And Group Viii Metal Containing (i.e., Iron Or Platinum Group) Patents (Class 502/222)
  • Publication number: 20090208403
    Abstract: This invention relates primarily to a novel method to manufacture single/multi/fibers carbon filaments (nano tubes) in pure form optionally with antiferromagnetic and electrical property wherein the byproduct is hydrogen gas resulting in reduction of environmental carbon emissions by at least 20%; both carbon filaments and resultant exhaust are useful products.
    Type: Application
    Filed: February 17, 2008
    Publication date: August 20, 2009
    Applicant: Quaid-e-Azam University
    Inventors: Syed Tajammul Hussain, Mohammed Mazhar, Sheraz Gul, M. Abdullah Khan
  • Patent number: 7544632
    Abstract: Novel bulk tri-metallic catalysts for use in the hydroprocessing of hydrocarbon feeds, as well as a method for preparing such catalysts. The catalysts are prepared from a catalyst precursor containing an organic agent.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: June 9, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Stuart L. Soled, Sabato Miseo, Zhiguo Hou
  • Patent number: 7534739
    Abstract: A platinum-free chelate catalyst material consisting of at least one unsupported transition metal, a nitrogen-containing organo-metallic transition complex, a further transition metal other than the unsupported transition metal and a chalcogenic compound.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: May 19, 2009
    Assignee: Helmholtz-Zentrum Berlin Fuer Materialien und Energie
    Inventors: Marcus Hilgendorff, Iris Dorbandt, Hendrik Schulenburg, Michael Bron, Sebastian Fiechter, Peter Bogdanoff, Helmut Tributsch
  • Publication number: 20090105511
    Abstract: Provided are: a uniformly, highly dispersed metal catalyst including a catalyst carrier and a catalyst metal being loaded thereon dispersed throughout the carrier, the uniformly, highly dispersed metal catalyst having excellent performances with respect to catalytic activity, selectivity, life, etc.; and a method of producing the same. The uniformly, highly dispersed metal catalyst includes a catalyst carrier made of a metal oxide and a catalyst metal having catalytic activity, the catalyst metal being loaded on the catalyst carrier, in which the catalyst carrier is a sulfur-containing catalyst carrier having sulfur or a sulfur compound almost evenly distributed throughout the carrier and the catalyst metal is loaded on the sulfur-containing catalyst carrier in a substantially evenly dispersed manner over the entire carrier substantially according to the distribution of the sulfur or the sulfur compound.
    Type: Application
    Filed: June 19, 2006
    Publication date: April 23, 2009
    Inventors: Yoshimi Okada, Toshiji Makabe, Masashi Saito, Takako Nishijima
  • Patent number: 7514476
    Abstract: Metal-containing colloids are manufactured by reacting a plurality of metal ions and a plurality of organic agent molecules to form metal complexes in a mixture having a pH greater than about 4.25. The metal complexes are reduced for at least 0.5 hour to form stable colloidal nanoparticles. The extended reduction time improves the stability of the colloidal particles as compared to shorter reduction times. The stability of the colloidal particles allows for colloids with higher concentrations of metal to be formed. The concentration of metal in the colloid is preferably at least about 150 ppm by weight.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: April 7, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Sukesh Parasher, Cheng Zhang, Michael A. Rueter, Bing Zhou
  • Patent number: 7501376
    Abstract: This invention relates to a process of ex-situ oxidizing passivation of catalysts for hydroconversion of hydrocarbons and especially of hydrotreating, in their sulfide state, process in which the sulfurized catalyst is brought into contact with an oxidizing gas flow that can be dry or wet, during heat treatment at more than 50° C. This invention, for passivation of sulfide phases, can be equally well implemented for a process that takes place in a fixed bed or a fluidized bed, for example a moving bed.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: March 10, 2009
    Assignee: Eurecat S.A.
    Inventors: Pierre Dufresne, Franck Labruyere
  • Publication number: 20080312076
    Abstract: The invention relates to a process for incorporating sulfur in the porosity of the solid particles of a catalyst for the conversion of hydrocarbons or an adsorbent. This process is carried out off-site in the presence of hydrogen sulfide that is pure or diluted in hydrogen or nitrogen, a process in which said particles are made to rise or fall in a sulfur incorporation zone that comprises at least one vibratory helical coil that is essentially tubular in shape and that comprises at least two turns, whereby said particles are subjected to a temperature profile over the majority of their path in said coil and whereby said particles are brought into contact with at least one fluid on at least one portion of their path.
    Type: Application
    Filed: May 9, 2008
    Publication date: December 18, 2008
    Inventors: Pierre DUFRESNE, Franck Labruyere, Maxime Meens, Loredana Romano
  • Patent number: 7462577
    Abstract: A method of making a catalyst. The method comprises the step of leaching a portion of the bulk of an alloy. The alloy may be a hydrogen storage alloy.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: December 9, 2008
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Michael A. Fetcenko, Stanford R. Ovshinsky, Kwo Young
  • Publication number: 20080260626
    Abstract: A powdery photocatalyst based on titanium dioxide displays a bimodal particle size distribution of primary particles, with one particle component under about 30 nm and a second particle component over about 100 nm. The photocatalyst is manufactured by mixing at least two TiO2 components. One component is a TiO2 photocatalyst which is active in UV light and/or in visible light and which displays a specific surface according to BET of at least about 120 m2/g. The second component is anatase and/or rutile displaying a specific surface according to BET of less than about 50 m2/g. The two components are contained in the photocatalyst at a weight ratio of 1:1000 to 1000:1.
    Type: Application
    Filed: March 11, 2008
    Publication date: October 23, 2008
    Inventors: Stephan Peter Bloss, Bruno Charruey, Lothar Elfenthal, Peter Gross, Volker Schmitt
  • Patent number: 7439206
    Abstract: A method of making a composition, said method comprising, spraying a substance comprising platinum and iron into or onto an alumina-containing compound is disclosed. The resulting composition can then be used in a process for oxidizing carbon monoxide with free oxygen.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: October 21, 2008
    Inventors: M. Bruce Welch, Roland Schmidt, Jianhua Yao, Glenn W. Dodwell, Robert W. Morton, Jason J. Gislason, James B. Kimble, David E. Simon, Marvin M. Johnson
  • Patent number: 7417007
    Abstract: A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: August 26, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Zongxuan Hong
  • Patent number: 7410928
    Abstract: The instant invention is directed to the preparation of a catalyst composition suitable for the hydroconversion of heavy oils. The catalyst composition is prepared by a series of steps, involving mixing a Group VIB metal oxide particularly molybdenum oxide and aqueous ammonia to form an aqueous mixture, and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal. Subsequent steps involve mixing the slurry with a hydrocarbon oil and combining the resulting mixture with hydrogen gas and a second hydrocarbon oil having a lower viscosity than the first oil. An active catalyst composition is thereby formed.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: August 12, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kaidong Chen, Pak C. Leung, Bruce E. Reynolds
  • Patent number: 7402547
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed. Methods of preparing the one or more catalysts are described. The crude product is a liquid mixture at 25° C. and 0.101 MPa. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed. The crude product may include hydrocarbons with different boiling point distributions.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: July 22, 2008
    Assignee: Shell Oil Company
    Inventors: Scott Lee Wellington, Stanley Nemec Milam
  • Patent number: 7396799
    Abstract: The instant invention is directed to the preparation of a slurry catalyst composition. The slurry catalyst composition is prepared in a series of steps, involving mixing a Group VIB metal oxide, particularly molybdenum and aqueous ammonia to form an aqueous mixture and sulfiding the mixture to form a slurry. The slurry is then promoted with a Group VIII metal. Subsequent steps involve mixing the slurry with a hydrocarbon oil, and combining the resulting mixture with hydrogen gas (under conditions which maintain the water in a liquid phase) to produce the active slurry catalyst.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: July 8, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kaidong Chen, Bruce E. Reynolds
  • Patent number: 7393807
    Abstract: A hydrotreating catalyst comprising a Group 8 metal of the periodic table, molybdenum (Mo), phosphorus and sulfur, wherein the average coordination number [N(Mo)] of the molybdenum atoms around the molybdenum atom is from 1.5 to 2.5 and the average coordination number [N(S)] of the sulfur atoms around the molybdenum atom is from 3.5 to 5.0 when MoS2 structure in the catalyst is measured in accordance with extended X-ray absorption fine structure (EXAFS) analysis.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: July 1, 2008
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Yuji Yoshimura, Makoto Toba, Nobuyuki Matsubayashi, Takashi Matsui
  • Patent number: 7393809
    Abstract: This invention provides a new catalyst for purification of diesel engine exhaust gas comprising a carrier of at least one sulfur-resistant refractory oxide and at least one catalytic metal, wherein at least one solid acid and/or sulfuric acid is carried on the carrier by adding at least one precursor of said solid acid and/or sulfuric acid during the preparation of the carrier, and preparation thereof. The catalyst of this invention is thermally and chemically durable and can effectively remove particulate matters, hydrocarbons and nitrogen oxides contained in the diesel engine exhaust gas at low temperatures.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: July 1, 2008
    Assignee: KH Chemicals Co., Ltd.
    Inventor: Young-Nam Kim
  • Patent number: 7347931
    Abstract: The invention relates to a catalyst for the selective hydrodesulfurization of hydrocarbon-containing feedstocks that comprise sulfur-containing compounds and olefins. This catalyst comes in a sulfurized form and comprises a substrate that is selected from among the refractory oxides, at least one metal that is selected from the group that consists of the metals of groups VI and VII of the periodic table and carbon, whereby the carbon content is less than or equal to 2.8% by weight. The invention also relates to a method for the production of the catalyst that is described above, as well as a process that uses this catalyst for the selective hydrodesulfurization of hydrocarbon-containing feedstocks that contain sulfur-containing compounds and olefins.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: March 25, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Denis Uzio, Nathalie Marchal-George, Christophe Bouchy, Florent Picard
  • Patent number: 7291577
    Abstract: A process for the production of a supported catalyst. The process comprises heating a slurry that comprises a catalyst support and at least one active catalytic ingredient precursor. Gas is introduced to the slurry at a sufficient pressure to reduce the at least one active catalytic ingredient precursor and deposit at least one active catalytic ingredient onto a surface of the catalyst support to form the supported catalyst. The supported catalyst has a large active catalytic surface area.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: November 6, 2007
    Assignee: Sulzer Metco (Canada) Inc.
    Inventors: Karel Hajmrle, Syed Hussain, Paul Albert Laplante
  • Patent number: 7259285
    Abstract: An oligomerization catalyst for olefins having from 2 to 6 carbon atoms is produced by treating aluminum oxide with a nickel compound and a sulfur compound, either simultaneously or firstly with the nickel compound an then with the sulfur compound, and subsequently drying and calcining the resulting catalyst, wherein a molar ratio of sulfur to nickel in the finished catalyst of from 0.25:1 to 0.38:1 is set in this way. The catalyst and its use are also described.
    Type: Grant
    Filed: November 16, 2000
    Date of Patent: August 21, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Marc Walter, Thomas Heidemann
  • Publication number: 20070169412
    Abstract: Disclosed is an exemplary sulfided cobalt oxide catalyst that may be disposed on an alumina or other catalyst support, for use in destruction of tar compounds formed during gasification of biomass and fossil derived fuels. Most catalysts are rapidly deactivated by sulfur gases and/or alkali metals. Through experimentation, it has been demonstrated that the exemplary catalyst does not suffer deactivation caused by sulfur (as H2S), or sodium (as Na2CO3, Na2SO4, or NaCl).
    Type: Application
    Filed: January 26, 2007
    Publication date: July 26, 2007
    Inventors: Scott A. Sinquefield, Taishan Fan
  • Patent number: 7125820
    Abstract: Non-noble metal transition metal catalysts can replace platinum in the oxidation reduction reaction (ORR) used in electrochemical fuel cells. A RuxSe catalyst is prepared with comparable catalytic activity to platinum. An environmentally friendly aqueous synthetic pathway to this catalyst is also presented. Using the same aqueous methodology, ORR catalysts can be prepared where Ru is replaced by Mo, Fe, Co, Cr, Ni and/or W. Similarly Se can be replaced by S.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: October 24, 2006
    Assignee: Ballard Power Systems Inc.
    Inventor: Stephen A Campbell
  • Patent number: 7041866
    Abstract: A catalyst and process is disclosed to selectively upgrade a paraffinic feedstock to obtain an isoparaffin-rich product for blending into gasoline. The catalyst comprises a support of a sulfated oxide or hydroxide of a Group IVB (IUPAC 4) metal, a first component comprising at least one Group III A (IUPAC 13) component, and at least one platinum-group metal component which is preferably platinum.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: May 9, 2006
    Assignee: UOP LLC
    Inventor: Ralph D. Gillespie
  • Patent number: 7026268
    Abstract: The present invention provides a concentration distribution for a platinum group metal component in a catalyst with which catalyst activity can be increased, and to provide a method for supporting a platinum group metal with which this concentration distribution can be achieved. The present invention is a solid acid catalyst that is made up of porous catalyst pellets exhibiting solid acid characteristics, and a platinum group metal component supported by these catalyst pellets, and that is used in an acid-catalyzed reaction, in which a quotient of dividing the standard deviation of the concentration in a platinum group metal component concentration distribution in the catalyst by an average concentration is 0.4 or less. The method for preparing this catalyst involves a step of preparing a support solution containing a platinum group metal as a cation, and a step of impregnating crystalline, porous catalyst pellets exhibiting solid acid characteristics with this support solution.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: April 11, 2006
    Assignee: Japan Energy Corporation
    Inventors: Satoshi Furuta, Minoru Ogawa
  • Patent number: 7008895
    Abstract: Highly active supported catalyst compositions and methods for producing more active supported catalyst compositions are disclosed. Said methods comprise steps for applying an adhesive coating of a catalytically active exfoliated transition metal dichalcogenide and promoters to the surface of a support medium prior to filling the pores of the support medium with catalytically active metals and/or promoters. A new method for applying a surface coating to a support is also disclosed.
    Type: Grant
    Filed: January 4, 2003
    Date of Patent: March 7, 2006
    Inventor: David Deck Rendina
  • Patent number: 6967185
    Abstract: A noble metal sulfide catalyst obtained by reaction of a precursor of at least one noble metal with a thionic species in an aqueous environment essentially free of sulfide ions useful as an electrocatalyst in the depolarized electrolysis of hydrochloric acid.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: November 22, 2005
    Assignee: De Nora Elettrodi S.p.A.
    Inventors: Robert J. Allen, Andrea F. Gulla
  • Patent number: 6921604
    Abstract: A device and a method for simply and accurately evaluating-performance of fuel cells have been provided. Hydrogen gas and carbon monoxide gas are caused to flow into a sample holder where an electrode catalyst sample is laid, and the amount of carbon monoxide gas discharged therefrom is detected. The amount of carbon monoxide gas adsorbed by the electrode catalyst sample is calculated based on the amount of supplied carbon monoxide gas and the amount of detected carbon monoxide gas. The output voltage of a fuel cell is calculated based on a correlation between calculated amounts of carbon monoxide gas adsorbed by the electrode catalyst and output voltages of the fuel cell.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: July 26, 2005
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hisao Kato, Tatsuya Kawahara, Toshiaki Ozaki
  • Patent number: 6872678
    Abstract: The present invention pertains to a process for activating a catalyst composition comprising at least one hydrogenation metal component of Group VI and/or Group VIII of the Periodic Table, and an S-containing organic additive, wherein the catalyst is contacted with hydrogen at a temperature between room temperature and about 600° C., preferably about 100-450° C., and prior to or during the contacting with hydrogen the catalyst is contacted with an organic liquid. Preferably, the contacting with the organic liquid is carried out prior to the contacting with hydrogen. The organic liquid may be a hydrocarbon with a boiling range of 150-500° C., preferably white oil, gasoline, diesel, or gas oil or mineral lube oil. It was found that the application of an organic liquid prior to or during the hydrogen treatment results in catalysts with an increased activity. The invention also comprises catalyst made by the above process and the use of such catalyst in hydrotreating.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: March 29, 2005
    Assignee: Akzo Nobel N.V.
    Inventor: Sonja Eijsbouts
  • Patent number: 6855661
    Abstract: This invention provides a new catalyst for purification of diesel engine exhaust gas comprising a carrier of at least one sulfur-resistant refractory oxide and at least one catalytic metal, wherein at least one solid acid and/or sulfuric acid is carried on the carrier by adding at least one precursor of said solid acid and/or sulfuric acid during the preparation of the carrier, and preparation thereof. The catalyst of this invention is thermally and chemically durable and can effectively remove particulate matters, hydrocarbons and nitrogen oxides contained in the diesel engine exhaust gas at low temperatures.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: February 15, 2005
    Assignee: KH Chemicals Co., LTD
    Inventor: Young-Nam Kim
  • Patent number: 6838413
    Abstract: A photocatalyst which comprises an oxysulfide containing at least one transition metal; a preferable photocatalyst which also comprises a rare earth element such as Sm in addition to the above and wherein the transition metal is at least one selected from the group consisting of Ti and Nb; a more preferable photocatalyst which further comprises a promoter comprising a transition metal such as Pt loaded on each of the above photocatalyst; and a catalyst for use in the decomposition of water by a light which comprises one of the above oxysulfide photocatalysts.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: January 4, 2005
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Michikazu Hara, Tsuyoshi Takata, Akio Ishikawa
  • Publication number: 20040226863
    Abstract: The invention relates to a catalyst for the selective hydrodesulfurization of hydrocarbon-containing feedstocks that comprise sulfur-containing compounds and olefins. This catalyst comes in a sulfurized form and comprises a substrate that is selected from among the refractory oxides, at least one metal that is selected from the group that consists of the metals of groups VI and VII of the periodic table and carbon, whereby the carbon content is less than or equal to 2.8% by weight. The invention also relates to a method for the production of the catalyst that is described above, as well as a process that uses this catalyst for the selective hydrodesulfurization of hydrocarbon-containing feedstocks that contain sulfur-containing compounds and olefins.
    Type: Application
    Filed: January 29, 2004
    Publication date: November 18, 2004
    Inventors: Denis Uzio, Nathalie Marchal-George, Christophe Bouchy, Florent Picard
  • Publication number: 20040194664
    Abstract: A process for making red iron oxide containing less than 1500 ppm sulfur is described. The iron oxide is useful as a catalyst or catalyst ingredient in a wide variety of processes and in a preferred embodiment has an acicular shape.
    Type: Application
    Filed: August 5, 2002
    Publication date: October 7, 2004
    Applicant: Elementis Pigments, Inc.
    Inventors: Hugh Joseph McAulay, George Podolsky, Fabian Chan
  • Patent number: 6797664
    Abstract: A catalyst system and a method for preparing polymers using the catalyst system is provided. The catalyst system includes a complex represented by the formula: [MLy(HSR)ñ]n, wherein M is a transition metal cation preferably in a lower oxidation state, L is a ligand, Y is a whole number between 0 and 5, ñ is a whole number between 1 and 6, n is the charge of the complex (preferably between −4 to 3), H is Hydrogen, S is sulphur and R is an organic group or hydrogen. The catalyst system advantageously has high hydrolytic stability which allows it to be used in a variety of polymerization systems including mass, solution, suspension and emulsion. In many cases only a small amount of the catalyst is required to promote polymerization.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: September 28, 2004
    Assignee: Rio Oeste, S.A.
    Inventor: Nicholas Moffat Irving-Antillón
  • Publication number: 20040166056
    Abstract: The invention provides active, affordable, durable, and sulfur-tolerant catalysts and related precursors and processes useful in hydrogen production. The catalysts have a wide applicability. For example, in one embodiment, the invention provides sulfur-tolerant catalysts which, when used in a catalytic fuel processor, will facilitate sufficient hydrogen generation within 30 seconds or so of automobile start-up to generate around 50 kW of fuel cell power.
    Type: Application
    Filed: February 20, 2003
    Publication date: August 26, 2004
    Inventors: Darrell P. Eyman, Christopher Brooks
  • Patent number: 6753291
    Abstract: The present invention pertains to a process for sulfiding a catalyst composition comprising at least one hydrogenation metal component of Group VI and/or Group VIII of the Periodic Table, and an organic additive wherein the catalyst composition is first contacted with an organic liquid, followed by the catalyst being contacted with hydrogen and a sulfur-containing compound in the gaseous phase, wherein less than about 40%, preferably less than about 35%, more preferably less than about 25%, most preferably less than about 15%, of the sulfur present in the sulfided catalyst is added with the organic liquid. The process of the present invention makes it possible to use additive-containing catalysts without loss of activity in units which cannot effect gas phase start-up or are required to carry out a pressure test. The organic liquid may be a hydrocarbon with a boiling range of about 150-500° C., preferably gasoline, white spirit, diesel, gas oil, mineral lube oil, or white oil.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: June 22, 2004
    Assignees: Akzo Nobel N.V., Eurecat Europeenne de Retraltement de Catalysateur S.A.
    Inventors: Sonja Eijsbouts, Frans Lodewijk Plantenga, Pierre Dufresne, Franck Labruyere, Leendert Arie Gerritsen
  • Publication number: 20040112795
    Abstract: The invention concerns a method for sulphurizing catalysts for hydrotreating of hydrocarbon feedstocks. The invention is characterised in that it consists in sulphurizing the catalyst in two steps: the first step consisting in sulphurization with tertiary mercaptan in the absence of hydrogen, and the second step, carried out consecutively in the same reactor, consisting of sulphurization with another sulphurizing agent in the presence of hydrogen. The catalysts thus sulphurized prove to be more active than those sulphurized by only the second step.
    Type: Application
    Filed: January 13, 2004
    Publication date: June 17, 2004
    Inventors: Claude Brun, Georges Fremy
  • Patent number: 6743749
    Abstract: A Ti—O—N film is formed on an SiO2 substrate by sputtering. For example, TiO2 is used as a target and nitrogen gas is introduced into the atmosphere. Crystallization is carried out by a post-sputtering heat treatment. Then a charge separation material such as Pt is supported on the Ti—O—N film. With the fabricated TiO2 crystals, the Ti—O—N film containing nitrogen exhibits a good catalytic reaction by using visible light as acting light. Since the charge separation material captures electrons or positive holes, recombination of electrons and positive holes is effectively prevented, and consequently more efficient photocatalytic reaction is performed. It is preferable to form a photocatalyst material film (Ti—Cr—O—N film) by sputtering the SiO2 substrate by use of TiO2 and Cr as the target in a nitrogen atmosphere. Crystallization is performed by a post-sputtering heat treatment.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: June 1, 2004
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takeshi Morikawa, Takahiro Shiga, Ryoji Asahi, Takeshi Ohwaki, Yasunori Taga
  • Publication number: 20040096728
    Abstract: Non-noble metal transition metal catalysts can replace platinum in the oxidation reduction reaction (ORR) used in electrochemical fuel cells. A RuxSe catalyst is prepared with comparable catalytic activity to platinum. An environmentally friendly aqueous synthetic pathway to this catalyst is also presented. Using the same aqueous methodology, ORR catalysts can be prepared where Ru is replaced by Mo, Fe, Co, Cr, Ni and/or W. Similarly Se can be replaced by S.
    Type: Application
    Filed: July 29, 2003
    Publication date: May 20, 2004
    Applicant: Ballard Power Systems Inc.
    Inventor: Stephen A. Campbell
  • Patent number: 6737380
    Abstract: A process for producing a solid acid catalyst, which comprises: adding a pseudoboehmite as a binder to a sulfated zirconium hydroxide, followed by kneading with an aqueous solution containing at least one metal of the Group VIII, or loading at least one metal of the Group VIII on a sulfated zirconium hydroxide, and then adding a pseudoboehmite as a binder thereto, followed by kneading with water, further followed by molding and calcining at a temperature of from 550 to 800° C.; a solid acid catalyst produced by the production process; and a method for hydrodesulfurizing and isomerizing a light hydrocarbon oil using the catalyst.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: May 18, 2004
    Assignees: Petroleum Energy Center, Cosmo Oil Co., Ltd.
    Inventors: Katsuya Watanabe, Takahito Kawakami, Koji Baba, Takao Kimura
  • Publication number: 20040053771
    Abstract: Disclosed are a catalyst for selective catalytic reduction of nitrogen oxides and a method for preparing the same. Useful for the removal of nitrogen oxides is a catalyst prepared using spent catalysts having been absorbed with vanadium, nickel and sulfur in the hydro-desulfurization line of an oil refinery in which a catalyst for the hydro-desulfurization contains molybdenum, iron, cobalt and silicon on the alumina support in accordance with the present invention. The present catalyst can remove nitrogen oxides at a level of 90% or higher, exhibiting a 10% or more increase in efficiency of the catalyst performance. Additionally, the catalyst can increase the efficiency of spent catalyst reclamation by 250%.
    Type: Application
    Filed: July 31, 2003
    Publication date: March 18, 2004
    Inventors: Kyung-Il Choi, Sang-Ho Lee, Choul-Woo Shin, Jun-Seong Ahn, Bong-Jea Kim
  • Patent number: 6696386
    Abstract: The present invention provides the exhaust gas purification catalysts containing a first catalyst component comprising an inorganic oxide having heat resistance and a transition metal oxide supported on the surface of the inorganic oxide and a second catalyst comprising at least one alkali metal sulfate, which have a high catalytic activity for the burning of particulates.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: February 24, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masahiro Inoue, Tatsuro Miyazaki, Nobuyuki Tokubuchi, Masaaki Arita, Yota Hashimoto
  • Patent number: 6696388
    Abstract: A gel composition substantially contained within the pores of a solid material for use as a catalyst or as a catalyst support in dehydrogenation and dehydrocyclization processes.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: February 24, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Publication number: 20040033894
    Abstract: A process for the production of a supported catalyst. The process comprises heating a slurry that comprises a catalyst support and at least one active catalytic ingredient precursor. Gas is introduced to the slurry at a sufficient pressure to reduce the at least one active catalytic ingredient precursor and deposit at least one active catalytic ingredient onto a surface of the catalyst support to form the supported catalyst. The supported catalyst has a large active catalytic surface area.
    Type: Application
    Filed: June 10, 2003
    Publication date: February 19, 2004
    Applicant: The Westaim Corporation
    Inventors: Karel Hajmrle, Syed Hussain, Paul Albert Laplante
  • Publication number: 20040013601
    Abstract: The invention relates to a supported platinum group metal catalyst obtainable by controlled electroless deposition of at least one platinum group metal from a deposition solution which comprises
    Type: Application
    Filed: April 2, 2003
    Publication date: January 22, 2004
    Inventors: Thomas Butz, Henrik Junicke
  • Publication number: 20030216246
    Abstract: A metal complex comprising a transition metal complex of a bidentate or tridentate, dithioether ligand having utility as a catalyst component of an olefin polymerization catalyst composition in combination with an activating co-catalyst.
    Type: Application
    Filed: March 17, 2003
    Publication date: November 20, 2003
    Inventors: Jessica A Cook, John Joseph Bielak
  • Patent number: 6635599
    Abstract: The present invention relates to a process for the preparation of a hydroprocessing catalyst, to the catalyst composition obtainable by said process, and to the use of said catalyst composition in hydroprocessing applications. The process comprises the steps of combining and reacting at least one Group VIII non-noble metal component in solution and at least two Group VIB metal components in solution in a reaction mixture to obtain an oxygen-stable precipitate, and sulfiding the precipitate.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: October 21, 2003
    Assignee: Exxonmobil Research & Engineering Company
    Inventors: Sonja Eijsbouts, Bob Gerardus Oogjen, Hermannus Willem Homan Free, Marinus Bruce Cerfontain, Kenneth Lloyd Riley, Stuart Leon Soled, Sabato Miseo
  • Patent number: 6602818
    Abstract: Disclosed are a catalyst for selective catalytic reduction of nitrogen oxides and a method for preparing the same. The catalyst is prepared using a spent catalyst discharged from a hydro-desulfurization process of an oil refinery in which the spent catalyst comprises vanadium, nickel, molybdenum and sulfur component on alumina, and a tungsten-impregnated support. The catalyst prepared in accordance with the present invention is very advantageous in terms of excellent selective removal effect of nitrogen oxides as well as better poisoning resistance to sulfur oxides.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: August 5, 2003
    Assignee: SK Corporation
    Inventors: Kyung-Il Choi, Sang-Ho Lee, Choul-Woo Shin, Jun-Seong Ahn
  • Publication number: 20030104932
    Abstract: This invention provides a new catalyst for purification of diesel engine exhaust gas comprising a carrier of at least one sulfur-resistant refractory oxide and at least one catalytic metal, wherein at least one solid acid and/or sulfuric acid is carried on the carrier by adding at least one precursor of said solid acid and/or sulfuric acid during the preparation of the carrier, and preparation thereof. The catalyst of this invention is thermally and chemically durable and can effectively remove particulate matters, hydrocarbons and nitrogen oxides contained in the diesel engine exhaust gas at low temperatures.
    Type: Application
    Filed: July 16, 2002
    Publication date: June 5, 2003
    Inventor: Young-Nam Kim
  • Patent number: 6562752
    Abstract: A catalyst containing a sulfide phase comprising (a) sulfur (b) and at least one element A selected form group IIIB, including the lanthanides and actinides, group IVB and group VB, and optionally (c) at least one element B selected from group VIIB and group VIII and mixtures thereof, is suitable for use in, for example, hydrorefining or hydroconversion. Sulfur is present in the catalyst at a quantity higher than the quantity corresponding to 40% of the stoichiometric quantity of sulfur in the sulfide compounds of elements from groups MB, IVB, VB, VIIB and VIII. The catalyst also, optionally, comprises at least one porous amorphous or low crystallinity type matrix.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: May 13, 2003
    Assignee: Institut Francais du Petrole
    Inventor: Slavik Kasztelan
  • Publication number: 20030069131
    Abstract: One aspect of the present invention relates to a catalytic compound of anion-modified metal oxides doped with metal ions. Another aspect of the present invention relates to a method of isomerizing an alkane or alkyl moiety.
    Type: Application
    Filed: August 7, 2002
    Publication date: April 10, 2003
    Inventors: Jackie Y. Ying, Jinsuo Xu
  • Patent number: 6540908
    Abstract: The invention pertains to a process for preparing a sulfided hydrotreating catalyst in which a hydrotreating catalyst is subjected to a sulfidation step, wherein the hydrotreating catalyst comprises a carrier comprising at least 50 wt % of alumina, the catalyst comprising at least one hydrogenation metal component and an organic compound comprising at least one covalently bonded nitrogen atom and at least one carbonyl moiety, the molar ratio between the organic compound and the total hydrogenation metal content being at least 0.01:1. The invention further pertains to the use of said hydrotreating catalyst in hydrotreating a hydrocarbon feed, in particular to achieve hydrodenitrogenation, (deep) hydrodesulfurization, or hydrodearomatization.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: April 1, 2003
    Assignee: Akzo Nobel N.V.
    Inventors: Sonja Eijsbouts, Marcel Adriaan Jansen