Of Palladium Or Platinum Patents (Class 502/339)
  • Patent number: 11969712
    Abstract: A catalyst for purification of exhaust gas in which Pd-based nanoparticles and ceria nanoparticles are supported on a composite metal oxide support containing alumina, ceria, and zirconia, wherein a molar ratio (Ce/Pd) of Ce and Pd supported on the support is 1 to 8, a proximity ? between Pd and Ce is 0.15 to 0.50, wherein the proximity ? is determined, based on Pd and Ce distribution maps in an element mapping image of energy dispersive X-ray analysis, by the following formula (1): ? = ? j = 0 N - 1 ? ? i = 0 M - 1 ? ( ( I ? ( i , j ) - I ave ) ? ( T ? ( i , j ) - T ave ) ) ? j = 0 N - 1 ? ? i = 0 M - 1 ? ( I ? ( i , j ) - I ave ) 2 - ? j = 0 N - 1 ? ? i = 0 M - 1 ? ( T ? ( i , j ) - T ave ) 2 , ( 1 ) a Pd dispersity after a heat-resistance test at 1050° C. for 25 hours is 0.8% or more.
    Type: Grant
    Filed: November 2, 2022
    Date of Patent: April 30, 2024
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoki Kumatani, Akira Morikawa, Masaoki Iwasaki, Miho Hatanaka, Taizo Yoshinaga, Masahide Miura, Takahiro Hayashi
  • Patent number: 11904299
    Abstract: This disclosure is directed to catalyst compositions, catalytic articles for purifying exhaust gas emissions and methods of making and using the same. In particular, the disclosure relates to a catalytic article including a catalytic material on a substrate, wherein the catalytic material has a first layer and a second layer. The first layer provides effective lean NOx trap functionality and the second layer provides effective three-way conversion of carbon monoxide, hydrocarbons, and nitrogen oxides (NOx).
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: February 20, 2024
    Assignees: BASF Corporation, Heesung Catalysts Corporation
    Inventors: Xiaolai Zheng, Patrick L Burk, Jinwoo Song, Jun Lee
  • Patent number: 11794169
    Abstract: An oxidation catalyst for treating an exhaust gas from a compression ignition engine, which oxidation catalyst comprises: a substrate; a first washcoat region comprising palladium (Pd) and a first support material comprising cerium oxide; and a second washcoat region comprising platinum (Pt) and a second support material.
    Type: Grant
    Filed: February 23, 2020
    Date of Patent: October 24, 2023
    Inventors: Andrew Francis Chiffey, Neil Robert Collins, John Benjamin Goodwin, Francois Moreau, Paul Richard Phillips
  • Patent number: 11322765
    Abstract: Methods for optimizing, designing, making, and assembling various component parts and layers to produce optimized MEAs. Optimization is generally achieved by producing multi-layered MEAs wherein characteristics such as catalyst composition and morphology, ionomer concentration, and hydrophobicity/hydophilicity are specifically tuned in each layer. The MEAs are optimized for use with a variety of catalysts including catalysts with specifically designed and controlled morphology, chemical speciation on the bulk, chemical speciation on the surface, and/or specific hydrophobic or hydrophilic or other characteristics. The catalyst can incorporate non-platinum group metal (non-PGM) and/or platinum group metal (PGM) materials.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: May 3, 2022
    Assignee: UMM Rainforest Innovations
    Inventors: Alexey Serov, Plamen B. Atanassov
  • Patent number: 11241674
    Abstract: The present invention relates to catalyst product, a method of making a catalyst and its use in fluid catalytic conversion process. In particular, this invention relates to a process for the preparation of CO-combustion promoter microspheres, comprising a large crystallite low surface area alumina; a composite binder comprising nano-crystallite alumina and dispersant; and platinum or palladium or both. The large crystallite low surface area alumina is bound together by the composite binder in the said particulate composition.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: February 8, 2022
    Assignee: Indian Oil Corporation Limited
    Inventors: Mohan Prabhu Kuvettu, Kumaresan Loganathan, Biswanath Sarkar, Balaiah Swamy, Arumugam Velayutham Karthikeyani, Alex Cheru Pulikottil, Vibhav Pandey, Sanjiv Kumar Mazumdar, Sankara Sri Venkata Ramakumar
  • Patent number: 11219892
    Abstract: High activity metal nanoparticle catalysts, such as Pd or Pt nanoparticle catalyst, are provided. Adsorption of metal precursors such as Pd or Pt precursors onto carbon based materials such as graphene followed by solventless (or low-solvent) microwave irradiation at ambient conditions results in the formation of the catalysts in which metal nanoparticles are supported on i) the surface of the carbon based materials and ii) in/on/within defects/holes in the carbon based materials.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: January 11, 2022
    Assignees: Virginia Commonwealth University, University of South Carolina
    Inventors: Stanley Eugene Gilliland, Bernard Frank Gupton, Carlos E. Castano Londono, John R. Regalbuto, John Meynard M. Tengco
  • Patent number: 11223051
    Abstract: According to an embodiment, a laminated catalyst includes a first catalyst layer mainly including a noble metal mainly containing Pt, a second catalyst layer mainly including a mixture of an oxide of a noble metal mainly containing Ir and Ru and a noble metal mainly containing Pt, and a third catalyst layer mainly including an oxide of a noble metal mainly containing Ir and Ru The first catalyst layer, the second catalyst layer, and the third catalyst layer are laminated in order.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: January 11, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yuta Kanai, Norihiro Yoshinaga, Taishi Fukazawa, Wu Mei
  • Patent number: 11213789
    Abstract: A catalyst containing a washcoat including copper or iron on a small pore molecular sieve material having a maximum ring size of eight tetrahedral atoms physically mixed with platinum and rhodium on a refractory metal oxide support including alumina, silica, zirconia, titania, and a physical mixture or a chemical combination or an atomically doped combination thereof is described. A catalyst containing a first washcoat zone substantially free of platinum group metal and including copper or iron on a small pore molecular sieve material having a maximum ring size of eight tetrahedral atoms; and a second washcoat zone including copper or iron on a small pore molecular sieve material having a maximum ring size of eight tetrahedral atoms physically mixed with platinum or platinum and rhodium on a refractory metal oxide support including alumina, silica, zirconia, titania, and a physical mixture or a chemical combination or an atomically doped combination thereof is provided.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: January 4, 2022
    Assignee: BASF Corporation
    Inventors: Marcus Hilgendorff, Karifala Dumbuya, Claudia Zabel, Susanne Stiebels
  • Patent number: 11052378
    Abstract: The present invention relates to a diesel oxidizing catalytic converter which comprises a supporting body with a length L which extends between a first end surface a and a second end surface b, and catalytically active material zones A and B of different composition which are arranged on the supporting body, wherein —material zone A comprises palladium or platinum and palladium in a weight ratio Pt:Pd of <1 and, starting from the end surface a, extends to from 20% to 80% of the length L, and —material zone B comprises platinum and palladium in a weight ratio Pt:Pd of <10 and extends to from 80% to 100% of the length L, and wherein material zone B is arranged above material zone A and the weight ratio Pt:Pd in relation to the material zones A and B is from 1.5 to 3.0.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: July 6, 2021
    Assignee: UMICORE AG & CO. KG
    Inventors: Christoph Hengst, Christoph Reith, Michael Schiffer
  • Patent number: 11040333
    Abstract: The present invention relates to a catalyst having improved selectivity and reactivity and applied to preparing olefins by dehydrogenating C9 to C13 paraffin, and particularly to a technique for preparing a catalyst, which uses a heat-treated support having controlled pores, and most of metal components contained therein are distributed evenly in a support in the form of an alloy rather than in the form of each separate metal, thereby exhibiting high a conversion rate and selectivity when used in dehydrogenation.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: June 22, 2021
    Assignee: HEESUNG CATALYSTS CORPORATION
    Inventors: Hyun-sik Han, Young-san Yoo, Ho-Dong Kim, Dong Kun Kang
  • Patent number: 10833334
    Abstract: A process for preparing a catalyst material, said catalyst material comprising a support material, a first metal and one or more second metals, wherein the first metal and the second metal(s) are alloyed and wherein the first metal is a platinum group metal and the second metal(s) is selected from the group of transition metals and tin provided the second metal(s) is different to the first metal is disclosed. The process comprises depositing a silicon oxide before or after deposition of the second metal(s), alloying the first and second metals and subsequently removing silicon oxide. A catalyst material prepared by this process is also disclosed.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: November 10, 2020
    Assignee: JOHNSON MATTHEY FUEL CELLS LIMITED
    Inventors: Alejandro Martinez Bonastre, Geoffrey Hugh Spikes, Rachel Louise O'Malley
  • Patent number: 10662849
    Abstract: The present invention is directed to a process for the production of exhaust catalysts. In particular, the process describes a way of coating a substrate in a manner which finally leads to reduced coating times.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: May 26, 2020
    Assignee: Umicore AG & Co. KG
    Inventors: Stéphane Masson, Celio Malentaque
  • Patent number: 10464052
    Abstract: Described is a process for the preparation of a catalyst. The process comprises (i) providing a substrate which is optionally coated with one or more coating layers; (ii) impregnating one or more particulate support materials with one or more platinum group elements; (iii) adding one or more alkaline earth elements and one or more solvents to the product obtained in step (ii) to obtain a slurry; (iv) adjusting the pH of the slurry obtained in step (iii) to a value ranging from 7 to 10 (v) adjusting the pH of the slurry to a value ranging from 2 to 6; (vi) optionally milling the slurry obtained in step (v); (vii) providing the slurry obtained in step (vi) onto the optionally coated substrate in one or more coating steps. Describes is as a catalyst which is obtainable according to said process and its use in the treatment of exhaust gas.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: November 5, 2019
    Assignee: BASF SE
    Inventors: Marcus Hilgendorff, Alfred H. Punke, Torsten Neubauer, Gerd Grubert
  • Patent number: 10363524
    Abstract: Oxygen is effectively removed from hydrocarbon-containing gas streams while minimizing danger of explosion by contacting the gas stream with a catalyst comprising shaped bentonite supports having an outer shell containing catalytic metals gold, and at least one of palladium platinum, rhodium, or iridium.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: July 30, 2019
    Assignee: WACKER CHEMIE AG
    Inventors: Willibald Dafinger, Marc Eckert, Guenther Rudolf
  • Patent number: 10326147
    Abstract: The present invention is to provide a catalyst for fuel cells, which is able to inhibit gas diffusion resistance and shows high IV characteristics far more than conventional fuel cell catalysts, and a method for producing the catalyst. Disclosed is a catalyst for fuel cells, comprising fine catalyst particles, each of which comprises a palladium-containing particle and an outermost layer containing platinum and covering the palladium-containing particle, and a carrier on which the fine catalyst particles are supported, wherein the catalyst for fuel cells satisfies 0.9×S1?S2 in which S1 is a BET specific surface area of a material for the carrier, and S2 is a BET specific surface area of the carrier in the catalyst for fuel cells.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: June 18, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiichi Kaneko, Takumi Taniguchi, Makoto Adachi, Mayumi Yamada
  • Patent number: 10131604
    Abstract: The present invention provides catalysts, methods, and reactor systems for converting oxygenated hydrocarbons to oxygenated compounds. The invention includes methods for producing cyclic ethers, monooxygenates, dioxygenates, ketones, aldehydes, carboxylic acids, and alcohols from oxygenated hydrocarbons, such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like, using catalysts containing Group VIII metals. The oxygenated compounds produced are useful in the production of liquid fuels, chemicals, and other products.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: November 20, 2018
    Assignee: Virent, Inc.
    Inventors: Brian Blank, Randy Cortright, Taylor Beck, Elizabeth Woods, Michael Jehring
  • Patent number: 9822053
    Abstract: Disclosed is a method of making and using a titania supported palladium catalyst for the single step synthesis of 2-ethylhexanal from a feed of n-butyraldehyde. This titania supported palladium catalyst demonstrates high n-butyraldehyde conversion but also produces 2-ethylhexanal in an appreciable yield with maintained activity between runs. This method provides a single step synthesis of 2-ethylhexanal from n-butyraldehyde with a catalyst that can be regenerated that provides cleaner downstream separations relative to the traditional caustic route.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: November 21, 2017
    Assignee: Eastman Chemical Company
    Inventors: Venkata Bharat Boppana, Kenneth Wayne Hampton, Jr., Zhufang Liu, Charles Edwan Sumner, Jr., Gerald C. Tustin, Guy Ralph Steinmetz, Melissa Page Steffey
  • Patent number: 9550176
    Abstract: This catalyst includes a lower catalytic layer 2 having catalytic ability to oxidize HC and CO and an upper catalytic layer 3 having catalytic ability to reduce NOx. The lower catalytic layer 2 contains Pt and Pd acting as catalytic metals, zeolite, a Ce-containing oxide, and activated alumina, and the upper catalytic layer 3 contains activated alumina loading an Rh-doped Ce-containing oxide and an NOx storage material.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: January 24, 2017
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Yoshiyuki Sato, Hiroshi Yamada, Koichiro Harada, Takashi Baba, Masahiko Shigetsu, Akihide Takami
  • Patent number: 9468909
    Abstract: In at least one embodiment, an oxygen reduction reaction catalyst (ORR) and a method for making the catalyst are provided. The method may include depositing a metal oxide on a graphitized carbon or graphene substrate. A platinum catalyst may then be deposited over the metal oxide to provide an ORR catalyst for use in, for example, a PEMFC. The metal oxide may be niobium oxide and may have an amorphous structure. The platinum catalyst may form a thin, electrically interconnected network structure overlaying the metal oxide. The ORR catalyst may be prepared by alternating the deposition of the metal oxide and the platinum catalyst, for example, using physical vapor deposition. The ORR catalyst may have a specific activity of at least 1,000 ?A/cm2 Pt and may approach or achieve bulk Pt activity.
    Type: Grant
    Filed: June 27, 2014
    Date of Patent: October 18, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Jun Yang, Chunchuan Xu, Patrick Pietrasz, Kerrie Gath, Benjamin Pence, Mark John Jagner, James Waldecker, Shinichi Hirano, Michael Alan Tamor
  • Patent number: 9370769
    Abstract: The present invention relates to a catalytically active material consisting of an inner core (1) and an outer shell (2) surrounding this core, the core being formed from palladium and gold fixed together on a first support oxide, and the shell comprising platinum fixed on a second support oxide, to a diesel oxidation catalyst comprising this catalytically active material, and to an exhaust gas cleaning system comprising this diesel oxidation catalyst.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: June 21, 2016
    Assignee: UMICORE AG & CO. KG
    Inventors: Frank-Walter Schuetze, Anke Woerz, Gerald Jeske
  • Patent number: 9366166
    Abstract: A catalyzed filter for filtering particulate matter from exhaust gas emitted from a positive ignition internal combustion engine comprises a ceramic porous wall-flow filter substrate having a total substrate length and having inlet channels defined in part by ceramic inlet wall surfaces and outlet channels defined in part by ceramic outlet wall surfaces, wherein the inlet surfaces are separated from the outlet surfaces by a first porous structure containing pores of a first mean pore size, wherein the porous substrate is coated in part with a catalyst washcoat composition, wherein a second porous structure of a washcoated part of the porous substrate contains pores of a second mean pore size, wherein the second mean pore size is less than the first mean pore size, which catalyst washcoat composition being disposed in a first zone comprising the inlet surfaces of a first substrate length less than the total substrate length, wherein a second zone comprising the outlet surfaces of a second substrate length cont
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: June 14, 2016
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Philip Gerald Blakeman, David Robert Greenwell
  • Patent number: 9352278
    Abstract: The invention relates to a method for preparing a substrate surface structured with thermally stable metal alloy nanoparticles, which method comprises—providing a micellar solution of amphiphilic molecules such as organic diblock or multiblock copolymers in a suitable solvent; —loading the micelles of said micellar solution with metal ions of a first metal salt; —loading the micelles of said micellar solution with metal ions of at least one second metal salt; —depositing the metal ion-loaded micellar solution onto a substrate surface to form a (polymer) film comprising an ordered array of (polymer) domains; co-reducing the metal ions contained in the deposited domains of the (polymer) film by means of a plasma treatment to form an ordered array of nanoparticles consisting of an alloy of the metals used for loading the micelles on the substrate surface.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 31, 2016
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Joachim P. Spatz, Sebastian Lechner
  • Patent number: 9347349
    Abstract: A positive ignition engine comprising an exhaust system, which comprises a catalysed filter for filtering particulate matter from exhaust gas emitted from a positive ignition internal combustion engine, which filter comprising a porous substrate having a total substrate length and having inlet surfaces and outlet surfaces, wherein the inlet surfaces are separated from the outlet surfaces by a first porous structure containing pores of a first mean pore size, wherein the porous substrate is coated with a washcoat composition which is a NOx absorber catalyst washcoat composition comprising at least one precious metal; or a selective catalytic reduction (SCR) catalyst washcoat composition, wherein a second porous structure of the washcoated porous substrate contains pores of a second mean pore size, wherein the second mean pore size is less than the first mean pore size, which NOx absorber catalyst washcoat or SCR catalyst washcoat being axially arranged on the porous substrate as a first zone comprising the inl
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: May 24, 2016
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Philip Gerald Blakeman, David Robert Greenwell
  • Patent number: 9340424
    Abstract: A catalyst structure suitable for use in an ammonia oxidation process is described including a plurality of shaped catalyst units supported on one or more members in a spaced relationship that allows the structure to flex.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: May 17, 2016
    Assignee: Johnson Matthey PLC
    Inventor: Duncan Roy Coupland
  • Patent number: 9327239
    Abstract: A catalysed filter for filtering particulate matter from exhaust gas comprising one or more catalyst poisons and emitted from a positive ignition internal combustion engine, which filter comprising a porous substrate having a total substrate length and having inlet surfaces and outlet surfaces, wherein the inlet surfaces are separated from the outlet surfaces by a porous structure containing pores of a first mean pore size, wherein the porous substrate is coated with a washcoat comprising a plurality of solid particles, wherein the porous structure of the washcoated porous substrate contains pores of a second mean pore size, wherein the second mean pore size is less than the first mean pore size, which washcoat being axially arranged on the porous substrate as a first zone comprising the inlet surfaces of a first substrate length less than the total substrate length and a second zone comprising the outlet surfaces of a second substrate length less than the total substrate length, wherein the sum of the substr
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: May 3, 2016
    Assignee: Johnson Matthey Public Limited Company
    Inventor: Christopher Gough Morgan
  • Patent number: 9272266
    Abstract: A supported palladium-gold catalyst is produced under mild conditions using a commonly available base, such as sodium hydroxide (NaOH) or sodium carbonate (Na2CO3). In this method, support materials and a base solution are mixed together and the temperature of the mixture is increased to a temperature above room temperature. Then, palladium salt and gold salt are added to the mixture while maintaining the pH of the mixture to be greater than 7.0 and keeping the mixture at a temperature above room temperature. This is followed by cooling the mixture while adding acetic acid to maintain the pH of the mixture to be within a desired pH range, filtering out the supported palladium-gold particles, washing with a pH buffer solution and calcining.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: March 1, 2016
    Assignee: WGCH Technology Limited
    Inventors: Xianghong Hao, Ramesh Sharma, Geoffrey McCool, Brian Harrison, Dietmar Wahl
  • Patent number: 9246176
    Abstract: A method for forming catalytic nanoparticles includes forming core-shell catalytic nanoparticles and processing the core-shell catalytic nanoparticles. The core-shell catalytic nanoparticles have a palladium core enclosed by a platinum shell. The core-shell catalytic nanoparticles are processed to increase the percentage of the surface area of the core-shell catalytic nanoparticles covered by the platinum shell.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: January 26, 2016
    Assignee: Audi AG
    Inventor: Minhua Shao
  • Patent number: 9222924
    Abstract: A differential kinetic test unit tests chemical reaction parameters. Reaction media is inserted into a vessel through a reactant feed conduit. A reaction outlet mechanism removes liquid and vapor reaction components from the vessel. A motor rotates a reaction shaft which extends into the reaction media within the vessel. A mixing impeller is fixed to the reaction shaft and is positioned within the reaction media. A catalyst frame positions a catalyst container holding a catalyst with the catalyst container being immersed in the reaction media. Reaction media is drawn through the catalyst and the reacted media is passed through the reaction outlet mechanism for testing of the chemical reaction parameters.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: December 29, 2015
    Assignee: E3TEC Service, LLC
    Inventor: Chandrakant B. Panchal
  • Patent number: 9099253
    Abstract: Elongated noble-metal nanoparticles and methods for their manufacture are disclosed. The method involves the formation of a plurality of elongated noble-metal nanoparticles by electrochemical deposition of the noble metal on a high surface area carbon support, such as carbon nanoparticles. Prior to electrochemical deposition, the carbon support may be functionalized by oxidation, thus making the manufacturing process simple and cost-effective. The generated elongated nanoparticles are covalently bound to the carbon support and can be used directly in electrocatalysis. The process provides elongated noble-metal nanoparticles with high catalytic activities and improved durability in combination with high catalyst utilization since the nanoparticles are deposited and covalently bound to the carbon support in their final position and will not change in forming an electrode assembly.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: August 4, 2015
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Radoslav Adzic, Stoyan Blyznakov, Miomir Vukmirovic
  • Publication number: 20150147681
    Abstract: A self-supporting porous alloyed metal material and methods for forming the same. The method utilizes a sacrificial support based technique that enables the formation of uniquely shaped voids in the material. The material is suitable for use as an electrocatalyst in a variety of fuel cell and other applications.
    Type: Application
    Filed: October 2, 2014
    Publication date: May 28, 2015
    Applicant: STC.UNM
    Inventors: Alexey Serov, Plamen B. Atanassov
  • Publication number: 20150148216
    Abstract: Spinels having a general formula of AB2O4, where A and B are a transition metal but not the same transition metal are disclosed. Spinel and spinel compositions of the application are useful in various applications and methods as further described.
    Type: Application
    Filed: September 30, 2014
    Publication date: May 28, 2015
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 9040447
    Abstract: A process for making an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, a metal precursor solution comprising at least a water-soluble molybdenum compound and a water-soluble metal zinc compound is mixed under high shear mixing conditions to generate an emulsion. The emulsion is subsequently sulfided with a sulfiding agent ex-situ, or in-situ in a heavy oil feedstock to form the slurry catalyst. The in-situ sulfidation in heavy oil is under sufficient condition for the heavy oil feedstock to generate the sulfiding source needed for the sulfidation.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 26, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 9040446
    Abstract: A method for preparing an improved slurry catalyst for the upgrade of heavy oil feedstock is provided. In one embodiment, the process comprises: sulfiding at least a metal precursor solution with at least a sulfiding agent forming a sulfided Group VIB catalyst precursor, the metal precursor solution having a pH of at least 4 and a concentration of less than 10 wt. % of Primary metal in solution; and mixing the catalyst precursor with a hydrocarbon diluent to form the slurry catalyst composition. The slurry catalyst prepared therefrom has a BET total surface area of at least 100 m2/g, a total pore volume of at least 0.5 cc/g and a polymodal pore distribution with at least 80% of pore sizes in the range of 5 to 2,000 Angstroms in diameter.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 26, 2015
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Julie Chabot, Ling Jiao, Christopher Paul Dunckley, Shuwu Yang, Erin P. Maris, Oleg Mironov, Bruce Edward Reynolds, Alexander E. Kuperman
  • Patent number: 9040449
    Abstract: Nanoparticle catalyst compositions and methods for preparation of same are described. The nanoparticle catalysts are platinum-free and are useful in effecting selective ring-opening reactions, for example in upgrading heavy oil. The catalyst may be of monometallic composition, or may comprise an alloyed or core-shell bimetallic composition. The nanoparticles are of controlled size and shape.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: May 26, 2015
    Assignee: Governors of the University of Alberta
    Inventors: Natalia Semagina, Xing Yin, Jing Shen, Kavithaa Loganathan
  • Publication number: 20150141240
    Abstract: The present disclosure provides improved films/coatings (e.g., catalyst films/coatings), and improved assemblies/methods for fabricating such films/coatings. More particularly, the present disclosure provides advantageous assemblies/methods for fabricating or synthesizing catalytic material (e.g., catalytic nanostructures) in flame and depositing the catalytic material onto substrates. The present disclosure provides improved catalytic nanostructures, and improved assemblies and methods for their manufacture. In exemplary embodiments, the present disclosure provides for methods/assemblies for synthesizing electrocatalytic nanostructures in flame and depositing such material or catalyst onto different substrates or supports. As such, the present disclosure provides advantageous assemblies that are configured and dimensioned to deposit fully dense, controlled porosity films (e.g., films of metals and oxides or core-shell particles) onto different substrates.
    Type: Application
    Filed: May 10, 2013
    Publication date: May 21, 2015
    Applicant: University of Connecticut
    Inventors: Justin Roller, Radenka Maric
  • Publication number: 20150140317
    Abstract: The present invention relates to the field of catalysts, and more specifically to nanoparticle catalysts. Materials with high porosity which contain nanoparticles can be created by various methods, such as sol-gel synthesis. The invention provides catalytic materials with very high catalytically active surface area, and methods of making and using the same. Applications include, but are not limited to, catalytic converters for treatment of automotive engine exhaust.
    Type: Application
    Filed: September 23, 2014
    Publication date: May 21, 2015
    Inventors: MAXIMILIAN A. BIBERGER, Bryant Kearl, Xiwang Qi, Qinghua Yin, David Leamon
  • Publication number: 20150141667
    Abstract: The present invention provides catalysts, methods, and reactor systems for converting oxygenated hydrocarbons to oxygenated compounds. The invention includes methods for producing cyclic ethers, monooxygenates, dioxygenates, ketones, aldehydes, carboxylic acids, and alcohols from oxygenated hydrocarbons, such as carbohydrates, sugars, sugar alcohols, sugar degradation products, and the like, using catalysts containing palladium, molybdenum, tin, and tungsten. The oxygenated compounds produced are useful in the production of liquid fuels, chemicals, and other products.
    Type: Application
    Filed: December 30, 2014
    Publication date: May 21, 2015
    Inventors: Brian Blank, Randy Cortright, Taylor Beck, Elizabeth Woods, Mike Jehring
  • Patent number: 9034269
    Abstract: The present invention relates to a diesel oxidation catalyst comprising a carrier substrate, and a first washcoat layer disposed on the substrate, the first washcoat layer comprising palladium supported on a support material comprising a metal oxide, gold supported on a support material comprising a metal oxide, and a ceria comprising compound, as well as a process for the preparation of such catalyst.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: May 19, 2015
    Assignee: BASF SE
    Inventors: Marcus Hilgendorff, Alfred H. Punke, Torsten W. Müller-Stach, Gerd Grubert, Torsten Neubauer, Jeffrey B. Hoke
  • Patent number: 9034286
    Abstract: An exhaust system for a compression ignition engine comprising an oxidation catalyst for treating carbon monoxide (CO) and hydrocarbons (HCs) in exhaust gas from the compression ignition engine, wherein the oxidation catalyst comprises: a platinum group metal (PGM) component selected from the group consisting of a platinum (Pt) component, a palladium (Pd) component and a combination thereof; an alkaline earth metal component; a support material comprising a modified alumina incorporating a heteroatom component; and a substrate, wherein the platinum group metal (PGM) component, the alkaline earth metal component and the support material are disposed on the substrate.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: May 19, 2015
    Assignee: Johnson Matthey Public Limited Company
    Inventors: David Bergeal, Andrew Francis Chiffey, John Benjamin Goodwin, Daniel Hatcher, Francois Moreau, Agnes Raj, Raj Rao Rajaram, Paul Richard Phillips, Cathal Prendergast
  • Patent number: 9029286
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: May 12, 2015
    Assignee: Massachusettes Institute of Technology
    Inventors: Brian Neltner, Angela M. Belcher
  • Publication number: 20150125369
    Abstract: The invention relates to a coated particle filter (3), in particular wall-flow filter, having a length (L). According to the invention, at least two zones (4, 5) which have different coatings are provided along the length (L). The invention also relates to a catalytic converter (2), wherein the catalytic converter (2) is formed with a coating which has a washcoat coating layer as a lower coating layer, onto which palladium is deposited. The invention finally relates to a device (1) for the purification of exhaust gases, in particular exhaust gases of diesel-engined motor vehicles, comprising a catalytic converter (2) and a coated particle filter (3) of length (L) positioned downstream of the catalytic converter (2), wherein the particle filter (3) and the catalytic converter (2) are designed in accordance with the invention.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 7, 2015
    Inventor: Bernhard Kahlert
  • Patent number: 9024090
    Abstract: A catalyst composition for converting ethanol to higher alcohols, such as butanol, is disclosed. The catalyst composition comprises at least one alkali metal, at least a second metal and a support. The second metal is selected from the group consisting of palladium, platinum, copper, nickel, and cobalt. The support is selected from the group consisting of Al2O3, ZrO2, MgO, TiO2, zeolite, ZnO, and a mixture thereof.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: May 5, 2015
    Assignee: Celanese International Corporation
    Inventors: Cheng Zhang, Kenneth Balliet, Victor J. Johnston
  • Publication number: 20150118599
    Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.
    Type: Application
    Filed: February 24, 2014
    Publication date: April 30, 2015
    Inventor: Joze Bevk
  • Patent number: 9018129
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Publication number: 20150111725
    Abstract: Novel photocatalytic devices are disclosed, that utilize ultrathin titania based photocatalytic materials formed on optical elements with high transmissivity, high reflectivity or scattering characteristics, or on high surface area or high porosity open cell materials. The disclosure includes methods to fabricate such devices, including MOCVD and ALD. The disclosure also includes photocatalytic systems that are either standalone or combined with general illumination (lighting) utility, and which may incorporate passive fluid exchange, user configurable photocatalytic optical elements, photocatalytic illumination achieved either by the general illumination light source, dedicated blue or UV light sources, or combinations thereof, and operating methodologies for combined photocatalytic and lighting systems.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Peter C. Van Buskirk, Jeffrey F. Roeder
  • Patent number: 9012350
    Abstract: The herein disclosed exhaust gas purification catalyst is an exhaust gas purification catalyst that is provided with a porous carrier 40 and palladium 50 supported on this porous carrier 40. The porous carrier 40 is provided with an alumina carrier 42 formed of alumina and with a CZ carrier 44 formed of a ceria-zirconia complex oxide. Barium is added to both the alumina carrier 42 and the CZ carrier 44. Here, an amount of barium added to the alumina carrier 42 is an amount that corresponds to 10 mass % to 15 mass % relative to a total mass of the alumina carrier 42 excluding the barium, and an amount of barium added to the CZ carrier 44 is an amount that corresponds to 5 mass % to 10 mass % relative to a total mass of the CZ carrier 44 excluding the barium.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yuki Aoki
  • Patent number: 9012353
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Patent number: 9012348
    Abstract: A composition comprising a supported hydrogenation catalyst comprising palladium and an organophosphorous compound, the supported hydrogenation catalyst being capable of selectively hydrogenating highly unsaturated hydrocarbons to unsaturated hydrocarbons. A method of making a selective hydrogenation catalyst comprising contacting a support with a palladium-containing compound to form a palladium supported composition, contacting the palladium supported composition with an organophosphorus compound to form a catalyst precursor, and reducing the catalyst precursor to form the catalyst.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 21, 2015
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Zongxuan Hong
  • Patent number: 9011809
    Abstract: An ammonia oxidation catalyst being superior in heat resistance and capable of suppressing by-production of N2O or NOx. The ammonia oxidation catalyst is made by coating at least two catalyst layers having a catalyst layer (lower layer) including a catalyst supported a noble metal on an inorganic base material including any of a composite oxide (A) having at least titania and silica as main components, alumina, and a composite oxide (B) consisting of alumina and silica; and a catalyst layer (upper layer) including a composite oxide (C) consisting of at least silica, tungsten oxide, ceria and zirconia, at the surface of an integral structure-type substrate, wherein a composition of the composite oxide (C) is silica: 20% by weight or less, tungsten oxide: 1 to 50% by weight, ceria: 1 to 60% by weight, and zirconia: 30 to 90% by weight.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 21, 2015
    Assignee: N.E. Chemcat Corporation
    Inventors: Tomoaki Ito, Toshinori Okajima, Takashi Hihara, Makoto Nagata
  • Patent number: 9012352
    Abstract: The present invention relates to a catalyst for Fischer-Tropsch synthesis which has excellent heat transfer capability. This catalyst contains (1) central core particle or particles made of a heat transfer material (HTM) selected from the group consisting of a metal, a metal oxide, a ceramic, and a mixture thereof; and (2) outer particle layer which surrounds the central core particles and is attached to the surfaces of the central core particles by a binder material layer. The outer particle layer has a support and catalyst particles in a powder form containing metal particles disposed on the support. The catalyst having such a dual particle structure shows excellent heat transfer capability and, thus, exhibits high selectivity to a target hydrocarbon. Therefore, the catalyst of the present invention is useful in a fixed-bed reactor for Fischer-Tropsch synthesis for producing hydrocarbons from synthetic gas.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: April 21, 2015
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kyoung Su Ha, Joo Young Cheon, Yun Jo Lee, Seung-Chan Baek, Geun Jae Kwak, Seon Ju Park, Ki Won Jun