Francisco Lopez-Linares, Alejandro Vasquez
  • Publication number: 20110034710
    Abstract: A catalyst for the epoxidation of an olefin comprising a carrier and, deposited on the carrier, silver, a rhenium promoter, a first co-promoter, and a second co-promoter; wherein the molar ratio of the first co-promoter to the second co-promoter is greater than 1; the first co-promoter is selected from sulfur, phosphorus, boron, and mixtures thereof; and the second co-promoter is selected from tungsten, molybdenum, chromium, and mixtures thereof; a process for preparing the catalyst; a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether, a 1,2-carbonate, or an alkanolamine.
    Type: Application
    Filed: May 7, 2008
    Publication date: February 10, 2011
    Inventor: Marek Matusz
  • Patent number: 7879753
    Abstract: Ruthenium sulfide catalyst and gas diffusion electrodes incorporating the same for reduction of oxygen in industrial electrolyzers which catalyst is highly resistant to corrosion making it useful for oxygen-depolarized aqueous hydrochloric acid electrolysis.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: February 1, 2011
    Assignee: Industrie de Nora S.p.A.
    Inventors: Andrea F. Gulla, Robert J. Allen, Emory S. De Castro
  • Patent number: 7854833
    Abstract: The present invention is directed to a method for producing a crude product from a crude feed. A crude feed is contacted with a hydrogen source and a catalyst comprising a transition metal sulfide under conditions controlled such that the crude product has a residue content of at most the 30% of the residue content of the crude feed.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: December 21, 2010
    Assignee: Shell Oil Company
    Inventors: Scott Lee Wellington, Stanley Nemec Milam
  • Publication number: 20100304963
    Abstract: An improved catalyst for hydrodemetallization of heavy crude oils and residua is disclosed. The catalyst is adopted for fixed bed hydroprocessing units. The invention is characterized for having a large pore diameter catalyst principally for hydrodemetallization of heavy oil and residue in a first reactor of a multi-reactor process. The catalyst has high demetallizing activity and high metal deposition capacity which results in good stability with time on stream (TOS). The hydrorefining catalyst is obtained by kneading a porous starting powder principally composed of gamma-alumina and having a pore capacity of 0.3-0.6 ml/g or larger and a mean pore diameter of 10 to 26 nm, extrudating and calcining, and after that supported with active metals component of elements belonging to groups VIIIB and VIB of the periodic table.
    Type: Application
    Filed: May 26, 2008
    Publication date: December 2, 2010
    Inventors: Mohan Singh, Jorge Ancheyta Juarez, Patricia Rayo Mayoral, Samir Kumar Maity
  • Publication number: 20100274039
    Abstract: The present invention relates to an esterification catalyst composition that includes a zirconium compound and a method for producing an ester compound, which includes the steps of esterifying alcohol and carboxylic acid compounds by using the same, and it may be applied to a mass synthesis process.
    Type: Application
    Filed: December 24, 2008
    Publication date: October 28, 2010
    Inventors: Dai-Seung Choi, Yu-Chan Kang, Sung-Ho Chun, Heon Kim, Dong-Woo Yoo
  • Patent number: 7816298
    Abstract: A catalyst precursor composition and methods for making such catalyst precursor is disclosed. The catalyst precursor comprises at least one of a Group IIB metal compound, a Group IVA metal compound, a Group IIA metal compound, and combinations thereof, at least one Group VIB metal, at least one organic, oxygen-containing ligand, and optionally a cellulose-containing material. Catalysts prepared from the sulfidation of such catalyst precursors are used in the hydroprocessing of hydrocarbon feeds.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 19, 2010
    Assignee: Chevron U. S. A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Patent number: 7807599
    Abstract: A process for making a catalyst precursor is disclosed. In one embodiment, the process comprises co-precipitating at reaction conditions forming a precipitate or cogel: at least a promoter metal compounds selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, at least one of Group VIB metal compounds, at least an organic oxygen-containing ligand L. The precursor is represented by the formula Av[(MP) (OH)x(L)ny]z(MVIBO4), wherein A comprises an alkali metal cation, an ammonium, an organic ammonium or a phosphonium cation, MP is at least one of Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, L is the organic, oxygen-containing co-ordinating ligand, MVIB is at least one of Group VIB metals, and the atomic ratio of MP:MVIB is between 100:1 and 1:100.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 5, 2010
    Assignee: Chevron U. S. A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Patent number: 7803735
    Abstract: A catalyst precursor composition and methods for making such catalyst precursor are disclosed. The catalyst precursor comprises at least a metal compound selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof, at least one Group VIB metal, at least one organic, oxygen-containing ligand, and a cellulose-containing material. Catalysts prepared from the sulfidation of such catalyst precursors are used in the hydroprocessing of hydrocarbon feeds. In one embodiment, the sulfidation is carried out by contacting the catalyst precursor with hydrogen and a sulfur containing compound in a “slow” process with the sulfidation taking place over a few days up to two weeks, e.g., for at least over 96 hours. In another embodiment, the sulfidation is in a “quick” process with the sulfidation taking place in less than 72 hours. The catalyst prepared from the slow sulfidation process gives a 700° F.+ conversion rate of at least 25% higher than the 700° F.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: September 28, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman, Darren Fong
  • Patent number: 7799207
    Abstract: The instant invention is directed to a process wherein a heavy oil feedstock upgrader alters its mode of operation of its full conversion hydroprocessing unit to create a custom tailored synthetic crude feedstock based upon data communicated from a target refinery and data communicated from the heavy oil feedstock upgrader. The data from the target refinery is data that represents refining process data and linear program modeling along with analysis by a refining planner to calculate the optimum “synthetic trim crude” that will optimize the effective use of the target refinery's capacity and equipment.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: September 21, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Paul A. Allinson, Curtis Munson
  • Publication number: 20100209814
    Abstract: There is provided a composite catalyst in which metal particles having catalytic activity are supported at a high density on a surface of an inorganic oxide, and the supported metal particles are strongly fixed to the surface of the inorganic oxide to improve the durability of the composite catalyst. The composite catalyst includes the inorganic oxide and the metal particles. A compound having a functional group including an amino group or a thiol group is bonded to a surface of the inorganic oxide. The metal particles are bonded to the functional group.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Inventors: Shuichi SUZUKI, Jun Kawaji, Yoshiyuki Takamori, Makoto Morishima, Hideo Daimon, Taigo Onodera
  • Patent number: 7754645
    Abstract: A process to prepare hydroprocessing bulk catalysts is provided. The hydroprocessing catalyst has the formula (Mt)a(Xu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; X is at least at least a metal compound selected from a non-noble Group VIII metal, a Group VIIIB metal, a Group VIB metal, a Group IVB metal, and a Group IIB metal (“Promoter Metal”); t, u, v, w, x, y, z representing the total charge for each of the components (M, X, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 13, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Jaime Lopez, Oleg Mironov, Axel Brait
  • Patent number: 7737073
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; promoter metal L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale).
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: June 15, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jaime Lopez, Axel Brait, Bruce Reynolds, Kaidong Chen
  • Patent number: 7737072
    Abstract: A hydroprocessing catalyst is provided. The hydroprocessing catalyst has the formula (Mt)a(Xu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; X is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, X, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale). In one embodiment, the at least one diffraction peak is greater than 2 degrees wide at ½ height.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 15, 2010
    Assignee: Chevron USA Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jaime Lopez, Axel Brait, Bruce Reynolds, Kaidong Chen
  • Publication number: 20100135883
    Abstract: This invention relates to a catalyst material, and its method of making and manufacture, useful for a diversity of chemical production processes as well as various emission control processes. More specifically, it relates to a catalyst composition, preferably comprising a metal oxide felt substrate, with one or more functional surface active constituents integrated on and/or in the substrate surface, which can be used in the removal of sulfur and sulfur compounds from hot gases as well as acting to trap solid particulates and trace metals within these hot gases.
    Type: Application
    Filed: September 8, 2009
    Publication date: June 3, 2010
    Applicant: UOP LLC
    Inventors: Manuela Serban, Lisa M. King, Alakananda Bhattacharyya, Tom N. Kalnes, Kurt M. Vanden Bussche
  • Patent number: 7682502
    Abstract: An improved hydrogenation process for lube oil boiling range feedstreams utilizing a catalyst comprising at least one Group VIII noble metal selected from Pt, Pd, and mixtures thereof having an average pore diameter of about 15 to less than about 40 ?.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: March 23, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Wenylh F. Lai, Jean W. Beeckman, Sylvain S. Hantzer
  • Patent number: 7678730
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale).
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 16, 2010
    Assignee: Chevron USA Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 7678731
    Abstract: An improved hydroprocessing catalyst having improved morphology/dispersion characteristics is provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, X, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst is prepared by a process in which at least a sulfur additive is added to the sulfidation process in forming the catalyst precursor.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 16, 2010
    Assignee: Chevron USA Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Publication number: 20100034717
    Abstract: Selective catalytic reduction with ammonia or a compound that decomposes to ammonia is a known method for the removal of nitrogen oxides from the exhaust gas of primarily lean-burn internal combustion engines. The vanadium-containing SCR catalysts that have long been generally used for this are characterized by a good conversion profile. However, the volatility of vanadium oxide can, at higher exhaust gas temperatures, lead to the emission of toxic vanadium compounds. Zeolite-based SCR catalysts, which are used in particular in discontinuous SCR systems, constitute a very cost-intensive solution for the problem. A method is proposed by which a homogeneous cerium-zirconium mixed oxide is activated for the SCR reaction in a defined manner by the introduction of sulphur and/or transition metal.
    Type: Application
    Filed: September 17, 2007
    Publication date: February 11, 2010
    Inventors: Katja Adelmann, Nicola Soeger, Lothar Mussmann, Marcus Pfeifer, Gerald Jeske
  • Patent number: 7651606
    Abstract: The invention concerns a process for the hydrodesulphurization of gasoline cuts for the production of gasolines with a low sulphur and mercaptans content. Said process comprises at least two hydrodesulphurization steps, HDS1 and HDS2, operated in parallel on two distinct cuts of the gasoline constituting the feed. The flow rate of hydrogen in the hydrodesulphurization step HDS2 is such that the ratio between the flow rate of hydrogen and the flow rate of feed to be treated is less than 80% of the ratio of the flow rates used to desulphurize in the hydrodesulphurization step HDS1.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: January 26, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Florent Picard, Quentin Debuisschert, Annick Pucci
  • Publication number: 20090318739
    Abstract: The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.
    Type: Application
    Filed: September 20, 2007
    Publication date: December 24, 2009
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Zhongneng Liu, Zaiku Xie, Xiaoling Wu, Minbo Hou, Xinghua Jiang, Hongyuan Zong
  • Patent number: 7615509
    Abstract: Supported metallic catalysts comprised of a Group VIII metal, a Group VIB metal, and an organic additive, and methods for synthesizing supported metallic catalysts are provided. The catalysts are prepared by a method wherein precursors of both metals are mixed and interacted with at least one organic additive, dried, calcined, and sulfided. The catalysts are used for hydroprocessing, particularly hydrodesulfurization and hydrodenitrogenation, of hydrocarbon feedstocks.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: November 10, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, EL-Mekki El-Malki, Jeff Elks, Zhiguo Hou, Jon M. McConnachie, Pallassana S. Venkataraman, Jason Wu, Peter W. Jacobs, Jun Han, Daniel M. Giaquinta, Alfred Hagemeyer, Valery Sokolovskii, Anthony F. Volpe, Jr., David M. Lowe
  • Patent number: 7591942
    Abstract: Bulk bi-metallic catalysts for use in the hydroprocessing of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor containing an organic agent.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: September 22, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Zhiguo Hou
  • Patent number: 7585404
    Abstract: This application discloses a process for decomposition of ammonium sulfates found in a stream comprising ammonium sulfate and slurry catalyst in oil. The ammonium sulfate is broken down into ammonia and hydrogen sulfide gas. These gases have many uses throughout the refinery, including the preparation of slurry hydroprocessing catalyst.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 8, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Axel Brait
  • Patent number: 7579296
    Abstract: The present invention provides a broad band light absorbing photocatalyst which has a high absorptivity not only for visible light but also, in particular, for ultraviolet light, exhibits photocatalytic activity in response to a broad band light over a long period, has a high adsorptivity for objects to be decomposed, and can exhibit oxidative decomposition effect, antibacterial effect, antifouling effect, etc. The broad band light absorbing photocatalyst of the present invention includes an apatite having photocatalytic activity, a visible light absorbing metal atom and an ultraviolet light absorbing metal atom and the ultraviolet light absorbing metal atom is at least one of tungsten (W) and vanadium (V).
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: August 25, 2009
    Assignee: Fujitsu Limited
    Inventors: Yasuo Naganuma, Masato Wakamura
  • Patent number: 7576028
    Abstract: A catalyst body comprising a carrier and a catalyst layer containing an alkali metal and/or an alkaline earth metal, loaded on the carrier, which catalyst further contains a substance capable of reacting with the alkali metal and/or the alkaline earth metal, dominating over the reaction between the main components of the carrier and the alkali metal and/or the alkaline earth metal. With this catalyst body, the deterioration of the carrier by the alkali metal and/or the alkaline earth metal is prevented; therefore, the catalyst body can be used over a long period of time.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: August 18, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Naomi Noda, Junichi Suzuki, Takashi Harada
  • Publication number: 20090177000
    Abstract: A supported silver catalyst and use thereof in a process for producing an alkylene oxide, such as ethylene oxide, by the direct oxidation of an alkylene with oxygen or an oxygen-containing gas, wherein the catalyst provides improved stability and improved resilience to reactor upsets and timely recovery to substantially pre-upset levels of catalyst activity and/or efficiency. In some embodiments, the catalyst also exhibits improved activity. A catalyst capable of producing ethylene oxide at a selectivity of at least 87 percent while achieving a work rate of at least 184 kg/h/m3 at a temperature of no greater than 235° C. when operated in a process where the inlet feed to a reactor containing the catalyst comprises ethylene, oxygen, and carbon dioxide, wherein the concentration of carbon dioxide in the inlet feed is greater than or equal to 2 mole percent.
    Type: Application
    Filed: April 17, 2007
    Publication date: July 9, 2009
    Inventors: Manuel A. W. Natal, Madan M. Bhasin, Hwaili Soo, Albert C. Liu