Of Lanthanide Series (i.e., Atomic Number 57 To 71 Inclusive) Patents (Class 502/302)
  • Patent number: 8658554
    Abstract: A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert W. Dorner, Heather D. Willauer, Dennis R Hardy
  • Patent number: 8640440
    Abstract: Disclosed herein is a catalytically active particulate filter, an exhaust gas cleaning system and a process for cleaning the exhaust gases of predominantly stoichiometrically operated internal combustion engines, which are suitable, as well as the gaseous CO, HC and NOx pollutants, also for removing particulates from the exhaust gas. The particulate filter comprises a filter body and a catalytically active coating consisting of two layers. The first layer is in contact with the incoming exhaust gas, the second layer with the outgoing exhaust gas. Both layers contain alumina. The first layer contains palladium. The second layer contains, in addition to rhodium, an oxygen-storing cerium/zirconium mixed oxide.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 4, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Raoul Klingmann, Martin Roesch, Dieter Lindner
  • Patent number: 8637422
    Abstract: A method for supporting a catalytic metal on the surface of a carrier by bringing an aqueous catalytic metal salt solution into contact a porous carrier. The method includes the steps of: impregnating the carrier with a liquid hydrophobic organic compound before bringing the aqueous catalytic metal salt solution into contact with the carrier, and drying the impregnated carrier to volatilize the hydrophobic organic compound on the surface of the carrier, followed by bringing the carrier into contact with the aqueous catalytic metal salt solution; and then bringing a reducing agent into contact with the catalytic metal salt on the surface of the carrier to reduce the catalytic metal salt to undergo insolubilization treatment. The catalytic component is supported in a region from the surface of the carrier to a depth of 50 ?m or more and 500 ?m or less.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: January 28, 2014
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Hitoshi Kubo, Yuusuke Ohshima, Tomoko Ishikawa, Junichi Taniuchi
  • Patent number: 8629077
    Abstract: A rare earth alumina particulate composition manufacturing method and application are disclosed. The rare earth alumina of the invention is a particulate of porous structure with a molecular formula (REx,Al1-x)2O3, phase ? or ?+? characterized by a particle size distribution ranging from 1 to 80 ?m with a D50 of 5 to 15 ?m, a pore size distribution ranging from 0.4-200 nm with an average pore diameter of 8 to 30 nm, a pore volume (PV) raging from 0.5 to 1.2 cc/g and a fresh specific surface area (SA) ranging from 130 to 250 m2/g after calcination at 500-900° C. for 5 to 10 hours. The rare earth alumina retains a SA of greater than 60 m2/g after calcination at 1200° C. for 4 hours and greater than 40 m2/g after calcination at 1200° C. for 50 hours. There is no presence of the ? phase or other impurity phases in the long-term aged samples. The rare earth alumina of the invention has a high thermal stability and is a fine three-way catalyst support material.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: January 14, 2014
    Inventor: Yunkui Li
  • Patent number: 8628742
    Abstract: A method of using a hybrid oxidation catalyst system for remediating a lean emission from a vehicle includes the step of oxidizing the hydrocarbons and carbon monoxide in an engine emission comprising hydrocarbons, carbon monoxide, NOx including NO and NO2, and oxygen with a first catalyst. The first catalyst includes noble metal particles supported in a first ceramic layer. The method further includes oxidizing the NO with a second catalyst having base metal oxide particles supported in a second ceramic layer to form NO2. The first catalyst is disposed upstream of the second catalyst and the system is capable of converting at least 10% of the amount of NO to NO2 at a temperature ranging from 75° C. to 225° C.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: January 14, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Andrew Robert Drews, Robert J. Kudla
  • Patent number: 8623778
    Abstract: Catalyst compositions include finely divided nanoscale particles of at least one supported oxide selected from among zirconium oxide, titanium oxide or a mixed zirconium/titanium oxide deposited onto an alumina-based or aluminum-oxyhydroxide-based support, wherein, after calcination for 4 hours at 900° C., the at least one support oxide is in the form of nanoscale particles deposited onto the support, the size of said particles being at most 10 nm when the at least one supported oxide is based is zirconium oxide and being at most 15 nm when the at least one supported oxide is titanium oxide or a mixed zirconium/titanium oxide; such catalyst compositions are especially useful for the selective reduction of NOx.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: January 7, 2014
    Assignee: Rhodia Operations
    Inventors: Stephan Verdier, Guillaume Criniere, Simon Ifrah, Rui Jorge Coelho Marques
  • Publication number: 20140001407
    Abstract: The invention relates to a catalytic high-pressure process for the CO2 reforming of hydrocarbons, preferably methane, in the presence of iridium-comprising active compositions and also a preferred active composition in which Ir is present in finely dispersed form on zirconium dioxide-comprising support material. The predominant proportion of the zirconium dioxide preferably has a cubic and/or tetragonal structure and the zirconium dioxide is more preferably stabilized by means of at least one doping element. In the process of the invention, reforming gas is brought into contact at a pressure of greater than 5 bar, preferably greater than 10 bar and more preferably greater than 20 bar, and a temperature which is in the range from 600 to 1200° C., preferably in the range from 850 to 1100° C. and in particular in the range from 850 to 950° C., and converted into synthesis gas.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Andrian MILANOV, Ekkehard Schwab, Stephan Schunk, Guido Wasserschaff
  • Patent number: 8617497
    Abstract: The invention relates to the use of mixed oxides made of cerium oxide, zirconium oxide, rare earth sesquioxide and niobium oxide as catalytically active materials for the selective catalytic reduction of nitrogen oxides with ammonia or a compound that can decompose to form ammonia in the exhaust gas of internal combustion engines in motor vehicles that are predominantly leanly operated, and to compositions or catalysts which contain said mixed oxides in combination with zeolite compounds and/or zeolite-like compounds and are suitable for the denitrogenation of lean motor vehicle exhaust gases in all essential operating states.
    Type: Grant
    Filed: April 16, 2011
    Date of Patent: December 31, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Katja Adelmann, Gerald Jeske, Rainer Domesle, Nicola Soeger, Michael Seyler, Anke Schuler, Thomas R. Pauly, Barry W. L. Southward
  • Publication number: 20130337995
    Abstract: In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Inventors: Juergen Biener, Arne Wittstock, Monika M. Biener, Michael Bagge-Hansen, Marcus Baeumer, Andre Wichmann, Bjoern Neuman
  • Patent number: 8609575
    Abstract: A catalyst of one or more complex oxides having a nominal composition as set out in formula (1): AxB1-y-zMyPzOn (1) wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with atomic number 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with atomic number 25 to 30; P is selected from one or more elements with atomic number 44 to 50 and 76 to 83; x is defined as a number where 0<x?1; y is defined as a number where 0?y<0.5; and z is defined as a number where 0<z<0.2.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: December 17, 2013
    Assignee: Very Small Particle Company Limited
    Inventors: Peter Cade Talbot, Jose Antonio Alarco, Geoffrey Alan Edwards
  • Patent number: 8604248
    Abstract: The present invention provides catalyst compositions useful for transamination reactions. The catalyst compositions have a catalyst support that includes transitional alumina, use a low metal loading (for example, less than 25 wt. %), and do not require the presence of rhenium. The catalyst compositions are able to advantageously promote transamination of a reactant product (such as the transamination of EDA to DETA) with excellent activity and selectivity, and similar to transaminations promoted using a precious metal-containing catalyst.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: December 10, 2013
    Assignee: Union Carbide Chemicals & Plastics Technolgy LLC
    Inventors: Stephen W. King, Stefan K. Mierau
  • Patent number: 8603400
    Abstract: A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: December 10, 2013
    Assignee: California Institute of Technology
    Inventors: Charles C. Hays, Sri R. Narayan
  • Patent number: 8586780
    Abstract: A shell catalyst for producing vinyl acetate monomer (VAM), comprising an oxidic porous catalyst support, formed as a shaped body, with an outer shell in which metallic Pd and Au are contained. To provide a shell catalyst for producing VAM which has a relatively high activity and can be obtained at relatively low cost, the catalyst support is doped with at least one oxide of an element selected from the group consisting of Li, P, Ca, V, Cr, Mn, Fe, Sr, Nb, Ta, W, La and the rare-earth metals.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 19, 2013
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Alfred Hagemeyer, Gerhard Mestl, Peter Scheck
  • Patent number: 8580701
    Abstract: A method of making a nanoparticle catalyst composition including: a single heating of an aqueous salt solution comprising a Ce, a Zr, a rare earth dopant, and a transition metal oxide precursor to provide nanoparticles, the nanoparticles have a compositional gradient comprised of a CeZrREO2, where RE is a rare earth, and the outer portion of the nanoparticles has a Ce:Zr ratio different from the inner portion of the nanoparticles. Also disclosed is a nanoparticle-catalyst composition and articles containing the composition, as defined herein.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 12, 2013
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Steven Bolaji Ogunwumi
  • Patent number: 8574524
    Abstract: The present invention provides a porous composite oxide comprising an aggregate of secondary particles in the form of aggregates of primary particles of a composite oxide containing two or more types of metal elements, and having mesopores having a pore diameter of 2-100 nm between the secondary particles; wherein, the percentage of the mesopores between the secondary particles having a diameter of 10 nm or more is 10% or more of the total mesopore volume after firing for 5 hours at 600° C. in an oxygen atmosphere.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: November 5, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Kohei Yoshida, Akio Koyama
  • Patent number: 8568675
    Abstract: Provided are catalyst composites that can be used in methods for treating exhaust gas from internal combustion engines, including diesel and gasoline engines, systems including such catalyst composites and methods of using the catalyst composites to treat internal combustion engine exhaust. The catalyst composites may provide diesel oxidation catalysts and three-way catalysts. A catalyst composite is provided which a catalytic material on a carrier, the catalytic material including a palladium component dispersed on a first support comprising at least 60% by weight of a zirconia component, and one or more rare earth oxides selected from the group consisting of lanthana, neodymia, praseodymia, yttria, the first support optionally containing no more than 15% by weight ceria, and being free of alumina. Layered catalyst composites having one or more washcoats on the carrier are also provided.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: October 29, 2013
    Assignee: BASF Corporation
    Inventors: Michel Deeba, Tian Luo, Josephine Ramos
  • Patent number: 8569201
    Abstract: An exhaust gas purifying catalyst includes: rhodium; a zirconium-containing oxide which supports rhodium, and comprises: at least one element selected from the group consisting of calcium, lanthanum, cerium, neodymium and yttrium; and zirconium; and a NOx absorbing material comprising at least one selected from the group consisting of magnesium, barium, sodium, potassium and cesium. A degree of dispersion of rhodium is 20% or more after baking at 900° C. in air for three hours. A method for manufacturing the exhaust gas purifying catalyst includes: mixing the zirconium-containing oxide with water, thereby preparing an aqueous liquid of the zirconium-containing oxide; and supporting rhodium on the zirconium-containing oxide by mixing the aqueous liquid of the zirconium-containing oxide with an aqueous solution of a rhodium salt. A pH of a mixed liquid of the aqueous solution of the rhodium salt and the aqueous liquid of the zirconium-containing oxide is adjusted to 7 or more.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: October 29, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tetsuro Naito, Masanori Nakamura, Hironori Wakamatsu
  • Publication number: 20130281554
    Abstract: This invention relates to a catalyst for oxygenate synthesis to use for synthesizing an oxygenate from mixed gas containing hydrogen and carbon monoxide, the catalyst comprising, an (A) component: rhodium, a (B) component: manganese, a (C) component: an alkali metal, and a (Z) component: magnesium oxide.
    Type: Application
    Filed: March 5, 2013
    Publication date: October 24, 2013
    Inventors: SEKISUI CHEMICAL CO., LTD., COLORADO SCHOOL OF MINES
  • Patent number: 8557203
    Abstract: A device is described which provides thermally durable NO2 generation in conjunction with efficient heat-up performance for filter regeneration, and low temperature HC (hydrocarbon) and CO activity. Importantly, it provides both functions while minimizing PGM (platinum group metals) utilization and its associated impact on catalyst cost.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: October 15, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Owen Herman Bailey, Matthew Hedgecock, Frank-Walter Schuetze, Anke Woerz
  • Patent number: 8551908
    Abstract: An exhaust gas purification catalyst includes: a lower catalyst layer that contains a ceria-zirconia mixed oxide having 50 to 70 mass % of CeO2 and 5 mass % or more of Pr2O3 and carries at least one of Pt and Pd; and an upper catalyst layer that contains at least zirconia and carries at least Rh, wherein the total amount of CeO2 per liter of the carrier base is 15 to 30 g. Because the amount of CeO2 is small, formation of H2S is suppressed and a high capability of adsorbing and releasing oxygen is brought out in spite of the small amount of CeO2.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: October 8, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Akemi Satou, Masahiko Takeuchi, Keizo Hiraku, Yusuke Kawamura, Takahiro Fujiwara, Tadashi Suzuki, Naoki Takahashi
  • Publication number: 20130261363
    Abstract: One embodiment is a catalyst for catalytic reforming of naphtha. The catalyst can have a noble metal including one or more of platinum, palladium, rhodium, ruthenium, osmium, and iridium, an alkali or alkaline-earth metal, a lanthanide-series metal, and a support. Generally, an average bulk density of the catalyst is about 0.300 to about 1.00 gram per cubic centimeter. The catalyst has a platinum content of less than about 0.375 wt %, a tin content of about 0.1 to about 2 wt %, a potassium content of about 100 to about 600 wppm, and a cerium content of about 0.1 to about 1 wt %. The lanthanide-series metal can be distributed at a concentration of the lanthanide-series metal in a 100 micron surface layer of the catalyst less than two times a concentration of the lanthanide-series metal at a central core of the catalyst.
    Type: Application
    Filed: July 12, 2012
    Publication date: October 3, 2013
    Applicant: UOP LLC
    Inventors: Manuela Serban, Mark P. Lapinski
  • Patent number: 8546634
    Abstract: There is provided a method for production of a conjugated diene from a monoolefin having four or more carbon atoms by a fluidized bed reaction. The method for production of a conjugated diolefin includes bringing a catalyst in which an oxide is supported on a carrier into contact with a monoolefin having four or more carbon atoms in a fluidized bed reactor in which the catalyst and oxygen are present, wherein the method satisfies the following (1) to (3): (1) the catalyst contains Mo, Bi, and Fe; (2) a reaction temperature is in the range of 300 to 420° C.; and (3) an oxygen concentration in a reactor outlet gas is in the range of 0.05 to 3.0% by volume.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Hideo Midorikawa, Hiroyuki Yano, Takashi Kinoshita
  • Patent number: 8545780
    Abstract: A catalyst material including a catalyst carrier including a porous alumina support and a hindrance layer on the alumina support, the hindrance layer comprising one or more of a sulfate, carbonate, hydroxide, or oxide of barium, strontium, or calcium is described. The catalyst carrier further includes a rare earth oxide. The catalyst material can further comprise a platinum group metal. The catalyst material is useful for methods and systems of abating pollutants from automotive exhaust gas.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 1, 2013
    Assignee: BASF Corporation
    Inventors: Shau-Lin F. Chen, Gary A. Gramiccioni, Wiley Feng, Eric An, Scott Zhao
  • Publication number: 20130252808
    Abstract: To provide a catalyst, which is formed from a perovskite oxide, for thermochemical fuel production, and a method of producing fuel using thermochemical fuel production that is capable of allowing a fuel to be produced in a thermochemical manner. Provided is a catalyst for thermochemical fuel production, which is used for producing the fuel from thermal energy by using a two-step thermochemical cycle of a first temperature and a second temperature that is equal to or lower than the first temperature, wherein the catalyst is formed from a perovskite oxide having a compositional formula of AXO3±? (provided that, 0???1). Here, A represents one or more of a rare-earth element (excluding Ce), an alkaline earth metal element, and an alkali metal element, X represents one or more of a transition metal element and a metalloid element, and O represents oxygen.
    Type: Application
    Filed: August 31, 2012
    Publication date: September 26, 2013
    Inventors: Yoshihiro YAMAZAKI, Sossina M. HAILE, Chih-Kai YANG
  • Publication number: 20130253217
    Abstract: A method for producing a complex oxide catalyst containing a complex oxide represented by the formula: Mo1VaSbbNbcWdZeOn (wherein a component Z represents an element such as La, Ce, Pr, Yb, Y, Sc, Sr, and Ba; a, b, c, d, e, and n each represent an atomic ratio of an element to one Mo atom; 0.1?a?0.4, 0.1?b?0.4, 0.01?c?0.3, 0?d?0.2, and 0?e?0.1; an atomic ratio a/b is 0.85?a/b<1.0, and an atomic ratio a/c is 1.4<a/c<2.3.
    Type: Application
    Filed: December 27, 2011
    Publication date: September 26, 2013
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Yusuke Ishii, Takaaki Kato
  • Patent number: 8530371
    Abstract: A catalyst for diesel particle filter includes a platinum (Pt)-neodymium (Nd) alloy that is carried in silica, a preparation method thereof and a soot reduction device for diesel engine including the same, wherein the catalyst for diesel particle filter can maintain high catalyst activity and implement high nitrogen monoxide (NO) conversion efficiency even though it is used under the high temperature or vulcanization condition for a long time.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: September 10, 2013
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Ho-In Lee, Yeon-Su Kim, Yong-Kwon Chung, Jin Ha Lee, Jie Won Park
  • Patent number: 8524183
    Abstract: A composition is described that includes oxides of zirconium, cerium and another rare earth different from cerium, having a cerium oxide content not exceeding 50 wt % and, after calcination at 1000° C. for 6 hours, a maximal reducibility temperature not exceeding 500° C. and a specific surface of at least 45 m2/g. The composition can be prepared according to a method that includes continuously reacting a mixture that includes compounds of zirconium, cerium and another rare earth having a basic compound for a residence time not exceeding 100 milliseconds, wherein the precipitate is heated and contacted with a surfactant before calcination.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: September 3, 2013
    Assignee: Rhodia Operations
    Inventors: Simon Ifrah, Emmanuel Rohart, Julien Hernandez, Stéphane Denaire
  • Patent number: 8524630
    Abstract: A mesoporous oxide composition includes, other than oxygen, a major amount of aluminum and lesser amounts of phosphorus and at least one rare earth element. The compositions have high surface area and excellent thermal and hydrothermal stability, with a relatively narrow pore size distribution in the mesoporous range. These compositions may be prepared by a hydrothermal co-precipitation method using an organic templating agent. These mesoporous oxide compositions may be used as catalysts or as supports for catalysts, for example, in a fluid catalytic cracking process.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: September 3, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Kun Wang, Robert C. Lemon
  • Patent number: 8513155
    Abstract: An exhaust aftertreatment system for a lean-burn engine may include a lean NOX trap that comprises a catalyst material. The catalyst material may remove NOX gases from the engine-out exhaust emitted from the lean-burn engine. The catalyst material may include a NOX oxidation catalyst that comprises a perovskite compound.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: August 20, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Wei Li, Chang H Kim, Gongshin Qi
  • Publication number: 20130210618
    Abstract: A hydrogen absorbing and desorbing material formed by co-deposition of magnesium with a catalyst for the kinetic absorption and desorption of hydrogen. A hydrogen absorbing and desorbing material formed of an alloy of magnesium with a catalyst for the kinetic absorption and desorption of hydrogen in which the catalyst for the kinetic absorption and desorption of hydrogen forms a dispersed amorphous or nanocrystalline phase in the magnesium. A hydrogen absorbing and desorbing material having a catalytic surface formed by a process comprising the steps of depositing a layer of tantalum on the hydrogen absorbing and desorbing material and depositing a layer of palladium on the layer of tantalum. A hydrogen absorbing and desorbing material comprises a multilayer film having at least two layers of magnesium and at least two layers of catalyst for the kinetic absorption and desorption of hydrogen, in which the multilayer film comprises alternating layers of magnesium and catalyst.
    Type: Application
    Filed: August 18, 2011
    Publication date: August 15, 2013
    Applicant: THE GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventors: David Mitlin, Beniamin Zahiri, Mohsen Danaie, Babak Shalchi Amirkhiz, XueHai Tan, Erik Luber, Christopher Harrower, Peter Kalisvaart
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Patent number: 8507404
    Abstract: Provided are improved regenerable SOx trap formulations for on-board vehicle applications. The regenerable sulfur trap formulations reduce the rate of sulfur poisoning of a downstream nitrogen storage reduction (NSR) catalyst trap in exhaust gas cleaning systems for combustion engines by adsorbing SOx as metal sulfate under lean exhaust conditions and desorbing the accumulated SOx under rich exhaust conditions. The regenerable sulfur oxides trap catalyst compositions include a metal (M) oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof and a metal (M)-La—Zr oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof. In addition, provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul J. Polini
  • Patent number: 8506912
    Abstract: A nickel-based catalyst is provided for reducing carbon monoxide, hydrocarbon emissions, and nitrogen oxides from vehicle exhausts. The catalyst is impregnated directly onto a carrier which is non-reactive with nickel. The nickel is contained on said carrier at a loading of between about 2 to about 20 wt %. When used in a vehicle exhaust gas treatment system, the catalyst provides improved efficiency in reducing CO, HC, and NOx emissions over the use of conventional three-way-catalysts.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: August 13, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Jeffrey Scott Hepburn, Hungwen Jen, Eva Thanasiu
  • Publication number: 20130202508
    Abstract: A nickel-based catalyst is provided for reducing carbon monoxide, hydrocarbon emissions, and nitrogen oxides from vehicle exhausts. The catalyst is impregnated directly onto a carrier which is non-reactive with nickel. The nickel is contained on said carrier at a loading of between about 2 to about 20 wt %. When used in a vehicle exhaust gas treatment system, the catalyst provides improved efficiency in reducing CO, HC, and NOx emissions over the use of conventional three-way-catalysts.
    Type: Application
    Filed: February 7, 2012
    Publication date: August 8, 2013
    Inventors: Jeffrey Scott Hepburn, Hungwen Jen, Eva Thanasiu
  • Patent number: 8501132
    Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: August 6, 2013
    Assignee: Cristal USA Inc.
    Inventors: Guoyi Fu, Steven M. Augustine
  • Patent number: 8501664
    Abstract: A process for treating a carrier, or a precursor thereof, to at least partly remove impurities comprising contacting the carrier, or the precursor thereof, with a treatment solution comprising a salt; a process for preparing a catalyst; the catalyst; a process for preparing an olefin oxide by reacting an olefin with oxygen in the presence of the catalyst; and a process for preparing a 1,2-diol, a 1,2-diol ether or an alkanolamine.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: August 6, 2013
    Assignee: Shell Oil Company
    Inventors: John Robert Lockemeyer, Randall Clayton Yeates
  • Patent number: 8492603
    Abstract: A process for the dimerization of isoolefins, including: contacting an isoolefin with a solid catalyst composition passivated with at least one of an ether, an alcohol, and water; wherein the solid catalyst composition comprises at least one of a solid phosphoric acid catalyst and a resin of a macroporous matrix of polyvinyl aromatic compound crosslinked with a divinyl compound and having thereon from about 3 to 5 milli equivalents of sulfonic acid groups per gram of dry resin; and wherein at least 50% to less than 100% of acid groups in the solid catalyst composition are neutralized with a metal of Al, Fe, Zn, Cu, Ni, or mixtures thereof. The catalyst may be metalized prior to placement in a reactor or may be metalized in situ.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: July 23, 2013
    Assignee: Catalytic Distillation Technologies
    Inventors: Lawrence A. Smith, William M. Cross
  • Patent number: 8486853
    Abstract: An exhaust gas purifying catalyst (1) according to the present invention includes noble metal particles (6), a first compound (7) supporting the noble metal particles (6), and a second compound (9) disposed not in contact with the noble metal particles (6) and having an oxygen storage capacity. An average distance between the first compound (7) and the second compound (9) is between 5 nm and 300 nm.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: July 16, 2013
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kazuyuki Shiratori, Katsuo Suga, Masanori Nakamura, Hironori Wakamatsu, Hiroto Kikuchi, Tetsuro Naito, Jun Ikezawa
  • Patent number: 8486852
    Abstract: A catalyst for diesel particle filter includes a platinum (Pt)-neodymium (Nd) alloy that is carried in silica, a preparation method thereof and a soot reduction device for diesel engine including the same, wherein the catalyst for diesel particle filter can maintain high catalyst activity and implement high nitrogen monoxide (NO) conversion efficiency even though it is used under the high temperature or vulcanization condition for a long time.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: July 16, 2013
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Ho-In Lee, Yeon-Su Kim, Yong-Kwon Chung, Jin Ha Lee, Jie Won Park
  • Publication number: 20130178647
    Abstract: The invention relates to a catalyst for the reaction of formaldehyde with a carboxylic acid or ester to produce an ethylenically unsaturated carboxylic acid or ester, preferably ?, ? ethylenically unsaturated carboxylic acids or ester. The catalyst includes a metal oxide having at least two types of metal cations, M1 and M2, wherein M1 is at least one metal selected from group 3 or 4 in the 4th to 6th periods of the periodic table, group 13 in the 3rd to 5th periods of the periodic table, or the remaining elements in the lanthanide series and M2 is at least one metal selected from group 5 in the 5th or 6th periods of the periodic table or group 15 in the 4th or 5th periods of the periodic table. The production includes reacting formaldehyde with a carboxylic acid or esterin the presence of the catalyst effective to catalyse the reaction.
    Type: Application
    Filed: June 24, 2011
    Publication date: July 11, 2013
    Applicant: Lucite International UK Limited
    Inventors: David William Johnson, Sabina Ziemian
  • Publication number: 20130172178
    Abstract: A catalyst for removing nitrogen protoxide from gas mixtures which contain it, comprising mixed oxides of cobalt, manganese and rare earth metals having composition expressed as percentage by weight of CoO, MnO and transition metal oxide in the lowest state of valence as follows: MnO 38-56%, CoO 22-30%, rare earth metal oxide 22-32%.
    Type: Application
    Filed: September 6, 2011
    Publication date: July 4, 2013
    Applicant: SUD-CHEMIE CATALYSTS ITALIA S.R.L.
    Inventors: Alberto Cremona, Marvin Estenfelder, Edoardo Vogna
  • Patent number: 8475921
    Abstract: A composite material includes an aggregate which contains a first metal particle constituting a core and second metal oxide particulates surrounding the first metal particle and having an average primary particle diameter ranging from 1 to 100 nm.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: July 2, 2013
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Tomoyuki Kayama, Kouzi Banno, Kiyoshi Yamazaki, Koji Yokota
  • Publication number: 20130165728
    Abstract: Nanowires useful as heterogeneous catalysts are provided. The nanowire catalysts are useful in a variety of catalytic reactions, for example, the oxidative coupling of methane to C2 hydrocarbons. Related methods for use and manufacture of the same are also disclosed.
    Type: Application
    Filed: November 29, 2012
    Publication date: June 27, 2013
    Applicant: SILURIA TECHNOLOGIES, INC.
    Inventor: Siluria Technologies, Inc.
  • Publication number: 20130152375
    Abstract: A magnetic platinum catalyst and its application as an engine fuel enhancer. The method of making the magnetic platinum catalyst includes: the use of neodymium magnetic alloy containing 25-50% of the neutral neodymium (NdFeB) alloys, processed into a diameter of 13 mm, a length 9 mm cylinder, as a catalyst carrier. The surface of the catalyst carrier is treated with antioxidant. A platinum group metal is used as the catalyst rare earth materials to produce a catalyst acid soaking solution. The solution includes 0.01-0.2% platinum and 0.01-0.15% rhodium. The pH of the solution is adjusted to 4 using oxalic acid. After soaking in the solution, draining, and drying, the carrier is placed in a muffle furnace and baked. The catalyst is firmly attached to the surface of the carrier to form a magnetic platinum catalyst having catalyzing ability. Such catalyst is used in connection with engine fuel to enhance its operation.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventors: Shi Min Chen, Yong Sheng Chen
  • Patent number: 8465714
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 18, 2013
    Assignee: Cristal USA Inc.
    Inventor: Steven M. Augustine
  • Patent number: 8460626
    Abstract: The inventive composition, according to a first embodiment, consists essentially of a cerium oxide and a zirconium oxide in an atomic ratio Ce/Zr of at least 1. According to a second embodiment, said composition is based on cerium oxide, zirconium oxide with an atomic ratio Ce/Zr of at least 1 and at least one rare earth oxide other than cerium. After calcination at 1100° C., said composition has a specific surface of at least 9 m2/g in the second embodiment. The inventive composition can be used as a catalyst especially for the treatment of waste gases from internal combustion engines.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: June 11, 2013
    Assignee: Rhodia Electronics and Catalysis
    Inventors: Olivier Larcher, Emmanuel Rohart
  • Patent number: 8450235
    Abstract: A supported composite particle material comprises: a composite particle formed of an oxidized nickel and X (wherein X represents at least one of elements selected from the group consisting of nickel, palladium, platinum, ruthenium, gold, silver and copper); and a support on which the composite particle is supported, the supported composite particle material having a supported layer in which the composite particle is localized.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: May 28, 2013
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Ken Suzuki, Tatsuo Yamaguchi
  • Publication number: 20130115144
    Abstract: The invention generally relates to three-way catalysts and catalyst formulations capable of simultaneously converting nitrogen oxides, carbon monoxide, and hydrocarbons into less toxic compounds. Such three-way catalyst formulations contain ZrO2-based mixed-metal oxide support oxides doped with an amount of lanthanide. Three-way catalyst formulations with the support oxides of the present invention demonstrate higher catalytic activity, efficiency and longevity than comparable catalysts formulated with traditional support oxides.
    Type: Application
    Filed: August 8, 2012
    Publication date: May 9, 2013
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless
  • Patent number: 8435486
    Abstract: An improved redox material able to be used for thermochemical water splitting, and a method for producing hydrogen using this redox material are provided. The redox material for thermochemical water splitting comprises a redox metal oxide selected from the group comprising perovskite-type composite metal oxides, fluorite-type composite metal oxides and combinations thereof, and a metal oxide carrier. The redox metal oxide is carried on the metal oxide carrier in a dispersed state. The method for producing hydrogen uses the oxidation and reduction of the redox material to decompose water into hydrogen and oxygen.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 7, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinichi Takeshima
  • Patent number: 8435917
    Abstract: Ammonia oxidation catalyst units comprising a pair of honeycomb-type blocks having interplaced between them a layer of a gas permeable material performing the function of radially mixing the gas flow, said blocks comprising an ammonia oxidation catalysts, and having height of less than 15 cm and the interplaced layer height of 3 to 0.5 cm.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 7, 2013
    Assignee: Sued-Chemie Catalysts Italia S.R.L.
    Inventors: Marvin Estenfelder, Alberto Cremona