And Group Iii Metal Containing (i.e., Sc, Y, Al, Ga, In Or Tl) Patents (Class 502/332)
  • Patent number: 8246922
    Abstract: Provided are catalyst articles, emission treatment systems and methods for simultaneously remediating the carbon monoxide, nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The emission treatment system of specific embodiment effectively treats diesel engine exhaust with a single catalyst article.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: August 21, 2012
    Assignee: BASF Corporation
    Inventors: R. Samuel Boorse, Martin Dieterle
  • Patent number: 8246812
    Abstract: A catalyst is provided comprising nickel in a reduced valence state on a carrier comprising zinc oxide and alumina, wherein the Zn:Ni atomic ratio is at least 12, and the catalyst particles are prepared by: mixing zinc oxide in the form of a powder and alumina or an alumina precursor in the form of a powder; peptizing the powder mixture and forming an extrudable dough by adding acid and water to the powder mixture in such amounts that the dough contains 0.8-1.2 moles acid equivalents per kg powder; extruding the extrudable dough to form extrudates; drying and calcining the extrudates; impregnating the extrudates with an aqueous solution of a nickel compound; drying, calcining and reducing the impregnated extrudates. Further provided is a process for desulphurization of a hydrocarbonaceous feedstock using such catalyst.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: August 21, 2012
    Assignee: Shell Oil Company
    Inventor: Carolus Matthias Anna Maria Mesters
  • Patent number: 8246923
    Abstract: There is described Pd enriched diesel oxidation catalysts and their application as catalysts for the oxidation of CO and HC emissions from a compression ignition/diesel engine. The catalysts are characterized by increased performance and hydrothermal durability these goals being achieved by employing a layered design to eliminate low temperature catalyst quenching by toxic HC species in the exhaust stream.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: August 21, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Barry W. L. Southward, John G. Nunan
  • Publication number: 20120207667
    Abstract: A catalyst for steam reforming of methanol, which includes a carrier material comprising a metal oxide and deposited thereon a) indium oxide (In2O3) and at least one further metal from the group of palladium (Pd), platinum (Pt), rhodium (Rh) and iridium (Ir) and/or b) an alloy comprising indium and at least one further metal from the group of palladium (Pd), platinum (Pt), rhodium (Rh) and iridium (Ir), as catalytically active substances.
    Type: Application
    Filed: October 7, 2010
    Publication date: August 16, 2012
    Inventors: Yong Men, Ralf Zapf
  • Patent number: 8236262
    Abstract: A particulate desulfurization material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulfurization material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulfurization material may be used to desulfurize hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: August 7, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
  • Patent number: 8216963
    Abstract: A method for forming a cobalt-containing Fischer-Tropsch catalyst involves precipitating a cobalt oxy-hydroxycarbonate species by turbulent mixing, during which a basic solution collides with an acidic solution comprising cobalt. The method further involves depositing the cobalt oxy-hydroxycarbonate species onto a support material to provide a catalyst comprising cobalt and the support material. The support material comprises one or more of alumina, silica, magnesia, titania, zirconia, ceria-zirconia, and magnesium aluminate.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: July 10, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Alfred Haas
  • Patent number: 8211824
    Abstract: A catalytic metal 5 is supported on oxide particles 4, 6 in a first catalyst layer 2, and first binder particles 7 which are fine, and have oxygen ion conductivity are interposed among the oxide particles. A catalytic metal 11 is supported on oxide particles 8, 9, 12 in a second catalyst layer 3 provided on or above the first catalyst layer 2, and second binder particles 13 which are fine, and are capable of storing and releasing oxygen are interposed among the oxide particles.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 3, 2012
    Assignee: Mazda Motor Corporation
    Inventors: Masaaki Akamine, Masahiko Shigetsu
  • Patent number: 8211823
    Abstract: A selective hydrogenation catalyst, with alumina as carrier, and palladium as active component that distributed on the surface of the carrier in an egg-shell form, characterized in that: provided that the catalyst is weighed 100%, it comprises 0.2-0.5 wt % active component Pd, 2-8 wt % aids lanthanum and/or cerium, and 2-8 wt % alkaline earth metal. The specific surface area of the catalyst is 70-150 m2/g, the pore volume is 0.3-0.6 ml/g, and the crystal form of the carrier may be ? form or ?, ? mixed form mainly composed of ? form. The catalyst is suitable for the selective hydrogenation of medium or low distillate oil, especially for the first stage selective hydrogenation of pyrolysis gasoline. The catalyst has good hydrogenation performance, and can keep good hydrogenation activity and stability especially under the condition that the feed contains a small quantity of water, and the content of colloid, arsenic, and diolefin is higher.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: July 3, 2012
    Assignee: Petrochina Company Limited
    Inventors: Shunqin Liang, Limin Sun, Longgang Lv, Ying Qian, Yundi Zheng, Jie Wu, Tinghai Wang, Xiaoyan Li
  • Patent number: 8207084
    Abstract: According to at least one aspect of the present invention, a urea-resistant catalytic unit is provided. In at least one embodiment, the catalytic unit includes a catalyst having a catalyst surface, and a urea-resistant coating in contact with at least a portion of the catalyst surface, wherein the urea-resistant coating effectively reduces urea-induced deactivation of the catalyst. In at least another embodiment, the urea-resistant coating includes at least one oxide from the group consisting of titanium oxide, tungsten oxide, zirconium oxide, molybdenum oxide, aluminum oxide, silicon dioxide, sulfur oxide, niobium oxide, molybdenum oxide, yttrium oxide, nickel oxide, cobalt oxide, and combinations thereof.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: June 26, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Yisun Cheng, Yinyan Huang, Christine Kay Lambert
  • Patent number: 8202483
    Abstract: In at least part of a catalyst layer of a particulate filter, a second catalyst part is exposed on the surface of the catalyst layer to overlie a first catalyst part, the first catalyst part contains Pt-carried activated alumina particles, the second catalyst part contains ZrNd-based mixed oxide particles containing a rare earth metal M and at least one of the first catalyst part and the second catalyst part further contains CeZr-based mixed oxide particles containing a rare earth metal R.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: June 19, 2012
    Assignee: Mazda Motor Corporation
    Inventors: Koichiro Harada, Kenji Suzuki, Kenji Okamoto, Hiroshi Yamada, Akihide Tamani
  • Patent number: 8202815
    Abstract: In one embodiment, a catalyst composition comprises from about 5 weight percent to about 70 weight percent of silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal. In another embodiment, a method for processing hydrocarbons comprises hydro-treating the hydrocarbons in the presence of a catalyst composition, wherein the catalyst comprises from about 5 weight percent to about 70 weight percent silica-alumina; from about 30 weight percent to about 90 weight percent alumina; and from about 0.01 weight percent to about 2.0 weight percent of a group VIII metal.
    Type: Grant
    Filed: December 26, 2008
    Date of Patent: June 19, 2012
    Assignee: General Electric Company
    Inventors: Gregg Anthony Deluga, Daniel Lawrence Derr
  • Publication number: 20120149787
    Abstract: A method of producing an alumina-supported cobalt catalyst for use in a Fischer-Tropsch synthesis reaction, which comprises: calcining an initial ?-alumina support material at a temperature to produce a modified alumina support material; impregnating the modified alumina support material with a source of cobalt; calcining the impregnated support material, activating the catalyst with a reducing gas, steam treating the activated catalyst, and activating the steam treated catalyst with a reducing gas.
    Type: Application
    Filed: August 31, 2010
    Publication date: June 14, 2012
    Applicant: GTL.F1 AG
    Inventors: Erling Rytter, Sigrid Eri, Rune Myrstad, Odd Asbjørn Lindvåg
  • Publication number: 20120148478
    Abstract: The present invention relates to a process for the preparation of chlorine by gas phase oxidation using a supported catalyst based on ruthenium, characterised in that the catalyst support has a plurality of pores having a pore diameter>50 nm and carries nanoparticles containing ruthenium and/or ruthenium compounds as catalytically active components.
    Type: Application
    Filed: July 14, 2010
    Publication date: June 14, 2012
    Applicant: Bayer MaterialScience AG
    Inventors: Timm Schmidt, Christoph Gürtler, Jürgen Kintrup, Thomas Ernst Müller, Tim Loddenkemper, Frank Gerhartz, Walther Müller
  • Publication number: 20120142523
    Abstract: A porous composite metal oxide, including a mixture of first ultrafine particles containing alumina and second ultrafine particles containing zirconia, wherein the first ultrafine particles and the second ultrafine particles are uniformly dispersed in such a way as to satisfy a condition that standard deviations of content ratios (% by mass) of all metal elements contained in the porous composite metal oxide at 0.1% by mass or more are each 10 or less, the standard deviations being obtained by measuring content ratios of the metal elements at 100 measurement points within a minute analysis region of 20 nm square by energy dispersive X-ray spectroscopy using a scanning transmission electron microscope equipped with a spherical aberration correction function.
    Type: Application
    Filed: September 10, 2010
    Publication date: June 7, 2012
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Kimitoshi Sato, Kae Yamamura, Akira Morikawa, Akihiko Suda
  • Patent number: 8192707
    Abstract: A catalyst includes a platinum coating deposited on a silica support. The support has an average surface area between about 100 m2/g and about 120 m2/g. The platinum coating is between about 5 wt % and about 15 wt % of the catalyst. The combination of the selected surface area, silica support, and selected amount of platinum coating provides a catalytic activation temperature below 200° C. and avoids the formation of NOx.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: June 5, 2012
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventors: Timothy A. Nalette, Catherine Thibaud-Erkey
  • Patent number: 8187996
    Abstract: An object of the present invention is to provide an exhaust gas-purifying catalyst containing a composite oxide catalyst and a refractory support and being less prone to cause a decrease in its activity even when used at high temperatures in an atmosphere with high oxygen concentration. An exhaust gas-purifying catalyst includes a composite oxide catalyst containing rare-earth element, alkaline-earth element and precious metal, a part of the rare-earth element and a part of the alkaline-earth element forming composite oxide, and the composite oxide and a part of the precious metal forming solid solution, and a refractory support supporting the composite oxide catalyst and including at least one of a first composite oxide represented by a general formula AB2O4, a second composite oxide having perovskite structure represented by a general formula LMO3, and a third composite oxide having pyrochlore structure represented by a general formula X2Y2O7.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: May 29, 2012
    Assignee: Cataler Corporation
    Inventors: Satoshi Matsueda, Mareo Kimura, Keiichi Narita
  • Patent number: 8187997
    Abstract: The invention provides a catalyst composition composed of a support portion and a catalyst portion. The support portion includes an acidic mixed metal oxide including a transitional alumina and a second metal oxide. The transitional alumina can comprise delta or theta alumina, in combination with other transitional phases, or an alpha or gamma alumina. The second metal oxide has a weight percentage that is less than the weight percentage of alumina. The catalyst portion is 25 weight percent or less of the catalyst composition and is composed of nickel and rhenium. The catalyst portion includes nickel in an amount in the range of 2 to 20 weight percent, based upon total catalyst composition weight, and there is no boron in the catalyst portion.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: May 29, 2012
    Assignee: Union Carbide Chemicals & Technology LLC
    Inventors: Stephen W. King, Stefan K Mierau
  • Publication number: 20120122674
    Abstract: The present invention relates to petrochemistry and gas chemistry, and discloses a support for catalysis of exothermic processes, particularly the Fischer-Tropsch process, methanol synthesis, hydrogenation and purification of exhaust gases. The support comprises metallic aluminium in the form of a mixture of dispersed powders of flaky and spherical aluminium and the support is in the form of pellets, preferably cylinders, tablets, balls, obtained by extrusion, pelletization, tabletting, rounding or liquid molding. The catalyst prepared on the support comprises an active metal selected from the group consisting of Co, Fe, Ni, Ru, Rh, Pt, Pd, Cu and mixtures thereof.
    Type: Application
    Filed: August 3, 2010
    Publication date: May 17, 2012
    Applicant: INFRA TECHNOLOGIES LTD.
    Inventors: Vladimir Zalmanovich Mordkovich, Lilia Vadimovna Sineva, Igor Grigorievich Solomonik, Vadim Sergeevich Ermolaev, Eduard Borisovich Mitberg
  • Patent number: 8178469
    Abstract: A catalyst for purifying exhaust gas in vehicles may include a precious metal and porous structures that serve as a supporting material for the precious metal. The porous structures are comprised of a plurality of channels which are connected with each other by a plurality of bridges. The channels may have multiple entrances that allow reactants to pass through and react with the precious metal.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: May 15, 2012
    Assignee: Hyundai Motor Company
    Inventor: Hyokyung Lee
  • Patent number: 8178003
    Abstract: A hydrocarbon-reforming catalyst comprising a composite oxide having a composition represented by the following formula (I) in which Co, Ni and M are dispersed in the composite oxide and a process for producing a synthesis gas by using the catalyst are provided. aM.bCo.cNi.dMg.eCa.fO??(I) wherein a, b, c, d, e, and f are molar fractions, a+b+c+d+e=1, 0.0001<a?0.20, 0<b?0.20, 0?c?0.20, 0.001<(b+c)?0.20, 0.60?(d+e)?0.9989, 0<d<0.9989, 0<e<0.9989, f=the number necessary for element to keep charge equilibrium with oxygen. And M is at least one element among Group 3B elements and Group 6A elements in the Periodic Table. The reforming catalyst is able to maintain a high catalytic activity over a long period in reforming hydrocarbons.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: May 15, 2012
    Assignee: Japan Petroleum Exploration Co., Ltd.
    Inventors: Katutoshi Nagaoka, Yuusaku Takita, Toshiya Wakatsuki
  • Patent number: 8178735
    Abstract: A process for the treatment of an olefinic fraction, using a catalyst prepared by a process comprising: a) The preparation of a colloidal oxide suspension of a first metal M1 by the neutralization of a basic solution by an acidic mineral solution that contains the precursor of the metal M1, b) Bringing into contact the precursor of the promoter M2, either directly in its crystallized form or after dissolution in aqueous phase, with the colloidal suspension that is obtained in stage a), c) Bringing into contact the colloidal suspension that is obtained in stage b) with the substrate, d) Drying at a temperature of between 30° C. and 200° C., under a flow of air.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: May 15, 2012
    Assignee: IFP Energies nouvelles
    Inventors: Vincent Coupard, Denis Uzio, Carine Petit-Clair, Lars Fischer, Frederic Portejole
  • Patent number: 8173100
    Abstract: Catalytic system comprising at least two components: a catalyst for the hydrolysis reaction of metal borohydrides to hydrogen; and a material in solid form, the dissolution reaction of which in water is exothermic.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: May 8, 2012
    Assignee: Commisariat a l'Energie Atomique
    Inventors: Philippe Capron, Jérôme Delmas, Nathalie Giacometti, Isabelle Rougeaux
  • Patent number: 8173572
    Abstract: A sol includes metal oxide nanoparticles dispersed in an aqueous liquid, and further includes stabilizer ions. The metal oxide particles include one or more metals selected from a first group consisting of cerium, zirconium, iron, manganese and titanium, and one or more metals selected from a second group consisting of platinum, palladium, rhodium, ruthenium, iridium and osmium. The sols can be used to deposit catalytic coatings onto catalyst substrates, including substrates with narrow channels (i.e. channels with a diameter of less than 500 ?m).
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: May 8, 2012
    Assignee: Johnson Matthey PLC
    Inventor: Mark Robert Feaviour
  • Patent number: 8168561
    Abstract: A core-shell catalyst material can include a core and a shell material. Each of the core material and the shell material can have crystal structures and lattice parameters which allow for a substantially coherent core-shell interface. The shell material can include a catalytically active metal. The circumferential stress of the shell material, ???, at the core-shell interface and at the shell surface, is greater than 0 (tensile) or can be compressive of a lower magnitude than a catalyst made of the shell material alone. The crystal structures of the core material can often be the same as the shell material, although this is not always required.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: May 1, 2012
    Assignee: University of Utah Research Foundation
    Inventor: Anil V. Virkar
  • Patent number: 8163265
    Abstract: An oxidation process employing a mechanically stable catalyst of an active metal or combination of active metals supported on aluminum oxide, which is predominantly alpha-aluminum oxide, is provided. The active metal or metals is optionally one or a mixture of ruthenium, copper, gold, an alkaline earth metal, an alkali metal, palladium, platinum, osmium, iridium, silver, and rhenium. The process is applicable to the oxidation of hydrogen chloride to chlorine in a Deacon process.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: April 24, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Olga Schubert, Martin Sesing, Lothar Seidemann, Martin Karches, Thomas Grassler, Martin Sohn
  • Patent number: 8163669
    Abstract: Materials that are useful for absorption enhanced reforming (AER) of a fuel, including absorbent materials and catalyst materials and methods for using the materials. The materials can be fabricated by spray processing. The use of the materials in AER can produce a H2 product gas having a high H2 content and a low level of carbon oxides.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: April 24, 2012
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Paolina Atanassova, Jian-Ping Shen, Paul Napolitano, James Brewster
  • Publication number: 20120094826
    Abstract: An exhaust gas purifying catalyst includes: a support that contains at least one element that is selected from the first group that consists of Al, Zr and Ce, at least one element that is selected from the second group that consists of Ag, Mn, Co, Cu and Fe, and Ti; and particles that are composed of a metal or oxide of at least one element that is selected from the third group that consists of Ag, Mn, Co, Cu and Fe and that are deposited on the support. Seventy percent or more of any plurality of measurement points with a diameter of 2 nm on a surface of the support are composed of a composite part that has the at least one element selected from the second group content of 0.5 to 10 mol % and has a Ti content of 0.3 mol % or greater.
    Type: Application
    Filed: June 16, 2010
    Publication date: April 19, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiyuki Tanaka, Tsuyoshi Hamaguchi, Takanori Murasaki, Masao Watanabe, Daichi Imai
  • Patent number: 8158550
    Abstract: The invention relates to a multilayer catalyst for the partial oxidation of hydrocarbons in gaseous phase, comprising a monolithic ceramic or metallic substrate having a solid macroporous structure consisting of one or more structures, on which a first active layer with a crystal-line perovskitic structure is deposited, having general formula AxA? 1-xByB? 1-YO3±? wherein: A is a cation of at least one of the rare earth elements, A? is a cation of at least one element selected from groups Ia, IIa and VIa of the periodic table of elements, B is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb, or VIII of the periodic table of elements, B? is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb or VIII of the periodic table of elements Mg2+ or Al3+, x is a number which is such that 0?x?1, y is a number which is such that 0?y?1, and ? is a number which is such that 0???0, 5, a second more external active layer consisting of a dispersion of a noble metal and a possible s
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: April 17, 2012
    Assignee: Consiglio Nazionale Delle Ricerche
    Inventors: Stefano Cimino, Francesco Donsi, Raffaele Pirone, Gennaro Russo
  • Patent number: 8158554
    Abstract: A high heat-resistant catalyst includes: noble metal particles; first compounds which contact the noble metal particles and suppress movement of the noble metal particles; and second compounds which envelop the noble metal particles and the first compounds, suppress the movement of the noble metal particles, and suppress coagulation of the first compounds following mutual contact of the first compounds. The first compounds support the noble metal particles, and single piece or aggregate of the first compounds supporting the noble metal particles are included in a section partitioned by the second compounds. A coefficient of linear thermal expansion of the second compounds is 1.2×10?5 [K?1] or less.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: April 17, 2012
    Assignees: Nissan Motor Co., Ltd., RENAULT s.a.s.
    Inventors: Hironori Wakamatsu, Masanori Nakamura, Masahiro Takaya, Katsuo Suga, Hiroto Kikuchi, Jun Ikezawa
  • Patent number: 8153549
    Abstract: A catalyst for treating an exhaust gas has at least a carrier and plural layers formed on the carrier, wherein at least one layer of the above plural layers has an interstice in the layer, and at least one layer of the above plural layers contains a catalyst component. The above catalyst for treating an exhaust gas allows the enhancement of the diffusion of an exhaust gas in a catalyst layer, which results in the improvement of catalyst efficiency.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: April 10, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Jin Cho, Kenji Tanikawa
  • Patent number: 8143187
    Abstract: A process for preparing supported catalyst in pellet or coated monolith form is disclosed the method includes the steps of: forming a mixed metal carbonate complex having at least two metals by subjecting a first metal carbonate containing compound to ion exchange with desired metal cations; heat treating the resulting mixed metal carbonate complex to form a mixed oxide which consists of active metal oxides supported on a catalyst support; forming the resulting supported catalysts into pellets or coating the resulting supported catalyst onto a monolithic support. The catalysts may be used for treating effluents containing organic material in the presence of an oxidising agent.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: March 27, 2012
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Manh Hoang, Kingsley Opoku-Gyamfi
  • Patent number: 8143186
    Abstract: A catalyst composition comprising cobalt as an active catalytic element and a lesser amount of nickel as a promoter supported on a metal oxide support. The support may comprise alumina, silica, silica-alumina, zeolite, zirconia, magnesia or titania. The amount of nickel is preferably less than 50 wt %, relative to the amount of cobalt.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: March 27, 2012
    Assignees: Statoil ASA, Petro SA
    Inventor: Erling Rytter
  • Publication number: 20120071571
    Abstract: A catalyst suitable for the Fischer-Tropsch synthesis of hydrocarbons is described comprising cobalt nanocrystallites containing a precious metal promoter, dispersed over the surface of a porous transition alumina powder wherein the cobalt content of the catalyst is ?25% by weight, the precious metal promoter metal promoter content of the catalyst is in the range 0.05 to 0.25% by weight, and the cobalt crystallites have a average size, as determined by hydrogen chemisorption, of ?15 nm. A method for making the catalyst is also described.
    Type: Application
    Filed: October 1, 2009
    Publication date: March 22, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Hamera Abbas, Sharon Bale, Gordon James Kelly, John West
  • Publication number: 20120060418
    Abstract: A catalyst system including at least one metal and an oxide support, said oxide support including at least one of Al2O3, MnxOy, MgO, ZrO2, and La2O3, or any mixtures thereof; said catalyst being suitable for catalyzing at least one reaction under supercritical water conditions is disclosed. Additionally, a system for producing a high-pressure product gas under super-critical water conditions is provided. The system includes a pressure reactor accommodating a feed mixture of water and organic matter; a solar radiation concentrating system heating the pressure reactor and elevating the temperature and the pressure of the mixture to about the water critical temperature point and pressure point or higher. The reactor is configured and operable to enable a supercritical water process of the mixture to occur therein for conversion of the organic matter and producing a high-pressure product fuel gas.
    Type: Application
    Filed: May 20, 2010
    Publication date: March 15, 2012
    Applicants: Ramot At Tel-Aviv University Ltd., Yeda Research and Development Co. Ltd.
    Inventors: Michael Epstein, Abraham Kribus, Alexander Berman
  • Publication number: 20120065449
    Abstract: Provided are hydroisomerization catalysts for processing a bio-based feedstock into biodiesel fuels. These catalysts comprise a catalytic material and a matrix component. The catalytic material is made up of a molecular sieve that has a pre-loaded platinum group metal. The catalytic material and the matrix component are processed together to form the hydroisomerization catalyst. Methods of making these hydroisomerization catalysts include synthesizing a molecular sieve; purifying the molecular sieve; associating the molecular sieve with a platinum group metal in the absence of the matrix component to form the pre-loaded molecular sieve before formation of a catalyst body; mixing the pre-loaded molecular sieve with the matrix component to form a mixture; processing the mixture to form a catalyst body; and drying and calcining the catalyst body to form the hydroisomerization catalyst. These hydroisomerization catalysts can be used to process hydrodeoxygenated plant- or animal-derived feeds to yield a biofuel.
    Type: Application
    Filed: July 29, 2011
    Publication date: March 15, 2012
    Applicant: BASF Corporation
    Inventors: Michael A. Loewenstein, Ahmad Moini, Ivan Petrovic
  • Patent number: 8133837
    Abstract: Decreasing HC emission is made possible. An exhaust gas-purifying catalyst includes a substrate, a hydrocarbon-adsorbing layer covering the substrate, and a catalytic layer covering the hydrocarbon-adsorbing layer. The catalytic layer includes a layered structure of a first catalytic layer including a precious metal and a carrier supporting it, and a second catalytic layer including the same precious metal as the precious metal of the first catalytic layer and a carrier supporting it and having a concentration of the precious metal higher than that in the first catalytic layer.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: March 13, 2012
    Assignee: Cataler Corporation
    Inventors: Yuji Yabuzaki, Akimasa Hirai, Kenichi Taki
  • Publication number: 20120058036
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) and is prepared from one or a mixture of platinum (Pt), ruthenium (Ru), iridium (Ir), and rhodium (Rh) as an active ingredient and at least one of titanium (Ti), aluminum (Al), zirconium (Zr), and cerium (Ce) as a carrier for supporting the active ingredient. The CO shift catalyst can be used in a halogen-resistant CO shift reactor (15) that converts CO contained in gasified gas (12) generated in a gasifier (11) into CO2.
    Type: Application
    Filed: May 15, 2009
    Publication date: March 8, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Toshinobu Yasutake, Tetsuya Imai, Masanao Yonemura, Susumu Okino, Keiji Fujikawa, Shinya Tachibana
  • Publication number: 20120053045
    Abstract: A pyrochlore-type oxide represented by a general formula A2B2O7-Z is prepared by precipitate formation, where A and B each represent a metal element, where Z represents a number of at least 0 and at most 1, where A contains at least one element selected from a group consisting of Pb, Sn, and Zn, and where B contains at least one element selected from a group consisting of Ru, W, Mo, Ir, Rh, Mn, Cr, and Re. Impurities are then sufficiently removed through washing and drying processes, and the pyrochlore-type oxide is calcined under controlled conditions. This allows the crystallinity of the pyrochlore-type oxide, which contained amorphous parts immediately after the production of the precipitate, to be increased so that the resistance to acid can be improved while preventing particle aggregation.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 1, 2012
    Applicant: JX Nippon Oil & Energy Corporation
    Inventors: Yasushi Sato, Keitaro Fujii
  • Patent number: 8114354
    Abstract: Catalyzed soot filters comprising a wall flow monolith having microcracks and pores and a catalyst comprising support particles with particle sizes greater than about the size of the microcracks and less than about the size of the pores are disclosed. Methods of manufacturing catalyzed soot filters and diesel engine exhaust emission treatment systems are also disclosed.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 14, 2012
    Assignee: BASF Corporation
    Inventor: Yuejin Li
  • Publication number: 20120029254
    Abstract: The present invention relates to a process for the hydrogenation, in particular the selective hydrogenation of unsaturated hydrocarbon compounds, such as the selective hydrogenation of acetylene to ethylene, using a hydrogenation catalyst comprising an ordered intermetallic compound, namely an ordered cobalt-aluminum or iron-aluminum intermetallic compound. According to another aspect, the present invention relates to a catalyst comprising a support and at least one specific ordered cobalt-aluminum and/or iron-aluminum intermetallic compound supported thereon, as well as to the use of specific ordered intermetallic cobalt-aluminum and iron-aluminum intermetallic compounds as catalysts. The ordered cobalt-aluminum and iron-aluminum intermetallic compounds proved to be highly selective and long-term stable catalysts, e.g. in the selective hydrogenation of acetylene to ethylene in a large excess of ethylene.
    Type: Application
    Filed: March 22, 2010
    Publication date: February 2, 2012
    Applicants: MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E.V., FORSCHUNGSZENTRUM JULICH GMBH, LUDWIG-MAXIMILIANS-UNIVERSITAT MUNCHEN
    Inventors: Marc Armbruster, Kirill Kovnir, Juri Grin, Robert Schlogl, Peter Gille, Marc Heggen, Michael Feuerbacher
  • Patent number: 8105561
    Abstract: A catalyst for purification of exhaust gas in which a noble metal is supported on a metal-oxide support wherein, in a oxidation atmosphere, the noble metal exists on the surface of the support in high oxidation state, and the noble metal binds with a cation of the support via an oxygen atom on the surface of the support to form a surface oxide layer and, in a reduction atmosphere, the noble metal exists on the surface of the support in a metal state, and an amount of noble metal exposed at the surface of the support, measured by CO chemisorption, is 10% or more in atomic ratio to a whole amount of the noble metal supported on the support.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: January 31, 2012
    Assignees: Kabushiki Kaisha Toyota Chuo Kenkyusho, Toyota Jidosha Kabushiki Kaisha
    Inventors: Miho Hatanaka, Toshitaka Tanabe, Yasutaka Nagai, Toshio Yamamoto, Kazuhiko Dohmae, Nobuyuki Takagi, Masahide Miura, Yasuo Ikeda
  • Publication number: 20120021899
    Abstract: An exhaust gas purifying catalyst that contains a first oxygen storage material on which no noble metal is supported and which has a pyrochlore phase type regular array structure, and a second oxygen storage material which has a higher oxygen storage rate and a lower oxygen storage capacity than the first oxygen storage material and on which a platinum group noble metal is supported.
    Type: Application
    Filed: July 22, 2011
    Publication date: January 26, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takeshi NOBUKAWA, Oji KUNO, Akira MORIKAWA, Kae YAMAMURA, Naoki TAKAHASHI, Akihiko SUDA
  • Publication number: 20120016042
    Abstract: The present invention concerns a catalyst for carrying out hydrocarbon synthesis starting from a mixture comprising carbon monoxide and hydrogen, the active phase of which comprises at least one metal from group VIII deposited on a support formed by at least one oxide, in which said metal from group VIII is selected from the group constituted by cobalt, nickel, ruthenium or iron, and in which said catalyst has an atomic ratio (Co/Al)not ground/(CO/Al)ground, measured by X-ray photo-emission spectroscopy, in the range 1 to 12. The invention also concerns the catalyst preparation process and its use.
    Type: Application
    Filed: July 12, 2011
    Publication date: January 19, 2012
    Applicants: IFP Energies nouvelles, ENI S.p.A.
    Inventors: Sylvie Maury, Christele Legens, Loic Sorbier, Fabrice Diehl, Joseph Lopez, Lars Fischer
  • Publication number: 20120015802
    Abstract: Disclosed is a catalyst which can be used in the process for producing hydrogen by decomposing ammonia, can generate heat efficiently in the interior of a reactor without requiring excessive heating the reactor externally, and can decompose ammonia efficiently and steadily by utilizing the heat to produce hydrogen. Also disclosed is a technique for producing hydrogen by decomposing ammonia efficiently utilizing the catalyst. Specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising an ammonia-combusting catalytic component and an ammonia-decomposing catalytic component. Also specifically disclosed is a catalyst for use in the production of hydrogen, which is characterized by comprising at least one metal element selected from the group consisting of cobalt, iron, nickel and molybdenum.
    Type: Application
    Filed: March 17, 2010
    Publication date: January 19, 2012
    Inventors: Junji Okamura, Masanori Yoshimune, Masaru Kirishiki, Hideaki Tsuneki, Shinya Kitaguchi
  • Patent number: 8092716
    Abstract: Process for the preparation of a catalytic specie consisting essentially of a metallic support, which is coated with a ceramic active phase layer, mainly compound of the general formula (I): [RhxNiyMglAlm(OH)2]z+(An?z/n)kH2O,??(I) wherein An? is mainly a silicate or a polysilicate anion; 0?x?0.3; 0?y?0.9; 0?l?0.9; 0?m?0.5; 0?k?10; x+y>0; 0.5?y+l?0.9; x+y+l+m=1; and z is the total electrical charge of the cationic element or a compound of the general formula (II): [AzA?1-z][B1-x-yNixRhy]O3-???(II) wherein A and A? are different and are selected from the Lanthanide or the Actinide families or from the group IIa of the Mendeleev's periodical table of elements; B is selected from the transition metal groups of columns IIIb, IVb, Vb, VIb, VIIb, Ib and IIb and group VIIIb of the Mendeleev's periodical table of elements; 0?x?0.7, 0?y?0.5, 0?x+y?0.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 10, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Daniel Gary, Pascal Del-Gallo, Francesco Basile, Angelo Vaccari, Giuseppe Fornasari, Valentina Rosetti, Erika Scavetta, Domenica Tonelli
  • Patent number: 8093176
    Abstract: Process for the continuous production of catalysts which are useful for the production of carbon nanotubes by decomposition of gaseous carbon compounds.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: January 10, 2012
    Assignee: Bayer MaterialScience AG
    Inventors: Sigurd Buchholz, Volker Michele, Leslaw Mileczko, Christian Münnich, Reiner Rudolf, Aurel Wolf
  • Patent number: 8088706
    Abstract: A bulk metal oxide catalyst composition of the general formula (X)b(M)c(Z)d(O)e??(I) wherein X represents at least one non-noble Group VIII metal; M represents at least one non-noble Group VIb metal; Z represents one or more elements selected from aluminum, silicon, magnesium, titanium, zirconium, boron, and zinc; one of b and c is the integer 1; and d and e and the other of b and c each are a number greater than 0 such that the molar ratio of b:c is in the range of from 0.5:1 to 5:1, the molar ratio of d:c is in the range of from 0.2:1 to 50:1, and the molar ratio of e:c is in the range of from 3.7:1 to 108:1; is prepared by controlled (co)precipitation of component metal compounds, refractory oxide material, and alkali compound in protic liquid. Resulting compositions find use in hydrotreatment processes involving particularly hydrodesulphurization and hydrodenitrification.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: January 3, 2012
    Assignee: Shell Oil Company
    Inventors: Laszlo Domokos, Hermanus Jongkind, Johannes Anthonius Robert Van Veen
  • Patent number: 8084389
    Abstract: A noble metal is supported on an upstream-side catalytic portion 20 at least, and an SOx storage material, such as Mg and K that lower the noble metal's activities, is supported on a downstream-side catalytic portion 21. The noble metal being supported on the upstream-side catalytic portion 20 oxidizes SO2 efficiently to turn it into SOx, because the lowering of oxidizing activities is suppressed. These SOx are retained by means of storage in the SOx storage material being loaded on the downstream-side catalytic portion 21. Therefore, the SOx storing performance improves, and it is good in terms of durability as well.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: December 27, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshitsugu Ogura, Takayuki Endo
  • Patent number: 8084387
    Abstract: The present invention relates to a cobalt/phosphorus-alumina catalyst in which cobalt is supported as an active component on a phosphorus-alumina support wherein phosphorus is supported on alumina surface. With a bimodal pore structure of pores of relatively different pore sizes, the catalyst provides superior heat- and matter-transfer performance and excellent catalytic reactivity. Especially, when Fischer-Tropsch (F-T) reaction is performed using the catalyst, deactivation by the water produced during the F-T reaction is inhibited and, at the same time, the dispersion and reducing property of cobalt and other active component are improved. Therefore, the cobalt/phosphorus-alumina catalyst for F-T reaction in accordance with the present invention provides good carbon monoxide conversion and stable selectivity for liquid hydrocarbons.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: December 27, 2011
    Assignees: Korea Research Institute of Chemical Technology, Daelim Industrial Co., Ltd., Korea National Oil Corporation
    Inventors: Ki-won Jun, Jong-Wook Bae, Seung-Moon Kim, Yun-Jo Lee
  • Publication number: 20110312487
    Abstract: A catalyst system for generating at least one polyol from a feedstock comprising saccharide is performed in a continuous or batch manner. Generating the polyol involves, contacting, hydrogen, water, and a feedstock comprising saccharide, with a catalyst system to generate an effluent stream comprising at least one polyol and recovering the polyol from the effluent stream. The catalyst system comprises at least one unsupported component and at least one supported component.
    Type: Application
    Filed: July 28, 2011
    Publication date: December 22, 2011
    Applicant: UOP LLC
    Inventors: John Q. Chen, Tom N. Kalnes, Joseph A. Kocal