And Group Vi Metal (i.e., Cr, Mo., W Or Po) Patents (Class 502/248)
  • Patent number: 11834362
    Abstract: One aspect is a method for producing a multilayered silica glass body. The method involves producing a multilayered silica glass body in which a transparent silica glass layer is provided on the surface of a siliceous substrate made of a siliceous material. The method includes preparing the siliceous substrate, preparing a silica slurry in which silica particles are dispersed in a liquid, applying the silica slurry to the surface of the siliceous substrate, leveling the silica slurry applied to the surface of the siliceous substrate by applying vibration to the siliceous substrate, drying the leveled silica slurry, and vitrifying the dried silica slurry by heating to form a transparent silica glass layer. As a result, a transparent silica glass layer of uniform thickness is obtained at excellent yield, and a method for producing a multilayered silica glass body easily in a short time is provided.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: December 5, 2023
    Assignees: Heraeus Quarzglas GmbH & Co. KG, Shin-Etsu Quartz Products Co., Ltd.
    Inventors: Tatsuya Mori, Akihiko Sugama
  • Patent number: 11203011
    Abstract: Provided is a nitrogen oxide (NOX) reduction catalyst including an active site including at least one of a metal vanadate expressed by [Chemical Formula 1] and a metal vanadate expressed by [Chemical Formula 2], and a support for loading the active site thereon. (M1)XV2OX+5??[Chemical Formula 1] (where M1 denotes one selected from among manganese (Mn), cobalt (Co), and nickel (Ni), and X denotes a real number having a value between 1 and 3.) (M2)YVO4??[Chemical Formula 2] (where M2 denotes one selected from among lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu), and Y denotes a real number having a value between 0.5 and 1.5).
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: December 21, 2021
    Assignee: Korea Institute of Science and Technology
    Inventors: Jong Sik Kim, Heon Phil Ha, Dong Wook Kwon
  • Patent number: 11135572
    Abstract: The present invention relates to a method for preparing a supported catalyst comprising a crystalline Pd—Rh alloy, the method comprising the steps of: (i) producing an impregnated support by means of mixing an inorganic support, a Pd precursor solution and an Rh precursor solution; and (ii) thermally treating the impregnated support in a reducing gas atmosphere.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: October 5, 2021
    Assignee: HEESUNG CATALYSTS CORPORATION
    Inventors: Hyun-sik Han, Seung Chul Na, Jin-Woo Song, Narayana Rao Komateedi, Kwi-Yeon Lee
  • Patent number: 9539562
    Abstract: The invention relates to a method for producing a catalytic composition, wherein the catalytic composition has a high activity and selectivity with regard to the oxidation of CO and a reduced activity with regard to the oxidation of NO. The invention also relates to the catalyst produced using the method according to the invention. Finally, the invention is directed towards an exhaust-gas cleaning system which comprises the catalyst according to the invention.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: January 10, 2017
    Assignee: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH
    Inventors: Andreas Bentele, Klaus Wanninger, Gerd Maletz, Martin Schneider
  • Patent number: 9242211
    Abstract: The present invention relates generally to the field of catalysts for use in connection with one or more types of emissions control (e.g., emissions control associated with the combustion of one or more types of fossil fuel) and, in particular to catalyst compositions that possess an improved resistance to at least one type of poisoning. In another embodiment, the catalysts of the present invention are designed to be utilized in conjunction with an SCR and possess an improved resistance to phosphorus poisoning.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: January 26, 2016
    Assignee: The Babcock & Wilcox Company
    Inventor: Xiaoyu Guo
  • Patent number: 9000207
    Abstract: A method for producing a silica-supported catalyst comprising Mo, V. Nb, and a component X (Sb and/or Te) to be used in a vapor phase catalytic oxidation or ammoxidation of proprane, comprising the steps of: (I) preparing a raw material mixture solution by mixing Mo, V, Nb, component X, a silica sol, and water; (II) obtaining a dry powder by drying the raw material mixture solution; and (III) obtaining a silica-supported catalyst by calcining the dry powder, wherein the silica sol contains 10 to 270 wt ppm of nitrate ions based on SiO2.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: April 7, 2015
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yusuke Ishii, Takaaki Kato
  • Publication number: 20150065667
    Abstract: The present invention relates to a supported hybrid vanadium-chromium-based catalyst, characterized in the catalyst is supported on a porous inorganic carrier and a V active site and a inorganic Cr active site are present on the porous inorganic carrier at the same time. The present invention further relates to a process for producing a supported hybrid vanadium-chromium-based catalyst. The invention also provides the preparation method of the catalyst, titanium or fluorine to compounds, vanadium salt and chromium salt according to the proportion, different methods of sequence and load on the inorganic carrier, after high temperature roasting, still can further add organic metal catalyst promoter prereduction activation treatment on it. The catalyst of the present invention can be used for producing ethylene homopolymers and ethylene/?-olefin copolymers.
    Type: Application
    Filed: April 19, 2013
    Publication date: March 5, 2015
    Applicant: East China University of Science and Technology
    Inventors: Ruihua Cheng, Boping Liu, Xin Xue, Yun He, Xuan Dong, Xuelian He, Zhen Liu, Weiwei Liu, Lisong Wang, Qiaoqiao Sun
  • Patent number: 8912115
    Abstract: The present invention is an improved method for preparing a heterogeneous, supported hydrogenation catalyst that comprises a Group VIII A metal and a catalyst support (for example, SiO2, with either a hydrophilic or a hydrophobic surface) via aqueous deposition precipitation as well as the catalyst prepared by said method.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: December 16, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Michael M. Olken, Edward M. Calverley
  • Patent number: 8900536
    Abstract: Catalyst support materials, catalysts, methods of making such and uses thereof are described. Methods of making catalyst support material include combining anatase titania slurry with i) a low molecular weight form of silica; and ii) a source of Mo to form a TiO2—MoO3—SiO2 mixture. Catalyst support material include from about 86% to about 94% weight anatase titanium dioxide; from about 0.1% to about 10% weight MoO3; and from about 0.1% to about 10% weight SiO2. Low molecular weight forms of silica include forms of silica having a volume weighted median size of less than 4 nm and average molecular weight of less than 44,000, either individually or in a combination of two or more thereof. Catalyst include such catalyst support material with from about 0.1 to about 3% weight of V2O5 and optionally from about 0.01% to about 2.5% weight P.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: December 2, 2014
    Assignee: Cristal USA Inc.
    Inventors: Steve M. Augustine, David M. Chapman, Dennis F. Clark
  • Patent number: 8889078
    Abstract: A porous oxide catalyst includes porous oxide, and an oxygen vacancy-inducing metal which induces an oxygen vacancy in a lattice structure of a porous metal oxide.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: November 18, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-min Ji, Hyun-chul Lee, Doo-hwan Lee, Seon-ah Jin
  • Patent number: 8772195
    Abstract: To produce a silica-supported catalyst having an excellent yield of a target product and excellent catalyst attrition resistance. A method for producing a silica-supported catalyst comprising Mo, V, Nb, and a component X (Sb and/or Te) to be used in a vapor phase catalytic oxidation or ammoxidation of propane, comprising the steps of: (I) preparing a raw material mixture solution by mixing Mo, V, Nb, component X, a silica sol, and water; (II) obtaining a dry powder by drying the raw material mixture solution; and (III) obtaining a silica-supported catalyst by calcining the dry powder, wherein the silica sol contains 10 to 270 wt ppm of nitrate ions based on SiO2.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: July 8, 2014
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Yusuke Ishii, Takaaki Kato
  • Patent number: 8734743
    Abstract: Described is a nitrogen oxide storage catalyst comprising: a substrate; a first washcoat layer provided on the substrate, the first washcoat layer comprising a nitrogen oxide storage material, a second washcoat layer provided on the first washcoat layer, the second washcoat layer comprising a hydrocarbon trap material, wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing selective catalytic reduction, preferably wherein the hydrocarbon trap material comprises substantially no element or compound in a state in which it is capable of catalyzing a reaction wherein nitrogen oxide is reduced to N2, said catalyst further comprising a nitrogen oxide conversion material which is either comprised in the second washcoat layer and/or in a washcoat layer provided between the first washcoat layer and the second washcoat layer.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 27, 2014
    Assignee: BASF SE
    Inventors: Torsten W. Müller-Stach, Susanne Stiebels, Edith Schneider, Torsten Neubauer
  • Patent number: 8709341
    Abstract: An air purifying system includes one or more air permeable photocatalytic elements defining a core cavity having a sealed top end and an open bottom end. A sealed air flow path ensures that air travels from an outside of the core cavity, through the one or more photocatalytic elements, into the core cavity, to be expelled through the open bottom end. A UV radiation source disposed within the core cavity irradiates air travelling along the sealed flow path and an interior of the one or more photocatalytic elements. Each photocatalytic element is manufactured using a substrate, that is conductive of and transparent to UV radiation, coated with a photocatalyst. A non-photocatalytically active material is initially coated on the substrate and is then converted to a photocatalyst by calcination.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: April 29, 2014
    Assignee: Morphic Envirotech Inc.
    Inventors: Edwin David Day, Bernard K Deschner
  • Patent number: 8642501
    Abstract: Disclosed is a complex oxide catalyst composed of catalyst particles containing Mo, V, a component X and a silica-containing carrier. The component X is at least one element selected from alkaline earth metal elements and rare earth elements. The complex oxide catalyst is supported by the carrier, and the component X is uniformly distributed in the catalyst particles.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: February 4, 2014
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Takaaki Kato, Satoshi Fukushima
  • Patent number: 8623780
    Abstract: The present invention provides a complex oxide catalyst whose general formula is Mo12VaCubWcXdYeOf/Z. reducing agent needs to be added into the catalyst during the preparation process of the active component of the catalyst and (or) molding process of the catalyst. Specifically, X is at least one selected from a group consisting of Nb, Sb, Sr, Ba and Te; Y is at least one selected from a group consisting of La, Ce, Nd, Sm and Cs; “a” is ranging from 2 to 8; “b” is ranging from 1 to 6; “c” is ranging from 0.5 to 5; “d” is ranging from 0.01 to 4; “e” is ranging from 0.01 to 4; f is determined by the oxidation state of the component element; Z is silicon powder; the reducing agent is C2˜C6 diol or polyol.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: January 7, 2014
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Xuemei Li, Chunhua Qin, Kun Jiao, Shiqiang Feng, Yan Zhuang, Jianxue Ma, Xiaodong Zhu, Jingming Shao
  • Publication number: 20140005031
    Abstract: Inorganic material having at least two elementary spherical particles, each of said spherical metallic particles: a polyoxometallate with formula (XxMmOyHh)q?, where H is hydrogen, O is oxygen, X is phosphorus, silicon, boron, nickel or cobalt and M is one or more vanadium, niobium, tantalum, molybdenum, tungsten, iron, copper, zinc, cobalt and nickel, x is 0, 1, 2 or 4, m is 5, 6, 7, 8, 9, 10, 11, 12 or 18, y is 17 to 72, h is 0 to 12 and q is 1 to 20.
    Type: Application
    Filed: December 15, 2011
    Publication date: January 2, 2014
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, IFP ENERGIES NOUVELLES, UNIVERSITE PIERRE ET MARIE CURIE
    Inventors: Alexandra Chaumonnot, Clement Sanchez, Cedric Boissiere, Frederic Colbeau-Justin, Karin Marchand, Elodie Devers, Audrey Bonduelle, Denis Uzio, Antoine Daudin, Bertrand Guichard, Denis Uzio, Antoine Daudin
  • Publication number: 20130253217
    Abstract: A method for producing a complex oxide catalyst containing a complex oxide represented by the formula: Mo1VaSbbNbcWdZeOn (wherein a component Z represents an element such as La, Ce, Pr, Yb, Y, Sc, Sr, and Ba; a, b, c, d, e, and n each represent an atomic ratio of an element to one Mo atom; 0.1?a?0.4, 0.1?b?0.4, 0.01?c?0.3, 0?d?0.2, and 0?e?0.1; an atomic ratio a/b is 0.85?a/b<1.0, and an atomic ratio a/c is 1.4<a/c<2.3.
    Type: Application
    Filed: December 27, 2011
    Publication date: September 26, 2013
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Yusuke Ishii, Takaaki Kato
  • Publication number: 20130225862
    Abstract: Disclosed is a process for producing an oxide catalyst for use in the gas-phase catalytic oxidation reaction or the like of propane or the like, the process comprising the steps of: (I) obtaining a preparation containing compounds of Mo, V, Nb, and Sb or Te at the predetermined atomic ratios; (II) drying the preparation to obtain a dry powder; and (III) calcining the dry powder, wherein the step (III) comprises the step of calcining the dry powder in the presence of a compound containing W in the form of a solid to obtain a pre-stage calcined powder or a mainly calcined powder, or the step of calcining the dry powder and calcining the obtained pre-stage calcined powder in the presence of the solid to obtain a mainly calcined powder, the solid satisfies the predetermined conditions, and the oxide catalyst comprises a catalytic component having the predetermined composition.
    Type: Application
    Filed: October 3, 2011
    Publication date: August 29, 2013
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Eri Tateno, Takeo Ichihara, Takaaki Kato
  • Patent number: 8507626
    Abstract: The invention provides a catalyst for producing acrylic acid at high yield for a long time, in a method for producing acrylic acid by catalytic gas phase oxidation of propane and/or acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas. This catalyst comprises a complex oxide containing molybdenum, vanadium and X component (here the X component is at least one element selected from antimony, niobium and tin) as the essential components, and is characterized in that its main peak as measured by X-ray diffractiometry using K? ray of Cu, d=4.00±0.1 angstrom, and in that the particle size of the X component in the catalyst does not exceed 20 ?m.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: August 13, 2013
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Naohiro Fukumoto, Toshiya Nishiguchi
  • Patent number: 8481448
    Abstract: The invention is a heteropoly acid compound catalyst composition, a method of making the catalyst composition and a process for the oxidation of saturated and/or unsaturated aldehydes to unsaturated carboxylic acids using the catalyst composition. The catalyst composition is a heteropoly acid compound containing molybdenum, vanadium, phosphorus, cesium, bismuth, copper and antimony. Thermal stability is achieved with higher cesium content (up to less than 3.0) but antimony, copper and bismuth must be present to maintain good activity. The catalyst is made by dissolving compounds of the components of each of the heteropoly acid compounds in a solution, precipitating the heteropoly acid compounds, obtaining a catalyst precursor and calcining the catalyst precursor to form a heteropoly acid compound catalyst. Unsaturated aldehydes, such as methacrolein, may be oxidized in the presence of the heteropoly acid compound catalyst to produce an unsaturated carboxylic acid, such as methacrylic acid.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 9, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Wugeng Liang, David Sullivan, James W. Kauffman, Clark Rea, Joe Linzer, Shahid Shaikh
  • Patent number: 8455389
    Abstract: The invention provides an amorphous hydrocracking catalyst for conversion of a hydrocarbon feed having a fraction above the diesel boiling range to diesel and a process using said catalyst. The catalyst includes Al203—SiO2 support, a noble catalytically active metal which is active for hydrocracking of a hydrocarbon above the diesel boiling range and a transition metal oxide selected from group V, VI and VII.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: June 4, 2013
    Assignee: Sasol Technology (Pty) Ltd.
    Inventors: Aubin-Maurice Liwanga-Ehumbu, Jacobus Lucas Visagie, Dieter Otto Leckel
  • Patent number: 8435923
    Abstract: Compositions, materials incorporating the compositions, and methods of use thereof, for the protection and/or decontamination of contaminants are disclosed.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: May 7, 2013
    Assignee: Emory University
    Inventors: Nelya Okun, Craig Hill, Zhen Luo
  • Patent number: 8415267
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 9, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8357625
    Abstract: An object of the present invention is to provide a catalyst exhibiting excellent performance particularly in partial oxidation reaction. Another object is to provide a method for efficiently producing carboxylic acid or carboxylic anhydride through vapor-phase partial oxidation of an organic compound by use of an oxygen-containing gas in the presence of the catalyst. The catalyst contains (1) diamond; (2) at least one species selected from among Group 5 transition element oxides, collectively called oxide A; and (3) at least one species selected from among Group 4 transition element oxides, collectively called oxide B. The method for producing a carboxylic acid or a carboxylic anhydride includes subjecting an organic compound to vapor phase partial oxidation by use of an oxygen-containing gas in the presence of the catalyst, wherein the organic compound is an aromatic compound having one or more substituents in a molecule thereof, the substituents each including a carbon atom bonded to an aromatic ring.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: January 22, 2013
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventor: Atsushi Okamoto
  • Patent number: 8288306
    Abstract: The present invention provides a preparation process of complex oxides catalyst containing Mo, Bi, Fe and Co, which comprising steps as following: dissolving precursor compounds of the components for catalyst and complexing agent in water to obtain a solution, and then drying, molding and calcining the solution to obtain catalyst. The catalyst is used for gas phase oxidation of light alkenes to unsaturated aldehydes. The catalyst has high activity, selectivity and stability. The reaction condition is mild. The preparation process of the catalyst is easy to operate and can be used for mass production.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: October 16, 2012
    Assignee: Shanghai Huayi Acrylic Acid Co., Ltd.
    Inventors: Ge Luo, Xin Wen, Xiaoqi Zhao, Xuemei Li, Yan Zhuang, Jianxue Ma, Jingming Shao
  • Publication number: 20120208695
    Abstract: A supported catalyst composition suitable for use in converting synthesis gas to alcohols comprises a catalytic metal, a catalyst promoter and a catalyst support.
    Type: Application
    Filed: November 2, 2010
    Publication date: August 16, 2012
    Applicant: Dow Global Technologies LLC
    Inventors: Billy B. Bardin, David G. Barton, Adam Chojecki, Howard W. Clark, Daniela Ferrari, Robert J. Gulotty, JR., Yu Liu, Mark H. McAdon, Dean M. Millar, Neelesh Rane, Hendrik E. Tuinstra
  • Patent number: 8236726
    Abstract: The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 7, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zhongneng Liu, Zaiku Xie, Xiaoling Wu, Minbo Hou, Xinghua Jiang, Hongyuan Zong
  • Patent number: 8216961
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 10, 2012
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8202818
    Abstract: The present invention relates to a catalyst composition for preparing carbon nanotube and a process for preparing carbon nanotube using the same. More particularly, this invention relates to a process for preparing carbon nanotube by the chemical vapor deposition method through the decomposition of lower saturated or unsaturated hydrocarbons using a multi-component metal catalyst composition containing active metal catalyst from Co, V, Al and inactive porous support. Further, the present invention affords the carbon nanotube having 5˜30 nm of diameter and 100˜10,000 of aspect ratio in a high catalytic yield.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: June 19, 2012
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Hyun-Kyung Sung, Wan Sung Lee, Namsun Choi, Dong Hwan Kim, Youngchan Jang
  • Patent number: 8143187
    Abstract: A process for preparing supported catalyst in pellet or coated monolith form is disclosed the method includes the steps of: forming a mixed metal carbonate complex having at least two metals by subjecting a first metal carbonate containing compound to ion exchange with desired metal cations; heat treating the resulting mixed metal carbonate complex to form a mixed oxide which consists of active metal oxides supported on a catalyst support; forming the resulting supported catalysts into pellets or coating the resulting supported catalyst onto a monolithic support. The catalysts may be used for treating effluents containing organic material in the presence of an oxidising agent.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: March 27, 2012
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Manh Hoang, Kingsley Opoku-Gyamfi
  • Patent number: 8076262
    Abstract: Broad molecular weight polyethylene and polyethylene having a bimodal molecular weight profile can be produced with chromium oxide based catalyst systems employing alkyl silanols. The systems may also contain various organoaluminum compounds. Catalyst activity and molecular weight of the resulting polyethylene may also be tuned using the present invention.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: December 13, 2011
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J. Cann, Minghui Zhang, John H. Moorhouse, Maria A. Apecetche
  • Publication number: 20110257443
    Abstract: A catalyst comprising a first metal, a silicaceous support, and at least one metasilicate support modifier, wherein at least 1 wt. % of the at least one metasilicate support modifier is crystalline in phase, as determined by x-ray diffraction. The invention also relates to processes for forming such catalysts, to supports used therein, and to processes for hydrogenating acetic acid in the presence of such catalysts.
    Type: Application
    Filed: February 1, 2011
    Publication date: October 20, 2011
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Victor J. Johnston
  • Patent number: 8034737
    Abstract: A catalyst for producing acrylonitrile capable of maintaining a high yield of acrylonitrile for a long time is provided. The catalyst has a composition represented by MoaBibFecWdRbeAfBgChDiOj(SiO2)k, wherein A is Ni, Mg, Ca, Sr, Ba, Mn, Co, Cu, Zn, Cd or mixture thereof; B is Al, Cr, Ga, Y, In, La, Ce, Pr, Nd, Sm or mixture thereof; C is Ti, Zr, V, Nb, Ta, Ge, Sn, Pb, Sb, P, B, Te or mixture thereof; D is Ru, Rh, Pd, Re, Os, Ir, Pt, Ag or mixture thereof; SiO2 is silica, when a is 10, b is 0.1 to 1.5, c is 0.5 to 3.0, d is 0.01 to 2.0, e is 0.02 to 1.0, f is 2.0 to 9.0, g is 0 to 5, h is 0 to 3, i is 0 to 2, k is 10 to 200; and j is the atomic ratio of oxygen determined by the valence of other elements (excluding silicon); and (a×2+d×2)/(b×3+c×3+e×1+f×2+g×3) is 0.90 to 1.00.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 11, 2011
    Assignee: Dia-Nitrix Co., Ltd.
    Inventors: Hirokazu Watanabe, Motoo Yanagita, Kenichi Miyaki
  • Patent number: 7906689
    Abstract: A catalyst composition for use in manufacturing methacrolein by reacting with one of isobutene and t-butanol, the catalyst composition being represented by the formula of: x (Mo12BiaFebCocAdBeOf)/y Z. Mo12BiaFebCocAdBeOf is an oxide compound. Z is a catalyst carrier is one of graphite, boron, silicon, germanium powder, and a mixture thereof. Mo, Bi, Fe, Co, and O are chemical symbols of molybdenum, bismuth, iron, cobalt, and oxygen respectively. A is one of W, V, Ti, Zr, Nb, Ni, and Re. B is one of K, Rb, Cs, Sr, and Ba. The catalyst is adapted to not only enhance the production of methacrolein with high activeness and high selectivity but also effectively control the heat point of the catalyst during the methacrolein manufacturing process to prolong the catalyst life.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: March 15, 2011
    Inventors: Yan Zhuang, Chunlei Zhang, Xin Wen, Jun Li, Jingming Shao, Peizhang Zhang
  • Patent number: 7851400
    Abstract: The present invention concerns a catalyst for the production of high density polyethylene, by homopolymerising ethylene or copolymerising ethylene and an alpha-olefinic comonomer comprising 3 to 10 carbon atoms, prepared by the steps of: a) selecting a silica support with a specific surface area larger than 300 m2/g; b) treating the silica support with a titanium compound, in order to introduce titanium into the support, or with an aluminium compound, in order to introduce aluminum into the support; c) either treating the titanated silica support with an aluminum compound, in order to introduce aluminum into the titanated silica support, or treating the aluminated silica support with a titanium compound, in order to introduce titanium into the aluminated silica support; d) depositing a chromium compound on the titanated and aluminated silica support to form a catalyst; e) activating the catalyst of step d) under air in a fluidised bed at a temperature of from 600 to 800° C.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: December 14, 2010
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Philippe Bodart, Nicodeme Lonfils, Guy Debras
  • Patent number: 7846867
    Abstract: A method for the production of a composition comprising a metal containing compound, a silica containing material, a promoter, and alumina is disclosed. The composition can then be utilized in a process for the removal of sulfur from a hydrocarbon stream.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: December 7, 2010
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Uday T. Turaga, Tushar V. Choudhary, Glenn W. Dodwell, Marvin M. Johnson, Deborah K. Just
  • Publication number: 20100286432
    Abstract: An object of the present invention is to provide a process for producing an oxide catalyst used in a vapor-phase catalytic oxidation or vapor-phase catalytic ammoxidation reaction of propane or isobutene, which enables a catalyst demonstrating favorable yield to be stably produced. According to the present invention, there is provided a process for producing an oxide catalyst used in a vapor-phase catalytic oxidation or vapor-phase catalytic ammoxidation reaction of propane or isobutane, comprising the steps of: (i) preparing a catalyst raw material mixture containing Mo, V and Nb and satisfying the relationships of 0.1?a?1 and 0.01?b?1 when atomic ratios of V and Nb to one atom of Mo are defined as a and b, respectively; (ii) drying the catalyst raw material mixture; and (iii) calcining a particle, in which a content of the particle having a particle diameter of 25 ?m or less is 20% by mass or less and a mean particle diameter is from 35 to 70 ?m, in an inert gas atmosphere.
    Type: Application
    Filed: December 11, 2008
    Publication date: November 11, 2010
    Inventors: Eri Tateno, Masatoshi Kaneta
  • Patent number: 7803972
    Abstract: The invention relates to a coated catalyst, especially for oxidation of methanol to formaldehyde, which, on an inert, preferably essentially nonporous, support body, has at least one coating which comprises, before the removal of the organic fractions of components b) and c): (a) oxides, or precursor compounds convertible to the corresponding oxides, of molybdenum and iron, where the molar ratio of Mo:Fe is between 1:1 and 5:1, and optionally further metallic components or metal oxide components or precursor compounds convertible to the corresponding oxides, (b) at least one organic binder, preferably an aqueous dispersion of copolymers, especially selected from vinyl acetate/vinyl laurate, vinyl acetate/ethylene, vinyl acetate/acrylate, vinyl acetate/maleate, styrene/acrylate or mixtures thereof, and (c) at least one further component selected from the group consisting of SiO2 sol or precursors thereof, Al2O3 sol or precursors thereof, ZrO2 sol or precursors thereof, TiO2 sol or precursors thereof, waterglas
    Type: Grant
    Filed: November 23, 2006
    Date of Patent: September 28, 2010
    Assignee: Süd-Chemie AG
    Inventors: Christian Gückel, Klaus Wanninger, Marvin Estenfelder, Claudia Fischer, Uwe Dürr
  • Patent number: 7772147
    Abstract: A solid catalyst carrier substrate coated with a surface area-enhancing washcoat composition including a catalytic component, a metal oxide and a refractory fibrous or whisker-like material having an aspect ratio of length to thickness in excess of 5:1.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 10, 2010
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul John Collier, Alison Mary Wagland
  • Patent number: 7759277
    Abstract: The present invention provides a catalyst having high activity and excellent stability, a process for preparation of the catalyst, a membrane electrode assembly, and a fuel cell. The catalyst of the present invention comprises an electronically conductive support and catalyst fine particles. The catalyst fine particles are supported on the support and are represented by the formula (1): PtuRuxGeyTz (1). In the formula, u, x, y and z mean 30 to 60 atm %, 20 to 50 atm %, 0.5 to 20 atm % and 0.5 to 40 atm %, respectively. When the element represented by T is Al, Si, Ni, W, Mo, V or C, the content of the T-element's atoms connected with oxygen bonds is not more than four times as large as that of the T-element's atoms connected with metal bonds on the basis of X-ray photoelectron spectrum (XPS) analysis.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taishi Fukazawa, Wu Mei, Yoshihiko Nakano, Tsuyoshi Kobayashi, Itsuko Mizutani, Hiroyasu Sumino
  • Publication number: 20100167053
    Abstract: The present invention relates to a catalyst composition for preparing carbon nanotube and a process for preparing carbon nanotube using the same. More particularly, this invention relates to a process for preparing carbon nanotube by the chemical vapor deposition method through the decomposition of lower saturated or unsaturated hydrocarbons using a multi-component metal catalyst composition containing active metal catalyst from Co, V, Al and inactive porous support. Further, the present invention affords the carbon nanotube having 5˜30 nm of diameter and 100˜10,000 of aspect ratio in a high catalytic yield.
    Type: Application
    Filed: May 26, 2009
    Publication date: July 1, 2010
    Inventors: Hyun-Kyung Sung, Wan Sung Lee, Namsun Choi, Dong Hwan Kim, Youngchan Jang
  • Patent number: 7745369
    Abstract: A catalyst that one or more metals from Column 5 of the Periodic Table and/or one or more compounds of one or more metals from Column 5 of the Periodic Table is described. The catalyst exhibits one or more bands in a range from 650 cm?1 to 1000 cm?1, as determined by Raman Spectroscopy. Methods of contacting a crude feed with hydrogen with the catalyst to produce a crude product with minimal hydrogen uptake are also described.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: June 29, 2010
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Publication number: 20100121007
    Abstract: The invention provides a catalyst for producing acrylic acid at high yield for a long time, in a method for producing acrylic acid by catalytic gas phase oxidation of propane and/or acrolein in the presence of molecular oxygen or a molecular oxygen-containing gas. This catalyst comprises a complex oxide containing molybdenum, vanadium and X component (here the X component is at least one element selected from antimony, niobium and tin) as the essential components, and is characterized in that its main peak as measured by X-ray diffractiometry using K? ray of Cu, d=4.00±0.1 angstrom, and in that the particle size of the X component in the catalyst does not exceed 20 ?m.
    Type: Application
    Filed: May 28, 2008
    Publication date: May 13, 2010
    Inventors: Naohiro Fukumoto, Toshiya Nishiguchi
  • Patent number: 7645897
    Abstract: A process for producing a high-performance catalyst for use in a reaction for acrylic acid production from propane or propylene through air oxidation, is provided. A process for producing a metal oxide catalyst having the following composition formula, the process comprising the following steps (1) and (2): MoViAjBkCxOy??Composition formula (wherein A is Te or Sb; B is at least one element selected from the group consisting of Nb, Ta, and Ti; C is Si or Ge; i and j each are 0.01-1.5 and j/i is from 0.3 to 1.0; k is 0.001-3.0; x is 0.002-0.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: January 12, 2010
    Inventors: Xinlin Tu, Naomasa Furuta, Yuuichi Sumida
  • Publication number: 20090311155
    Abstract: A catalyst is provided having higher mercury oxidation performance than a conventional catalyst without increasing catalyst quantity or enhancing SO2 oxidation performance and constitutes an oxidation catalyst for metal mercury, which contains a molybdenum and vanadium complex oxide, for example, MoV2O8, as a main component having a catalytic activity and is formed by placing the molybdenum and vanadium complex oxide in layers only on the surface of a plate-like or honeycomb-like porous carrier. The porous carrier contains Ti and W and has a function of an NOx removal catalyst as a whole.
    Type: Application
    Filed: September 21, 2007
    Publication date: December 17, 2009
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Keiichiro Kai, Yasuyoshi Kato
  • Patent number: 7625840
    Abstract: A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: December 1, 2009
    Assignee: UChicago Argonne, LLC.
    Inventors: Michael J. Pellin, John N. Hryn, Jeffrey W. Elam
  • Patent number: 7585812
    Abstract: A catalyst for use in the Fischer-Tropsch process, and a method to prepare the catalyst is disclosed. The catalyst of the present invention has a higher surface area, more uniform metal distribution, and smaller metal crystallite size than Fischer-Tropsch catalysts of the prior art.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: September 8, 2009
    Assignee: Sud-Chemie Inc.
    Inventors: X. D. Hu, Patrick J. Loi, Robert J. O'Brien
  • Publication number: 20090221843
    Abstract: A catalyst for producing acrylonitrile capable of maintaining a high yield of acrylonitrile for a long time is provided. The catalyst has a composition represented by MoaBibFecWdRbeAfBgChDiOj(SiO2)k, wherein A is Ni, Mg, Ca, Sr, Ba, Mn, Co, Cu, Zn, Cd or mixture thereof; B is Al, Cr, Ga, Y, In, La, Ce, Pr, Nd, Sm or mixture thereof; C is Ti, Zr, V, Nb, Ta, Ge, Sn, Pb, Sb, P, B, Te or mixture thereof; D is Ru, Rh, Pd, Re, Os, Ir, Pt, Ag or mixture thereof; SiO2 is silica, when a is 10, b is 0.1 to 1.5, c is 0.5 to 3.0, d is 0.01 to 2.0, e is 0.02 to 1.0, fis 2.0 to 9.0, g isO to 5, his 0 to 3, i isO to 2, k is 10 to 200; and j is the atomic ratio of oxygen determined by the valence of other elements (excluding silicon); and (a×2+d×2)/(b×3+c×3+e×1+f×2+g×3) is 0.90 to 1.00.
    Type: Application
    Filed: February 26, 2009
    Publication date: September 3, 2009
    Applicant: DIA-NITRIX CO., LTD.
    Inventors: Hirokazu Watanabe, Motoo Yanagita, Kenichi Miyaki
  • Patent number: 7576028
    Abstract: A catalyst body comprising a carrier and a catalyst layer containing an alkali metal and/or an alkaline earth metal, loaded on the carrier, which catalyst further contains a substance capable of reacting with the alkali metal and/or the alkaline earth metal, dominating over the reaction between the main components of the carrier and the alkali metal and/or the alkaline earth metal. With this catalyst body, the deterioration of the carrier by the alkali metal and/or the alkaline earth metal is prevented; therefore, the catalyst body can be used over a long period of time.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: August 18, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Naomi Noda, Junichi Suzuki, Takashi Harada
  • Patent number: 7553794
    Abstract: A supported catalyst comprising a support having supported thereon at least one member selected from the group consisting of heteropolyacids and heteropolyacid salts, in which the heteropolyacid and/or heteropolyacid salt is substantially present in a surface layer region of the support to a depth of 30% from the support surface. The catalyst has a high performance when used for the production of compounds by various reactions.
    Type: Grant
    Filed: November 27, 2003
    Date of Patent: June 30, 2009
    Assignee: Showa Denko K.K.
    Inventor: Masaaki Sakai