Of Group Iv (i.e., Ti, Zr, Hf, Ge, Sn Or Pb) Patents (Class 502/242)
  • Publication number: 20130196845
    Abstract: A photo-catalytic composition, comprising nanoparticles of at least one photo-catalyst and an aqueous colloidal dispersion of SiO2 nanoparticles wherein the concentration of the photo-catalyst ranges from at least 20 to less than 50 parts by weight and the concentration of SiO2 provides the balance to 100 parts by weight.
    Type: Application
    Filed: June 14, 2011
    Publication date: August 1, 2013
    Applicant: EOXOLIT SPRL
    Inventors: Jaromir Jirkovsky, Frantisek Peterka, Jan Subrt, Marc Lambrecht
  • Patent number: 8492305
    Abstract: The present invention relates to a catalyst for hydrocarbon steam cracking for the production of light olefin, a preparation method of the catalyst and a preparation method of olefin by using the same. More precisely, the present invention relates to a composite catalyst prepared by mixing the oxide catalyst powder represented by CrZrjAkOx (0.5?j?120, 0?k?50, A is a transition metal, x is the number satisfying the condition according to valences of Cr, Zr and A, and values of j and k) and carrier powder and sintering thereof, a composite catalyst wherein the oxide catalyst is impregnated on a carrier, and a method of preparing light olefin such as ethylene and propylene by hydrocarbon steam cracking in the presence of the composite catalyst. The composite catalyst of the present invention has excellent thermal/mechanical stability in the cracking process, and has less inactivation rate by coke and significantly increases light olefin yield.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: July 23, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jun-han Kang, Jong-hun Song, Jun-seon Choi, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
  • Publication number: 20130184501
    Abstract: The present invention relates to catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises acidic sites and two or more metals. The catalyst has acidic sites on the surface and the balance favors Lewis acid sites.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 18, 2013
    Applicant: Celanese International Corporation
    Inventor: Celanese International Corporation
  • Patent number: 8486853
    Abstract: An exhaust gas purifying catalyst (1) according to the present invention includes noble metal particles (6), a first compound (7) supporting the noble metal particles (6), and a second compound (9) disposed not in contact with the noble metal particles (6) and having an oxygen storage capacity. An average distance between the first compound (7) and the second compound (9) is between 5 nm and 300 nm.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 16, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hiroto Kikuchi, Tetsuro Naito, Jun Ikezawa
  • Publication number: 20130178661
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises a precious metal and one or more active metals on a modified support that comprises cobalt.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Heiko Weiner, Radmila Wollrab
  • Publication number: 20130178663
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid to ethanol. The catalyst comprises cobalt, precious metal and one or more active metals on a modified support.
    Type: Application
    Filed: August 27, 2012
    Publication date: July 11, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Dheeraj Kumar, Xiaoyan Tu, Heiko Weiner, Radmila Wollrab
  • Publication number: 20130178669
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst comprises a precious metal, tin and cobalt, wherein molar ratio of cobalt to tin is at least 11:1.
    Type: Application
    Filed: December 20, 2012
    Publication date: July 11, 2013
    Applicant: Celanese International Corporation
    Inventor: Celanese International Corporation
  • Publication number: 20130178670
    Abstract: The present invention relates to catalysts, to processes for making catalysts and to chemical processes employing such catalysts. The catalysts are preferably used for converting acetic acid and ethyl acetate to ethanol. The catalyst comprises an extruded modified support, and a precious metal. The processes for making the catalysts comprises modifying the catalyst, extruding the catalyst, and impregnating the precious metal onto the catalyst.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 11, 2013
    Applicant: Celanese International Corporation
    Inventor: Celanese International Corporation
  • Patent number: 8481448
    Abstract: The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst. Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, David Sullivan, James W. Kauffman, Clark Rea, Joe Linzer, Shahid Shaikh
  • Patent number: 8481790
    Abstract: A method of preparing a catalyst for producing acrolein by oxidation of propylene at high space velocity, said catalyst is a Mo—Bi—Fe—Co based composite metal oxide. Producing unsaturated aldehyde via partial oxidation of lower unsaturated olefin at high space velocity using said catalyst is suitable for process with or without off-gas recirculating. Said catalyst is prepared by co-precipitation, the reaction conditions for using said catalyst to produce unsaturated aldehyde are, the space velocity of unsaturated lower olefin relative to catalyst being 120˜200 h-1(STP), reaction temperature being 300˜420° C. and absolute pressure being 0.1˜0.5 MPa; a single-stage unsaturated lower olefin conversion ratio of greater than 98.0% and carbon oxide yield of less than 3.3% with an overall yield of unsaturated lower aldehyde and acid of greater than 94.0% are obtained. The process to prepare the said catalyst is simple, easy to be repeated, and capable of industrial scale-up.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: July 9, 2013
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Jian Wang, Xuemei Li, Yan Zhuang, Kaimin Shi, Kun Jiao, Jianxue Ma, Xiaodong Chu, Jingming Shao
  • Publication number: 20130172603
    Abstract: A method for producing a shell catalyst is provided which comprises a porous catalyst support shaped body with an outer shell in which at least one transition metal in metal form is contained, comprising: providing catalyst support shaped bodies; applying a transition-metal precursor compound to an outer shell of the catalyst support shaped bodies; and converting the metal component of the transition-metal precursor compound into the metal form by reduction in a process gas at a temperature of from 50 to 500° C., wherein the temperature and the duration of the reduction are chosen such that the product of reduction temperature in ° C. and reduction time in hours lies in a range of from 50 to 5000, more preferably 80 to 2500, further preferably 80 to 2000, and more preferably 100 to 1500.
    Type: Application
    Filed: July 7, 2011
    Publication date: July 4, 2013
    Applicant: SÜD-CHEMIE IP GMBH & CO. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck, Alice Kyriopoulos, Carolin Fischer
  • Publication number: 20130172176
    Abstract: A catalyst material, more specifically a catalyst material based on TiO2/SiO2 in particulate form having a content of metal in the form of the metal oxide or metal oxide precursor, to processes for preparation thereof and to the use thereof in chemical catalysis, especially for removal of pollutants, such as nitrogen oxides from combustion gases
    Type: Application
    Filed: June 25, 2011
    Publication date: July 4, 2013
    Applicant: SACHTLEBEN CHEMIE GMBH
    Inventors: Bernd Proft, Regina Optehostert, Ulrich Gesenhues, Bernd Rohe, Sonja Grothe
  • Publication number: 20130172177
    Abstract: A catalyst comprising (i) a support, (ii) metal particles and (iii) a shell which is arranged between the metal particles, wherein the shell (iii) comprises silicon oxide.
    Type: Application
    Filed: September 13, 2011
    Publication date: July 4, 2013
    Applicant: BASF SE
    Inventors: Imme Domke, Wolfgang Rohde, Piotr Antoni Bazula, Norbert Mronga, Yong Liu, Martin Dieterle, Stanley Roth, Curtis Zimmermann, Xinyi Wei, Philipp Raff, Stephan Andreas Schunk, Olga Gerlach, Andreas Strasser, Michael Paul
  • Patent number: 8475755
    Abstract: An oxidation catalyst deposited on a substrate is described for the destruction of CO and volatile organic compounds, in particular halogenated organic compounds, from an emissions stream at temperatures from 250° C. to 450° C. The oxidation catalyst includes at least two platinum group metals, one of which is either platinum or ruthenium, supported on refractory oxides, such as a solid solution of CeO2 and ZrO2, and tin oxide and/or silica.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: July 2, 2013
    Assignee: Sub-Chemie Inc.
    Inventors: Zhongyuan Dang, Nirmal Singh, Martin Morrill, Greg Cullen
  • Publication number: 20130165703
    Abstract: The present invention relates to a catalyst having an amorphous support and one or more active metals. The amorphous support may comprise a support material and an amorphous support modifier, which adjusts the acidity of the support material. In preparing the amorphous catalyst, post-synthesis treatment, i.e. calcination, may be used to adjust the catalyst performance while converting acetic acid to ethanol.
    Type: Application
    Filed: July 18, 2012
    Publication date: June 27, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou, Victor J. Johnston
  • Publication number: 20130165700
    Abstract: The present invention relates to a catalyst comprising platinum, tin and a secondary noble metal selected from the group consisting of rhodium, palladium, gold and iridium. The catalyst may be on a support. In some embodiments, the support may comprise calcium. The catalyst is used for converting acetic acid to ethanol.
    Type: Application
    Filed: May 24, 2012
    Publication date: June 27, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Victor Johnston, Heiko Weiner, Radmila Wollrab
  • Publication number: 20130165701
    Abstract: The present invention relates to a catalyst. The catalyst is used for converting acetic acid to ethanol. The catalyst comprises platinum, tin, a base metal selected from calcium and/or tungsten and a promoter metal selected from barium, potassium and/or cesium.
    Type: Application
    Filed: May 24, 2012
    Publication date: June 27, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Victor Johnston, Heiko Weiner, Radmila Wollrab
  • Patent number: 8470729
    Abstract: Provided is a method for storing a high active titanium-containing silicon oxide catalyst, characterized in that the catalyst is stored at a relative humidity of 60% or less. The method can be used for a reaction, for example, wherein an oxirane compound is prepared from hydroperoxide and olefinic compound, even after the catalyst has been stored for a long period of time. The titanium-containing silicon oxide catalyst can be suitably employed as a catalyst satisfying the following requirements: (1) an average pore diameter is 10 ? or more, (2) the pores accounting for 90% or more of the total pore volume have a pore diameter of 50 to 200 ?, and (3) a specific pore volume is 0.2 cm cm3/g or more.
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: June 25, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Jun Yamamoto
  • Publication number: 20130153483
    Abstract: Photocatalytic composite materials, namely materials capable of promoting photo-initiated chemical reactions and processes for producing such materials, are provided. The invention further provides processes for producing photocatalytic composite materials which includes a macroporous matrix, the macroporous matrix having a surface grafting of preformed titanium dioxide nanocrystals, wherein the macroporous matrix may be produced by a sol-gel technique from a precursor of the macroporous matrix in the presence of a template-forming polymer and of hydrophobically-functionalized nano-crystalline titanium-dioxide particles.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Inventors: Franca MORAZZONI, Roberto Scotti, Maurizio Crippa, Massimiliano D'Arienzo
  • Patent number: 8466082
    Abstract: A shell catalyst for the preparation of vinyl acetate monomer, comprising an oxidic porous catalyst support with an outer shell, containing metallic Pd and Au, wherein the framework structure of the porous catalyst support contains hafnium oxide units. This shell catalyst is suitable for the preparation of VAM and is characterized by a relatively high activity and VAM selectivity and maintains this activity and selectivity over relatively long service lives. Also, processes for the preparation and use of the shell catalyst.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: June 18, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck
  • Patent number: 8465713
    Abstract: A catalyst composition represented by the general formula XVO4/S wherein XVO4 stands for TransitionMetal-Vanadate, or a mixed TransitionMetal-/RareEarth-Vanadate, and S is a support comprising TiO2.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: June 18, 2013
    Assignee: Treibacher Industrie AG
    Inventors: Karl Schermanz, Amod Sagar, Alessandro Trovarelli, Marzia Casanova
  • Patent number: 8465714
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 18, 2013
    Assignee: Cristal USA Inc.
    Inventor: Steven M. Augustine
  • Publication number: 20130144017
    Abstract: A method of preparing a catalyst comprising contacting an acidic colloidal silica suspension with a titanium-containing compound to form a mixture, adjusting the pH of mixture to about neutral to form a catalyst support, and contacting the catalyst support with chromium-containing compound to from a chromium-supported catalyst. A catalyst support prepared by contacting a colloidal silica suspension and a titanium-containing compound under acidic conditions to form a mixture, and contacting the mixture with a basic material in an amount sufficient to increase the pH of the mixture to about 7.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Max P. MCDANIEL, Kathy S. COLLINS
  • Patent number: 8455391
    Abstract: An exhaust gas purifying catalyst (1) includes: a three-dimensional structural substrate (10) having a plurality of cells (11) partitioned by cell walls (12) having pores (13); and catalyst layers (20) formed in the three-dimensional structural substrate (10). The catalyst layers (20) have pore-cover portions (22) formed on surfaces (13a) of the pores (13) of the cell walls (12). In addition, the catalyst layers (20) of the pore-cover portions (22) have activated pores (22a) with a pore diameter of 0.1 micrometers to 10 micrometers. In the exhaust gas purifying catalyst (1), the obstruction of the vent holes (pores (13)) in the catalyst layers (20) can be controlled, and the pressure loss can be reduced.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: June 4, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yasunari Hanaki, Hiroshi Akama, Hitoshi Onodera, Toru Nishizawa, Yoshiaki Hiramoto, Hideaki Morisaka, Masahiro Takaya
  • Publication number: 20130136664
    Abstract: A catalyst which remediates hydrocarbon fuel combustion exhaust, including a non-PGM containing aerogel which catalyzes the oxidation of carbon monoxide and hydrocarbons and the reduction of nitrogen oxides present in the exhaust, a catalytic converter made therefrom, and a method for the production thereof is disclosed.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: Union College
    Inventors: Michael S. BONO, Nicholas J.H. Dunn, Lauren B. Brown, Stephen J. Juhl, Ann M. Anderson, Bradford A. Bruno, Mary K. Mahony
  • Patent number: 8449812
    Abstract: A process for the production of a titanium silicalite shaped article by: a) preparation of a synthesis gel containing a Si2 source, a Ti2 source, a template compound and water, b) crystallization of the synthesis gel under hydrothermal conditions, c) drying of the titanium silicalite from step b) at a temperature below the decomposition temperature of the template compound, d) preparation of a formable mass containing the product from step c), a binder and a paste-forming agent, e) forming of the mass from step d) into a green shaped article, f) optionally drying, and g) calcinations of the green shaped article, as well as a titanium silicalite shaped article obtainable according to this process, and the use of this shaped article as a catalyst in epoxidation or ammoximation reactions.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: May 28, 2013
    Assignee: Evonik Degussa AG
    Inventors: Steffen Hasenzahl, Ralf Jantke
  • Publication number: 20130131399
    Abstract: A process for producing a catalyst, the process comprising the steps of: impregnating a first metal from a first metal precursor on a support to form a first impregnated support; calcining the first impregnated support; impregnating a second metal from a second metal precursor on the first impregnated support to form a second impregnated support; calcining the second impregnated support to form the catalyst, wherein the catalyst has a total metal loading of at least 2 wt. % based on the total weight of the catalyst. A method for hydrogenating alkanoic acids in the presence of the catalyst is also disclosed.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Ana Rita Almeida, Graham Ormsby
  • Publication number: 20130123550
    Abstract: A copper catalyst for producing ethylene glycol by hydrogenation of an oxalate. The catalyst includes a carrier, an additive, and an active component. The carrier is ceramic or metallic honeycomb. The additive is Al, Si, Ba, Ca, Ti, Zr, Fe, Zn, Mn, V, La, Ce, an oxide thereof, or a mixture thereof. The active component is copper, and the active component and the additive are coated on the carrier to form a coating layer. The additive accounts for 5-90 wt. % of the carrier, the active component accounts for 1-40 wt. % of the carrier, and the copper accounts for 5-50 wt. % of the coating layer.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 16, 2013
    Applicant: Tianjin University
    Inventor: Tianjin University
  • Publication number: 20130115308
    Abstract: A doped material comprises TiO2 and three non-metal dopants. The first non-metal dopant comprises sulfur, the second non-metal dopant comprises fluorine, and the third non-metal dopant comprises carbon. The sulfur dopant comprises a cationic dopant, the carbon dopant comprises a cationic dopant, and the fluorine dopant comprises an anionic dopant. The molar ratio of the TiO2 to the sulfur is approximately 99.75:0.25. The molar ratio of the TiO2 to the fluorine is approximately 99.1:0.9. The molar ratio of the TiO2 to the carbon is approximately 98.7:1.3. The material has a transparent, lateral growth crystalline atomic structure. The crystallite particle size is approximately 1 nm. The material is soluble to facilitate dissolving of the material in a solvent without requiring any dispersants to form a true solution.
    Type: Application
    Filed: July 13, 2011
    Publication date: May 9, 2013
    Inventors: Paul Gannon, Cormac O'Keeffe
  • Publication number: 20130116453
    Abstract: The invention discloses three-dimensional, ordered, mesoporous titanosilicates wherein the Ti is in a tetrahedral geometry and exclusively substituted for Si in the silica framework. Such titanosilicates find use as catalysts for epoxidation, hydroxylation, C—H bond oxidation, oxidation of sulfides, aminolysis of epoxide and amoximation, with approx. 100% selectivity towards the products.
    Type: Application
    Filed: July 20, 2011
    Publication date: May 9, 2013
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Srinivas Darbha, Anuj Kumar
  • Publication number: 20130109559
    Abstract: Provided are a high-activity photocatalyst fiber and a production method thereof. The photocatalyst fiber is a silica-based composite oxide fiber including a composite oxide phase of an oxide phase (first phase) mainly including a silica component and a metal oxide phase (second phase) including a metal other than silica, in which the ratio of at least one or more metal elements present in a metal oxide constituting the metal oxide phase (second phase) increases gradiently toward the fiber surface, a metal constituting the metal oxide phase (second phase) is formed in the form of particles, mesopores having an average micropore diameter of 2 nm to 30 nm are formed between the particles from the fiber surface toward the inside of the fiber, and platinum (Pt) particles having an average particle diameter of 0.5 nm to 10 nm are supported inside the mesopores.
    Type: Application
    Filed: March 3, 2011
    Publication date: May 2, 2013
    Applicant: Ube Industries, Ltd.
    Inventors: Kouichirou Suyama, Hiroyuki Yamaoka, Yoshikatsu Harada, Teruaki Fujii, Shinichirou Otani, Sadayoshi Suhara
  • Patent number: 8425762
    Abstract: An MCM-41 catalyst having a crystalline framework containing SiO2 and a Group IV metal oxide, such as TiO2 or ZrO2 is provided. The catalyst is low in acidity and is suitable for use in processes involving aromatic saturation of hydrocarbon feedstocks.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: April 23, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Wenyih Frank Lai, Michel A. Daage
  • Publication number: 20130095995
    Abstract: Processes for the surface-modification of flyash and industrial applications thereof are described in this invention, which involve surface-sensitization, surface-activation, and subsequent Cu or Ag coating of as-received flyash particles in a conventional electroless bath. These new surface-modification processes offer efficient and cost-effective alternatives to conventional processes which modify the surface of flyash particles with a costlier Sn—Pd catalyst-system. Flyash processed with the inventive processes is also suitable for a greater number of industrial applications relative to that processed with the costlier Sn—Pd catalyst-system.
    Type: Application
    Filed: September 12, 2012
    Publication date: April 18, 2013
    Inventors: Satyajit Vishnu Shukla, Krishna Gopakumar Werrier, Baiju Vijayan Kishakkekillkoodayii, Thachan Shijitha
  • Publication number: 20130090500
    Abstract: A process hydrogenating alkanoic acids in the presence of a catalyst that comprises supports, one or more metals, tungsten oxide, and at least one alkaline earth metal oxide or metasilicate. The molar ratio of the at least one alkaline earth metal oxide or metasilicate to tungsten oxide, based on the metals, is from 1:3 to 5:1.
    Type: Application
    Filed: October 6, 2011
    Publication date: April 11, 2013
    Applicant: Celanese International Corporation
    Inventors: Radmila Jevtic, Victor Johnston, Heiko Weiner, Zhenhua Zhou
  • Patent number: 8415267
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 9, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Publication number: 20130079553
    Abstract: In one embodiment, the invention is to a catalyst composition comprising vanadium and titanium. The catalyst composition has a surface area of at least 22.6 m2/g and a plurality of pores, and the plurality of pores have a pore diameter of less than 11.9 nm.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: Celanese International Corporation
    Inventors: Heiko Weiner, Josefina T. Chapman, Alexandra S. Locke, Craig J. Peterson, Mark O. Scates, Dick Nagaki
  • Patent number: 8404204
    Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the color is maintained and the quality of the air is improved.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 26, 2013
    Assignee: Rockwood Italia SpA
    Inventors: Marino Sergi, Christian Egger
  • Publication number: 20130072739
    Abstract: Provided are methods of making dehydrogenation catalyst supports containing bayerite and silica. Silica-stabilized alumina powder, prepared by spray drying of bayerite powder, precipitating silica in a bayerite slurry with an acid, or impregnation or co-extrusion of bayerite with sodium silicate solution was found to be a superior catalyst support precursor. Catalysts prepared with these silica containing support materials have higher hydrothermal stability than current CATOFIN® catalysts. Also provided is a dehydrogenation catalyst comprising Cr2O3, an alkali metal oxide, SiO2 and Al2O3, and methods of using said catalyst to make an olefin and/or dehydrogenate a dehydrogenatable hydrocarbon.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Applicant: BASF Corporation
    Inventors: Wolfgang Ruettinger, Richard Jacubinas
  • Patent number: 8399580
    Abstract: Systems and methods for the maintenance of active chromium-based catalysts and their use in polymerization processes are described. In one embodiment, a system for the introduction of multiple polymerization components to activate a chromium based catalyst within a mix tank is described. Other described features may include materials and methods to purify the liquid medium of a catalyst slurry so that the catalyst slurry maintains a high level of activity. The active chromium-based catalyst may provide polyolefins with a number of desirable properties in a reliable, consistent, and predictable manner.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: March 19, 2013
    Assignee: Chevron Philips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Kathy S. Collins
  • Patent number: 8389436
    Abstract: A composite oxide is provided which has large oxygen absorption and desorption over a wide temperature range, in particular in a higher temperature range of not lower than 700° C. and/or in a lower temperature range of not higher than 400° C. The composite oxide contains oxygen, R composed of at least one of Ce and Pr, and Zr at a particular ratio, and optionally a particular ratio of M composed of at least one element selected from alkaline earth metals and the like.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: March 5, 2013
    Assignee: Santoku Corporation
    Inventor: Tadatoshi Murota
  • Publication number: 20130053595
    Abstract: A catalyst composition comprising at least an heteropolyacid deposited on a porous titania carrier. A catalyst composition comprising at least an heteropolyacid in which protons in the heteropolyacid may be partially exchanged by at least one cation selected from elements belonging to Group 1 to Group 16 of the Periodic Table of Elements that have been deposited on a porous titania carrier. A method for preparing the catalyst composition, comprising impregnating a titania carrier with a solution of at least one metal selected from elements belonging to the Group 1 to Group 16 of the Periodic Table of Elements or onium, drying and firing the resulting solid mixture, secondly impregnating the resulting solid mixture with a solution of heteropolyacid, drying, and firing the resulting solid mixture. A process for preparing acrolein and acrylic acid by dehydration of glycerin, carried out in the presence of the catalyst.
    Type: Application
    Filed: September 18, 2009
    Publication date: February 28, 2013
    Applicants: ARKEMA FRANCE, NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Yasuhiro Magatani, Kimito Okumura, Jean-Luc Dubois, Jean-Francois Devaux
  • Publication number: 20130053237
    Abstract: The present invention relates unique pore structures in nickel supported on alumina with the negligible formation of macropores. Incorporation of additional elements stabilizes the pore structure of the nickel supported on alumina. Additional element(s) were then further added into the nickel-supported materials. These additional element(s) further stabilize the pore structures under heating conditions. The improvements of pore structure stability under heating conditions and negligible presence of macropores limit the sintering of nickel metal to a mechanism of impeded diffusion. The negligible presence of macropores also limits the deposition of alkali metal hydroxide(s)/carbonate(s) to the outer shell of the catalyst pellet. Both of the negligible presence of macropores and improvement in pore structure stability allow for prolonging the catalyst life of these nickel supported on alumina catalysts of the present invention for reforming hydrocarbons.
    Type: Application
    Filed: January 13, 2010
    Publication date: February 28, 2013
    Inventors: Wen-Qing Xu, David Beijia Xu
  • Publication number: 20130041181
    Abstract: The present invention provides a titanium-silicalite molecular sieve and a method for preparing the same. The method includes the steps of preparing a mixture of a titanium source, a silicon source, a metal source selected from IIA to IVA elements and a template agent; heating the mixture to form a gel mixture; heating the gel mixture in a water bath; and calcining the gel mixture after the gel mixture in the water bath to form the titanium-silicalite molecular sieve. The present invention further provides a method for preparing cyclohexanone oxime by using the titanium-silicalite molecular sieve as the catalyst which results in high conversion rate, high selectivity and high usage efficiency of hydrogen peroxide.
    Type: Application
    Filed: January 13, 2012
    Publication date: February 14, 2013
    Applicant: China Petrochemical Development Corporation
    Inventors: Ya-Ping Chen, Cheng-Fa Hsieh, Pin-To Yao, Chien-Chang Chiang
  • Publication number: 20130040808
    Abstract: A catalyst composition comprising a vanadate represented by the formula XVO4/S, wherein XVO4 stands for a Bi-, Sb-, Ga- and/or Al-vanadate optionally in mixture with one or more rare earth metal-vanadates, or in mixture with one or more transition metal-vanadates, or in mixture with one or more transition metal-vanadates and one or more rare earth met-al-vanadates, and S is a support comprising TiO2, optionally in combination with a dopant and a process for the preparation of such catalyst composi-tions.
    Type: Application
    Filed: April 12, 2011
    Publication date: February 14, 2013
    Inventors: Karl Schermanz, Amod Sagar, Alessandro Trovarelli, Marzia Casanova
  • Patent number: 8357625
    Abstract: An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 22, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventor: Atsushi Okamoto
  • Patent number: 8349441
    Abstract: Pyrogenic titanium dioxide is compressed to slugs by preliminarily deaerating it, compressing it to slugs, and crushing the slugs and optionally classifying them. The slugs are characterized by a tamped density (to DIN EN ISO 787-11) of 500 to 1200 g/l.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: January 8, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Ralph Hofmann, Guenter Stein, Frank Menzel
  • Patent number: 8349756
    Abstract: A noble metal-containing titanosilicate material, characterized in that said material is represented with the oxide form of xTiO2.100SiO2.yEOm.zE, wherein x ranges from 0.001 to 50.0; (y+z) ranges from 0.0001 to 20.0 and y/z<5; E represents one or more noble metals selected from the group consisting of Ru, Rh, Pd, Re, Os, Ir, Pt, Ag and Au; m is a number satisfying the oxidation state of E. The crystal grains of said material contain a hollow structure, or a sagging structure. In said material, the synergistic effect between the noble metal and the titanosilicate are enhanced. As compared with the prior art, the selectivity, catalytic activity and stability of the reaction product are obviously increased in the oxidation reaction, e.g. the reaction for preparing propylene oxide by epoxidation of propylene.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: January 8, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Min Lin, Chunfeng Shi, Jun Long, Bin Zhu, Xingtian Shu, Xuhong Mu, Yibin Luo, Xieqing Wang, Yingchun Ru
  • Patent number: 8343885
    Abstract: Extruded isomerization catalysts comprising MgO, a metal silicate clay binder and a stabilizer and methods of forming such isomerization catalysts are disclosed. Also disclosed are isomerization catalysts that exhibit a fresh isomerization rate and an aged isomerization rate that is at least 50% of the fresh isomerization rate. Embodiments of the isomerization catalysts disclosed herein include metal silicate clay binders that include a layered structure and metal silicate. The metal silicate clay binder may be present in an amount in the range from about 5 wt % to about 20 wt %. Exemplary stabilizers include one or more of ZrO2, tetravalent rare earth metal and a trivalent rare earth metal. Stabilizers may be present in an amount up to about 40 wt %. One or more improved properties, such as piece crush strength and isomerization performance, are exhibited by the catalyst article.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: January 1, 2013
    Assignee: BASF Corporation
    Inventors: Wolfgang Ruettinger, Ahmad Moini, Bala Ramachandran, Sukwon Choi
  • Publication number: 20120330067
    Abstract: Catalyst compositions of palladium supported on alumina or zirconium oxide supports having low or no silicon dioxide contents and having a specific surface area or modified with alkali, alkaline earth, or phosphine oxide compounds are selective in a vapor phase hydrogenolysis reaction to convert cyclic acetal compounds and/or cyclic ketal compounds in the presence of hydrogen to their corresponding hydroxy ether hydrocarbon reaction products.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Thomas James Devon, Damon Ray Billodeaux
  • Publication number: 20120329890
    Abstract: A Fischer-Tropsch synthesis catalyst containing 10 to 30% by mass, as a metal atom, of metallic cobalt and/or cobalt oxide, based on the mass of the catalyst, supported on a carrier containing silica, in which the carrier has an average pore diameter of 8 to 25 nm and the metallic cobalt and/or cobalt oxide has an average crystallite diameter of not less than the average pore diameter of the carrier and less than 35 nm.
    Type: Application
    Filed: February 14, 2011
    Publication date: December 27, 2012
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hideki Ono, Yoshiyuki Nagayasu, Kazuaki Hayasaka