Cobalt Patents (Class 502/260)
  • Patent number: 8455391
    Abstract: An exhaust gas purifying catalyst (1) includes: a three-dimensional structural substrate (10) having a plurality of cells (11) partitioned by cell walls (12) having pores (13); and catalyst layers (20) formed in the three-dimensional structural substrate (10). The catalyst layers (20) have pore-cover portions (22) formed on surfaces (13a) of the pores (13) of the cell walls (12). In addition, the catalyst layers (20) of the pore-cover portions (22) have activated pores (22a) with a pore diameter of 0.1 micrometers to 10 micrometers. In the exhaust gas purifying catalyst (1), the obstruction of the vent holes (pores (13)) in the catalyst layers (20) can be controlled, and the pressure loss can be reduced.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: June 4, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yasunari Hanaki, Hiroshi Akama, Hitoshi Onodera, Toru Nishizawa, Yoshiaki Hiramoto, Hideaki Morisaka, Masahiro Takaya
  • Patent number: 8455390
    Abstract: An exhaust gas purifying catalyst includes a monolithic substrate (2), and a transition metal oxide layer (3) formed in the monolithic substrate (2). The transition metal oxide layer (3) contains transition metal oxide powder including: transition metal oxide particles (10); a first compound (20) on which the transition metal oxide particles (10) are supported; and a second compound (30) that surrounds a single body or an aggregate of the transition metal oxide particles (10) and the first compound (20).
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 4, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroto Kikuchi, Masanori Nakamura, Hironori Wakamatsu, Katsuo Suga, Toshiharu Miyamura, Jun Ikezawa, Tetsuro Naito, Junji Ito
  • Publication number: 20130130894
    Abstract: Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (—COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.
    Type: Application
    Filed: January 14, 2013
    Publication date: May 23, 2013
    Applicant: Babcock & Wilcox Technical Services Y-12, LLc
    Inventor: Babcock & Wilcox Technical Services Y-12, LLc
  • Publication number: 20130131399
    Abstract: A process for producing a catalyst, the process comprising the steps of: impregnating a first metal from a first metal precursor on a support to form a first impregnated support; calcining the first impregnated support; impregnating a second metal from a second metal precursor on the first impregnated support to form a second impregnated support; calcining the second impregnated support to form the catalyst, wherein the catalyst has a total metal loading of at least 2 wt. % based on the total weight of the catalyst. A method for hydrogenating alkanoic acids in the presence of the catalyst is also disclosed.
    Type: Application
    Filed: November 23, 2011
    Publication date: May 23, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Ana Rita Almeida, Graham Ormsby
  • Patent number: 8435912
    Abstract: A supported and sulphur-containing catalyst is described, comprising; a porous support constituted by an organic-inorganic hybrid material for which the covalent bond between the organic and inorganic phases conforms to the formula M-O—Z—R where M represents at least one metal constituting the inorganic phase, Z at least one heteroelement from among phosphorus and silicon and R an organic fragment, at least one metal of group VIB and/or of group VB and/or of group VIII. The invention also relates to the use of this catalyst for the hydrorefining and the hydroconversion of hydrocarbon-containing feedstocks such as petroleum fractions, fractions from coal or biomass or hydrocarbons produced from natural gas.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: May 7, 2013
    Assignee: IFP Energies Noevelles
    Inventors: Alexandra Chaumonnot, Denis Guillaume, Benoit Fremon, Karin Marchand, Renaud Revel
  • Patent number: 8415267
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 9, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8404204
    Abstract: The present invention is directed to a granulate having photocatalytic activity, comprising particles of an inorganic particulate material coated with a photocatalytically active compound for introducing photocatalytic activity into or on building materials. The invention is further related to the manufacture of such a granulate and its use into or on building materials such as cement, concrete, gypsum and/or limestone and water-based coatings or paints for reducing an accumulation and growth of microorganisms and environmental polluting substances on these materials and thus reducing the tendency of fouling, while the brilliance of the color is maintained and the quality of the air is improved.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: March 26, 2013
    Assignee: Rockwood Italia SpA
    Inventors: Marino Sergi, Christian Egger
  • Patent number: 8377840
    Abstract: Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (—COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: February 19, 2013
    Assignee: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, Jane Y. Howe, Wei Wang
  • Publication number: 20130041052
    Abstract: A method for producing an activated Fischer-Tropsch synthesis catalyst comprising a hydrogen reduction step of subjecting a catalyst comprising 3 parts by mass to 50 parts by mass, as a metal atom, of a cobalt compound and/or a ruthenium compound, based on 100 parts by mass of a carrier containing a porous inorganic oxide, supported on the carrier, to reduction in a gas containing molecular hydrogen at a temperature of 300° C. to 600° C.; and a CO reduction step of subjecting the catalyst to reduction in a gas containing carbon monoxide and containing no molecular hydrogen at a temperature of 200° C. to 400° C.
    Type: Application
    Filed: January 6, 2011
    Publication date: February 14, 2013
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yoshiyuki Nagayasu, Kazuaki Hayasaka, Hideki Ono
  • Patent number: 8367034
    Abstract: The present invention relates to cobalt and molybdenum doped mesoporous silica catalysts and methods for using the catalysts to making Single-Walled Carbon Nanotubes. The methods offer increased control over the orientation, length and diameter of the nanotubes produced.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: February 5, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Stephen O'Brien, Limin Huang, Brian Edward White
  • Publication number: 20130023593
    Abstract: A method for preparing a silica-modified catalyst support is described including: (I) applying an alkyl silicate to the surface of a porous support material in an amount to produce a silica content of the silica-modified catalyst support, expressed as Si, in the range 0.25 to 15% by weight, (ii) optionally drying the resulting silicate-modified support, (iii) treating the support with water, (iv) drying the resulting water-treated support, and (v) calcining the dried material to form the silica-modified catalyst support.
    Type: Application
    Filed: January 13, 2011
    Publication date: January 24, 2013
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Alejandro Martin Antonini, Richard John Mercer, Adel Fay Neale
  • Patent number: 8343888
    Abstract: Precursor cations of A and B elements of an ABO3 perovskite in aqueous solution are formed as an ionic complex gel with citric acid or other suitable polybasic carboxylic acid. The aqueous gel is coated onto a desired catalyst substrate and calcined to form, in-situ, particles of the crystalline perovskite as, for example, an oxidation catalyst on the substrate. In one embodiment, a perovskite catalyst such as LaCoO3 is formed on catalyst supporting cell walls of an extruded ceramic monolith for oxidation of NO in the exhaust gas of a lean burn vehicle engine.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: January 1, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H Kim, Wei Li, Kevin A Dahlberg
  • Publication number: 20120329890
    Abstract: A Fischer-Tropsch synthesis catalyst containing 10 to 30% by mass, as a metal atom, of metallic cobalt and/or cobalt oxide, based on the mass of the catalyst, supported on a carrier containing silica, in which the carrier has an average pore diameter of 8 to 25 nm and the metallic cobalt and/or cobalt oxide has an average crystallite diameter of not less than the average pore diameter of the carrier and less than 35 nm.
    Type: Application
    Filed: February 14, 2011
    Publication date: December 27, 2012
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hideki Ono, Yoshiyuki Nagayasu, Kazuaki Hayasaka
  • Publication number: 20120329889
    Abstract: The present invention relates to a method of manufacturing a cobalt metal foam catalyst including a metal foam coated with cobalt catalyst powder, a cobalt metal foam catalyst manufactured by the method, a thermal medium-circulated heat exchanger type reactor using the cobalt metal foam catalyst, and a method of producing liquid fuel by Fischer-Tropsch synthesis using the reactor. An object of the present invention is to provide a catalyst, which is used to obtain high liquid fuel productivity even at a low CO conversion ratio because the reaction temperature can be kept stable by controlling reaction heat with high efficiency in Fischer-Tropsch synthesis so that the mass transfer characteristics of a catalyst layer can be improved, and a method of manufacturing the catalyst, a reactor filled with the catalyst, and a method of producing liquid fuel using the reactor.
    Type: Application
    Filed: February 25, 2010
    Publication date: December 27, 2012
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jung-Il Yang, Jung-Hoon Yang, Chang-Hyun Ko, Heon Jung, Ho-Tae Lee, Hak-Joo Kim, Dong-Hyun Chun
  • Patent number: 8329961
    Abstract: The present invention provides a catalyst for producing alcohols from carboxylic acids by hydrogenation, containing Co metal as an essential component and one or more elements selected from Zr, Y, La, Ce, Si, Al, Sc, V and Mo as a first co-catalyst component, and having 20% or more of cubic phase in the crystal phase of the Co metal, the method for producing the catalyst, and the method for producing an alcohol from a carboxylic acid as a raw material by hydrogenation using the catalyst.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: December 11, 2012
    Assignee: Kao Corporation
    Inventors: Hiroshi Danjo, Noriaki Fukuoka, Taku Mimura
  • Publication number: 20120304530
    Abstract: A method for upgrading pyrolysis oil into a hydrocarbon fuel involves obtaining a quantity of pyrolysis oil, separating the pyrolysis oil into an organic phase and an aqueous phase, and then upgrading the organic phase into a hydrocarbon fuel by reacting the organic phase with hydrogen gas using a catalyst. The catalyst used in the reaction includes a support material, an active metal and a zirconia promoter material. The support material may be alumina, silica gel, carbon, silicalite or a zeolite material. The active metal may be copper, iron, nickel or cobalt. The zirconia promoter material may be zirconia itself, zirconia doped with Y, zirconia doped with Sc and zirconia doped with Yb.
    Type: Application
    Filed: May 23, 2012
    Publication date: December 6, 2012
    Inventors: Pallavi Chitta, Mukund Karanjikar
  • Publication number: 20120288430
    Abstract: This invention concerns a procedure for the formation of a bimetallic composition by means of the subsequent depositing of Co(0) and Pd(0) on an inert support, a composition obtained by means of said procedure and the use of said bimetallic composition as a catalyst. Another aspect of this invention is a catalytic device that includes said bimetallic composition.
    Type: Application
    Filed: December 28, 2010
    Publication date: November 15, 2012
    Applicant: QID S.R.L.
    Inventors: Valentina Bello, Helmut Boen-Nemann, Paolo Canu, Massimo Centazzo, Luca Conte, Daniela Dalle Nogare, Giovanni Mattei, Renzo Rosei
  • Patent number: 8293676
    Abstract: The present invention provides catalyst compositions useful for transamination reactions. The catalyst compositions have a catalyst support that includes transitional alumina, use a low metal loading (for example, less than 25 wt. %), and do not require the presence of rhenium. The catalyst compositions are able to advantageously promote transamination of a reactant product (such as the transamination of EDA to DETA) with excellent activity and selectivity, and similar to transaminations promoted using a precious metal-containing catalyst.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: October 23, 2012
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 8288305
    Abstract: Naphtha is selectively hydrodesulfurized with retention of olefin content. More particularly, a CoMo metal hydrogenation component is loaded on a silica or modified silica support in the presence of an organic additive to produce a catalyst which is then used for hydrodesulfurizing naphtha while retaining olefins.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 16, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, Stuart Soled, Sabato Mlseo, Jonathan McConnachie
  • Publication number: 20120258037
    Abstract: A catalytic membrane reactor assembly for producing a hydrogen stream from a feed stream having liquid hydrocarbons, steam, and an oxygen source through the use of an autothermal reforming reaction, a water-gas-shift reaction, and a hydrogen permeable membrane.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: Saudi Arabian Oil Company
    Inventors: Thang V. Pham, Sai P. Katikaneni, Jorge N. Beltramini, Moses O. Adebajo, Joao Carlos Diniz Da Costa, G.Q. Lu
  • Patent number: 8273504
    Abstract: The invention provides a method for manufacturing supported noble metal based alloy catalysts with a high degree of alloying and a small crystallite size. The method involves using polyol solvents as reaction medium and comprises a two-step reduction process in the presence of a support material. In the first step, the first metal (transition metal; e.g. Co, Cr, Ru) is activated by increasing the reaction temperature to 80 to 160° C. In the second step, the second metal (noble metal; e.g. Pt, Pd, Au) is added and the slurry is heated to the boiling point of the polyol solvent in a range of 160 to 300 ° C. The catalysts manufactured according to the method are used as electrocatalysts for polymer electrolyte membrane fuel cells (PEMFC), direct-methanol fuel cells (DMFC) or as gas phase catalysts for CO oxidation or exhaust gas purification.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: September 25, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Dan V. Goia, Marco Lopez, Tapan Kumar Sau, Mihaela-Ortansa Jitianu
  • Patent number: 8263523
    Abstract: A method for forming a cobalt-containing Fischer-Tropsch catalyst involves precipitating a cobalt oxy-hydroxycarbonate species by turbulent mixing, during which a basic solution collides with an acidic solution comprising cobalt. The method further involves depositing the cobalt oxy-hydroxycarbonate species onto an acidic support to provide a catalyst comprising cobalt and the acidic support. The acidic support comprises a zeolite, a molecular sieve, or combinations thereof.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: September 11, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Alfred Haas
  • Patent number: 8263522
    Abstract: A method for converting a supported metal nitrate into the corresponding supported metal oxide comprises heating the metal nitrate to effect its decomposition under a gas mixture that contains nitrous oxide and has an oxygen content of <5% by volume. The method provides very highly dispersed metal oxide on the support material. The metal oxide is useful as a catalyst or as a catalyst precursor.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: September 11, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Jelle Rudolf Anne Sietsma, Adrianus Jacobus Van Dillen, Petra Elisabeth De Jongh, Krijn Pieter De Jong
  • Patent number: 8236723
    Abstract: The invention relates to a catalyst for hydrodesulfurizing naphtha, to a method for preparing said catalyst and to a method for hydrodesulfurizing naphtha using said catalyst. More particularly, the catalyst comprises a Co/Mo metal hydrogenation component on a silica support having a defined pore size distribution and at least one organic additive. The catalyst has high dehydrosulphurisation activity and minimal olefin saturation when used to hydrodesulfurize FCC naphtha.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: August 7, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sven Johan Timmer, Jason Wu
  • Patent number: 8226740
    Abstract: An inorganic material that consists of at least two elementary spherical particles, each of said spherical particles comprising metal nanoparticles that are between 1 and 300 nm in size and a mesostructured matrix with an oxide base of at least one element X that is selected from the group that consists of aluminum, titanium, tungsten, zirconium, gallium, germanium, tin, antimony, lead, vanadium, iron, manganese, hafnium, niobium, tantalum, yttrium, cerium, gadolinium, europium and neodymium is described, whereby said matrix has a pore size of between 1.5 and 30 nm and has amorphous walls with a thickness of between 1 and 30 nm, said elementary spherical particles having a maximum diameter of 10 ?m. Said material can also contain zeolitic nanocrystals that are trapped within said mesostructured matrix.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: July 24, 2012
    Assignee: IFP Energies nouvelles
    Inventors: Alexandra Chaumonnot, Aurelie Coupe, Clement Sanchez, Cedric Boissiere, David Grosso
  • Patent number: 8222173
    Abstract: A method of manufacturing a catalyst by suspending a titanium-containing silicate porous material in a solution with a metal salt being dissolved therein, and then by exposing the solution to ultra violet light to precipitate metal fine particles on the surface of the porous material.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: July 17, 2012
    Assignees: Nippon Oil Corporation, Osaka University
    Inventors: Hiromi Yamashita, Tadahiro Kaminade
  • Patent number: 8216963
    Abstract: A method for forming a cobalt-containing Fischer-Tropsch catalyst involves precipitating a cobalt oxy-hydroxycarbonate species by turbulent mixing, during which a basic solution collides with an acidic solution comprising cobalt. The method further involves depositing the cobalt oxy-hydroxycarbonate species onto a support material to provide a catalyst comprising cobalt and the support material. The support material comprises one or more of alumina, silica, magnesia, titania, zirconia, ceria-zirconia, and magnesium aluminate.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: July 10, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Alfred Haas
  • Patent number: 8216958
    Abstract: A method for hydrodesulfurizing FCC naphtha is described. More particularly, a Co/Mo metal hydrogenation component is loaded on a silica or modified silica support in the presence of organic ligand and sulfided to produce a catalyst which is then used for hydrodesulfurizing FCC naphtha. The silica support has a defined pore size distribution which minimizes olefin saturation.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: July 10, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jason Wu, Chuansheng Bai, Thomas R. Halbert, Stuart L. Soled, Sabato Miseo, Jonathan M. McConnachie, Valery Sokolovskii, David M. Lowe, Anthony F. Volpe, Jr., Jun Han
  • Patent number: 8216961
    Abstract: Core-shell nanoparticles having a core material and a mesoporous silica shell, and a method for manufacturing the core-shell nanoparticles are provided.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: July 10, 2012
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8207084
    Abstract: According to at least one aspect of the present invention, a urea-resistant catalytic unit is provided. In at least one embodiment, the catalytic unit includes a catalyst having a catalyst surface, and a urea-resistant coating in contact with at least a portion of the catalyst surface, wherein the urea-resistant coating effectively reduces urea-induced deactivation of the catalyst. In at least another embodiment, the urea-resistant coating includes at least one oxide from the group consisting of titanium oxide, tungsten oxide, zirconium oxide, molybdenum oxide, aluminum oxide, silicon dioxide, sulfur oxide, niobium oxide, molybdenum oxide, yttrium oxide, nickel oxide, cobalt oxide, and combinations thereof.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 26, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Yisun Cheng, Yinyan Huang, Christine Kay Lambert
  • Patent number: 8202815
    Abstract: In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: June 19, 2012
    Assignee: General Electric Company
    Inventors: Gregg Anthony Deluga, Daniel Lawrence Derr
  • Publication number: 20120149559
    Abstract: An eggshell catalyst useful for a Fischer-Tropsch (FT) synthesis or other reactions comprises a homogeneously dispersed transition metal and a promoter situated in an active phase in a precisely selected outer region of a catalyst pellet. The active phase region is controlled to a specific depth, which permits the control of the catalysts selectivity, for example, the size of the hydrocarbon chains formed in the FT process. A method of preparing these eggshell catalysts involves a non-aqueous synthesis where polar and non-polar solvents of relatively low vapor pressure are employed to define the depth of penetration of metal species in a refractory oxide substrate, which is followed by fixing and activating metallic catalytic species in the structure by calcination of the catalyst particles.
    Type: Application
    Filed: August 23, 2010
    Publication date: June 14, 2012
    Inventors: John T. Wolan, Alisyed Gardezi
  • Patent number: 8192595
    Abstract: A transition metal/carbon nanotube composite includes a carbon nanotube and a transition metal oxide coating layer disposed on the carbon nanotube. The transition metal oxide coating layer includes a nickel-cobalt oxide.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: June 5, 2012
    Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Ho-jung Yang, Hyo-rang Kang, Kwang-bum Kim, Jin-go Kim
  • Patent number: 8178003
    Abstract: A hydrocarbon-reforming catalyst comprising a composite oxide having a composition represented by the following formula (I) in which Co, Ni and M are dispersed in the composite oxide and a process for producing a synthesis gas by using the catalyst are provided. aM.bCo.cNi.dMg.eCa.fO??(I) wherein a, b, c, d, e, and f are molar fractions, a+b+c+d+e=1, 0.0001<a?0.20, 0<b?0.20, 0?c?0.20, 0.001<(b+c)?0.20, 0.60?(d+e)?0.9989, 0<d<0.9989, 0<e<0.9989, f=the number necessary for element to keep charge equilibrium with oxygen. And M is at least one element among Group 3B elements and Group 6A elements in the Periodic Table. The reforming catalyst is able to maintain a high catalytic activity over a long period in reforming hydrocarbons.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: May 15, 2012
    Assignee: Japan Petroleum Exploration Co., Ltd.
    Inventors: Katutoshi Nagaoka, Yuusaku Takita, Toshiya Wakatsuki
  • Publication number: 20120115710
    Abstract: The present invention relates to petrochemistry, gas chemistry, coal chemistry, particularly the invention relates to a catalyst for synthesis of hydrocarbons from CO and H2 and a preparation method thereof. The catalyst is pelletized and comprises at least Raney cobalt as active component in an amount of 1-40% by weight based on the total weight of the catalyst, metallic aluminium in an amount of 25-94% by weight based on the total weight of the catalyst and a binder in an amount of 5-30% by weight based on the total weight of the catalyst. The present invention provides the catalyst stability to overheating and high productivity of hydrocarbons C5-C100 for synthesis of hydrocarbons from CO and H2.
    Type: Application
    Filed: June 15, 2010
    Publication date: May 10, 2012
    Applicant: INFRA TECHNOLOGIES LTD.
    Inventors: Vladimir Zalmanovich Mordkovich, Lilia Vadimovna Sineva, Igor Grigorievich Solomonik, Vadim Sergeevich Ermolaev, Eduard Borisovich Mitberg
  • Publication number: 20120115967
    Abstract: The invention relates to the preparation of a Fischer-Tropsch catalyst support and of a Fischer-Tropsch catalyst. A silica comprising support is subjected to hydrothermal treatment. The hydrothermal treatment results in catalysts having improved C5+ selectivity as compared with catalysts prepared with a non-treated silica comprising support.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 10, 2012
    Applicant: SHELL OIL COMPANY
    Inventors: Gerrit Leendert BEZEMER, Peter GEERINCK
  • Patent number: 8173100
    Abstract: Catalytic system comprising at least two components: a catalyst for the hydrolysis reaction of metal borohydrides to hydrogen; and a material in solid form, the dissolution reaction of which in water is exothermic.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 8, 2012
    Assignee: Commisariat a l'Energie Atomique
    Inventors: Philippe Capron, Jérôme Delmas, Nathalie Giacometti, Isabelle Rougeaux
  • Patent number: 8148292
    Abstract: A method is provided for preparing a supported cobalt-containing catalyst having substantially homogenously dispersed, small cobalt crystallites. The method comprises depositing cobalt nitrate on a support and then heating the support in an oxygen-containing, substantially water-free atmosphere to about 160° C. to form an intermediate decomposition product. This intermediate decomposition product is then calcined and reduced.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: April 3, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Joseph E. Baumgartner, Christine E. Kliewer, El-Mekki El-Malki, Patricia A. Bielenberg
  • Patent number: 8143186
    Abstract: A catalyst composition comprising cobalt as an active catalytic element and a lesser amount of nickel as a promoter supported on a metal oxide support. The support may comprise alumina, silica, silica-alumina, zeolite, zirconia, magnesia or titania. The amount of nickel is preferably less than 50 wt %, relative to the amount of cobalt.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: March 27, 2012
    Assignees: Statoil ASA, Petro SA
    Inventor: Erling Rytter
  • Patent number: 8143187
    Abstract: A process for preparing supported catalyst in pellet or coated monolith form is disclosed the method includes the steps of: forming a mixed metal carbonate complex having at least two metals by subjecting a first metal carbonate containing compound to ion exchange with desired metal cations; heat treating the resulting mixed metal carbonate complex to form a mixed oxide which consists of active metal oxides supported on a catalyst support; forming the resulting supported catalysts into pellets or coating the resulting supported catalyst onto a monolithic support. The catalysts may be used for treating effluents containing organic material in the presence of an oxidising agent.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: March 27, 2012
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Manh Hoang, Kingsley Opoku-Gyamfi
  • Publication number: 20120058884
    Abstract: Techniques for coating a fiber with metal oxide include forming silica in the fiber to fix the metal oxide to the fiber. The coated fiber can be used to facilitate photocatalysis.
    Type: Application
    Filed: November 9, 2011
    Publication date: March 8, 2012
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventor: Kwangyeol Lee
  • Patent number: 8101539
    Abstract: A purifying catalyst includes catalyst powder composed of a transition metal oxide of which an average particle diameter is within 1 nm to 2 ?m and in which an electron binding energy of oxygen is shifted to an energy side lower than 531.3 eV. The purifying catalyst shows good purification performance even when noble metal is not contained as an essential component.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: January 24, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hirofumi Yasuda, Yasunari Hanaki, Toru Sekiba, Shigeru Chida, Junji Ito
  • Publication number: 20120015802
    Abstract: Disclosed is a catalyst which can be used in the process for producing hydrogen by decomposing ammonia, can generate heat efficiently in the interior of a reactor without requiring excessive heating the reactor externally, and can decompose ammonia efficiently and steadily by utilizing the heat to produce hydrogen. Also disclosed is a technique for producing hydrogen by decomposing ammonia efficiently utilizing the catalyst. Specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising an ammonia-combusting catalytic component and an ammonia-decomposing catalytic component. Also specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising at least one metal element selected from the group consisting of cobalt, iron, nickel and molybdenum.
    Type: Application
    Filed: March 17, 2010
    Publication date: January 19, 2012
    Inventors: Junji Okamura, Masanori Yoshimune, Masaru Kirishiki, Hideaki Tsuneki, Shinya Kitaguchi
  • Publication number: 20120016042
    Abstract: The present invention concerns a catalyst for carrying out hydrocarbon synthesis starting from a mixture comprising carbon monoxide and hydrogen, the active phase of which comprises at least one metal from group VIII deposited on a support formed by at least one oxide, in which said metal from group VIII is selected from the group constituted by cobalt, nickel, ruthenium or iron, and in which said catalyst has an atomic ratio (Co/Al)not ground/(CO/Al)ground, measured by X-ray photo-emission spectroscopy, in the range 1 to 12. The invention also concerns the catalyst preparation process and its use.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 19, 2012
    Applicants: IFP Energies nouvelles, ENI S.p.A.
    Inventors: Sylvie Maury, Christele Legens, Loic Sorbier, Fabrice Diehl, Joseph Lopez, Lars Fischer
  • Patent number: 8097555
    Abstract: Process for the production of hybrid catalysts formed by mixing two catalysts; one active in Fischer-Tropsch synthesis, the other being bifunctional. Such hybrid catalyst thus formed is active both in hydrocracking and in hydroisomerization reactions. The present invention in addition provides obtainment of a hybrid catalyst and application thereof conjointly with FT catalysts in Fischer-Tropsch synthesis reactions. The hybrid catalyst of the present invention is capable of producing in conditions typically such as those utilized in Fischer-Tropsch synthesis branched hydrocarbons in diverse bands relating to the products thereof (for example naphtha and diesel), reducing or even eliminating necessity for a subsequent hydrotreatment stage in such synthesis reactions.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: January 17, 2012
    Assignee: Petroleo Brasileiro S.A. - Petrobras
    Inventors: Alexandre de Figueiredo Costa, Agustin Martines Feliu, Joan Rollán Martinez, Henrique Soares Cerqueira, Joberto Ferreira Dias Junior, Eduardo Falabella Sousa Aguiar
  • Publication number: 20120006724
    Abstract: Provided are hydrocracking catalysts comprising a cracking component and a hydrogenation component, wherein, for example: the cracking component comprises at least one molecular sieve present in an amount ranging from 0% to 20% by weight relative to the total weight of the catalyst and at least one amorphous silica-alumina present in an amount ranging from 20% to 60% by weight relative to the total weight of the catalyst; the hydrogenation component comprises at least one hydrogenation metal present in a total amount ranging from 34% to 75% by weight calculated by the mass of oxides, relative to the total weight of the catalyst; and the hydrocracking catalyst has a specific surface area ranging from 150 m2/g to 350 m2/g and a pore volume ranging from 0.20 cm3/g to 0.50 cm3/g, such as from 0.30 cm3/g to 0.45 cm3/g, and the product (M×S) of the percentage amount of the total mass of the hydrogenation metal (M) and the specific surface area (S) is equal to or more than 100 m2/g, i.e., M×S?100 m2/g.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 12, 2012
    Inventors: Yanze Du, Minghua Guan, Fenglai Wang, Chang Liu
  • Patent number: 8088706
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: January 3, 2012
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Patent number: 8088707
    Abstract: A supported catalyst with a solid sphere structure of the present invention includes an oxide supporting body and a metal such as Ni, Co, Fe, or a combination thereof distributed on the surface and inside of the supporting body. The supported catalyst with a solid sphere structure can maintain a spherical shape during heat treatment and can be used with a floating bed reactor due to the solid sphere structure thereof.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: January 3, 2012
    Assignee: Cheil Industries Inc.
    Inventors: Byeong Yeol Kim, Yun Tack Lee, Seung Yong Bae, Young Sil Lee
  • Publication number: 20110313188
    Abstract: The present invention relates to a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, wherein said catalyst comprises one or more elements selected from the group of the alkali metals, alkaline earth metals and rare earth metals. The invention further relates to processes for preparing the inventive catalyst and to the use of the inventive catalyst in a process for hydrogenating organic substances, especially for hydrogenating nitriles.
    Type: Application
    Filed: February 4, 2010
    Publication date: December 22, 2011
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Jochen Steiner, Martin Ernst, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder
  • Patent number: 8075859
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: December 13, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, Steven M. Augustine