And Group Iii Metal Containing (i.e., Sc, Y, Al, Ga, In Or T1) Patents (Class 502/354)
  • Patent number: 6541418
    Abstract: A new catalyst system is disclosed for the production of olefins through oxidative dehydrogenation of hydrocarbons. The catalyst system having the atomic ratios described by the empirical formula BiaNi Ob/Al2O3.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: April 1, 2003
    Assignee: Saudi Basic Industries Corporation
    Inventors: Saeed M. Al-Zahrani, Ahmed E. Abasaeed, Nimir O. Elbashir, Mazhar A. Abdulwahed
  • Patent number: 6524995
    Abstract: Catalyst systems of the Ziegler-Natta type comprise as active constituents a) a solid component comprising a compound of titanium or vanadium, a compound of magnesium, a particulate inorganic oxide as support and an internal electron donor compound, and as cocatalyst b) an aluminum compound and c) if desired, a further, external electron donor compound, wherein the particulate, inorganic oxide used has a specific surface area of from 350 to 1000 m2/g and a mean particle diameter {overscore (D)} in the range from 5 to 60 &mgr;m and comprises particles which are composed of primary particles having a mean particle diameter {overscore (d)} in the range from 1 to 10 &mgr;m and contain voids or channels between the primary particles, where the macroscopic proportion of voids or channels having a diameter of greater than 1 &mgr;m in the particles of the inorganic oxides is in the range from 5 to 30% by volume and the molar ratio of the compound of magnesium to the particulate, inorganic oxide is from 0.
    Type: Grant
    Filed: January 2, 2001
    Date of Patent: February 25, 2003
    Assignee: Basell Polypropylene GmbH
    Inventors: Wolf Spaether, Stephan Hüffer, John Lynch, Wolfgang Bidell, Joachim Rösch, Günther Schweier, Roland Hingmann, Alexandre Segul, Rainer Hemmerich, Ingo Treffkorn
  • Patent number: 6514901
    Abstract: A process for preparing a catalyst is disclosed. The catalyst is useful for the gas phase oxidation of alkanes to unsaturated aldehydes or carboxylic acids.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: February 4, 2003
    Assignee: Rohm and Haas Company
    Inventors: Manhua Lin, Michael William Linsen
  • Patent number: 6514903
    Abstract: An improved catalyst including a compound of the formula (I) AaMmNnXxOo  (I) wherein 0.25<a<0.98, 0.003<m<0.5, 0.003<n<0.5, 0.003<x<0.
    Type: Grant
    Filed: October 22, 1999
    Date of Patent: February 4, 2003
    Assignee: Rohm and Haas Company
    Inventors: Manhua Lin, Michael William Linsen
  • Publication number: 20030017702
    Abstract: A photocatalyst including a metal oxide semiconductor represented by the formula:
    Type: Application
    Filed: July 9, 2002
    Publication date: January 23, 2003
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Hironori Arakawa, Zhigang Zou, Kazuhiro Sayama
  • Patent number: 6489264
    Abstract: A catalyst for oxidation of ammonia is of the general formula (AxByO3z)k (MEmOn)f, wherein: A is a cation of Ca, Sr, Ba, Mg, Be, La or mixtures thereof, B is cations of Mn, Fe, Ni, Co, Cr, Cu, V or mixtures thereof, x=0-2, y=1-2, z=0.8-1.7; MemOn is an aluminum oxide and/or oxide of silicon zirconium, chromium, aluminosilicates, oxides of rare earth elements (REE) or mixtures thereof, m=1-3, n=1-2, k and f are % by weight, with the ratio f/k=0.01-1. The catalyst may be granules of different configuration, including blocks of honeycomb structure. The catalyst is thermally stable, resistant to thermal shocks. There is no water runoff.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: December 3, 2002
    Assignee: Institut Kataliza Imeni G.K.
    Inventors: Lubov Alexandrovna Isupova, Vladislav Alexandrovich Sadykov, Olga Ivanovna Snegurenko, Evgeny Abramovich Brushtein, Tatyana Viktorovna Telyatnikova, Valery Vasilievich Lunin
  • Patent number: 6428765
    Abstract: A new family of crystalline metal oxide compositions have been synthesized. These compositions are described by the empirical formula: AnTaMxM′yM″mOp where A is an alkali metal cation, ammonium ion and mixtures thereof, M is tungsten, molybdenum, or mixtures thereof. M′ is vanadium, antimony, tellurium, niobium and mixtures thereof, and M″ is titanium, tin, indium and gallium, aluminum, bismuth and mixtures thereof. M′ and M″ are optional metals. These compositions are characterized by having an x-ray diffraction pattern having at least one peak at a d spacing of about 3.9 Å. These materials can be used in various hydrocarbon conversion processes such as dehydrogenation.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: August 6, 2002
    Assignee: UOP LLC
    Inventors: Robert L. Bedard, Lisa M. King, Paula L. Bogdan, Susan C. Koster
  • Patent number: 6398950
    Abstract: The present invention relates to a catalyst for hydrogenation treatment in which Mo—Ni, Mo—Co or the like is supported on an alumina-type carrier, and a method for hydrogenation treatment of heavy oil using the same. More specifically, it relates to the catalyst showing a specific X-ray diffraction pattern, and a method for hydrogenation treatment of heavy oil using the same.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: June 4, 2002
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Ryuichiro Iwamoto, Takao Nozaki, Kei Uchikawa
  • Patent number: 6342191
    Abstract: This invention relates to a process for producing an enhanced adsorbent particle comprising contacting a non-amorphous, non-ceramic, crystalline, porous, calcined, aluminum oxide particle that was produced by calcining at a particle temperature of from 300° C. to 700° C., with an acid for a sufficient time to increase the adsorbent properties of the particle. A process for producing an enhanced adsorbent particle comprising contacting a non-ceramic, porous, oxide adsorbent particle with an acid for a sufficient time to increase the adsorbent properties of the particle is also disclosed. Particles made by the process of the instant invention and particle uses, such as remediation of waste streams, are also provided. The invention also relates to a method for producing an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: January 29, 2002
    Assignee: Apyron Technologies, Inc.
    Inventors: Bryan E. Kepner, Eric A. Mintz
  • Publication number: 20020009407
    Abstract: Reticulated ceramic monolithic catalysts and non-poisoning catalyst supports comprising one or more metal oxides of chromium, cobalt, nickel, an alkaline earth, a rare earth, or another sinterable metal oxide that are active in any of various chemical oxidation reactions are disclosed. Methods of making the new reticulated ceramic structures comprising impregnating an organic foam or other pore-templating material are also disclosed. Processes for the catalytic conversion of light hydrocarbons to products comprising carbon monoxide and hydrogen employing reticulated ceramic catalysts are described.
    Type: Application
    Filed: February 16, 2001
    Publication date: January 24, 2002
    Inventors: Kostantinos Kourtakis, Anne M. Gaffney, Lin Wang
  • Patent number: 6338830
    Abstract: The invention relates to a method for producing an adsorbent and/or catalyst and binder system comprising I) mixing components comprising (a) a binder comprising a colloidal metal oxide or colloidal metalloid oxide, (b) an oxide adsorbent and/or catalyst particle, and (c) an acid, (ii) removing a sufficient amount of water from the mixture to cross-link components a and b to form an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: January 15, 2002
    Assignee: Apyron Technologies, Inc.
    Inventors: Mark L. Moskovitz, Bryan E. Kepner
  • Publication number: 20010016184
    Abstract: A system for treating the exhaust of an industrial process or combustion source to capture gaseous sulfur compounds which includes contacting the exhaust containing gaseous sulfur compounds with a system of: (1) a structured support coated with for example a monolith (2) a ceramic oxide containing for example TiO2 (3) a precious metal component for example Pt and optionally (4) a modifier such as Cu. The system captures the gaseous sulfur compounds. Gaseous sulfur compounds are then driven off in higher concentrations in a separate isolated lower flow stream in higher concentrations which are easier to process to less noxious or useful sulfur materials, and the catalyst/sorber regenerated. The system also removes carbon dioxide by the oxidation of the carbon monoxide to carbon dioxide.
    Type: Application
    Filed: April 4, 2001
    Publication date: August 23, 2001
    Applicant: GOAL LINE ENVIRONMENTAL TECHNOLOGIES LLC
    Inventors: Larry E. Campbell, Gregory J. Wagner
  • Patent number: 6274532
    Abstract: A completely metallic catalyst for the oxidation of mixtures in the gaseous phase which contain carbon monoxide, hydrocarbons and/or soot, has a surface doped with a metallic element and is subjected to a second thermal treatment in an oxygen-containing atmosphere.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: August 14, 2001
    Assignee: Krupp VDM GmbH
    Inventors: Wilfried Herda, Ulrich Heubner, Jürgen Koppe, Hartmut Lausch
  • Patent number: 6255358
    Abstract: A method of conducting hydrocarbon synthesis and a highly stable cobalt on alumina catalyst therefor. The inventive method comprises the step of reacting a synthesis gas in a slurry bubble column reactor in the presence of the catalyst. The catalyst comprises a &ggr;-alumina support doped with an amount of lanthana oxide, barium oxide, or a combination thereof effective for increasing the thermal stability of the catalyst in the slurry bubble column reacting system while maintaining or increasing the activity of the catalyst.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: July 3, 2001
    Assignee: Energy International Corporation
    Inventors: Alan H. Singleton, Rachid Oukaci
  • Patent number: 6251261
    Abstract: The invention relates to a hydrocracking catalyst that comprises at least one oxide-type amorphous or poorly crystallized matrix, at least one element of group VB, preferably niobium, and at least one clay that is selected from the group that is formed by the 2:1 dioctahedral phyllosilicates and the 2:1 trioctahedral phyllosilicates, optionally at least one element that is selected from among the elements of group VIB and group VIII, optionally at least one element that is selected from the group that is formed by P, B, Si, and optionally at least one element of group VIIA. The invention also relates to the use of this catalyst in hydrocracking of feedstocks that contain hydrocarbon.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: June 26, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
  • Patent number: 6235678
    Abstract: A catalyst composition for oxidative dehydrogenation of paraffinic hydrocarbons and other compounds having at least two adjacent carbon atoms each having at least one hydrogen atom. The catalyst composition is represented by the formula AaBbSbcVdAleOx wherein A is an alkali or alkaline earth metal; B is one or more optional elements selected from zinc, cadmium, lead, nickel, cobalt, iron, chromium, bismuth, gallium, niobium, tin and neodymium; a is 0 to 0.3, b is 0 to 5, c is 0.5 to 10, d is 1, e is 3 to 10, 7≦a+b+c+d+e≦25, and x is determined by the valence requirements of the elements present. A process for the oxidative dehydrogenation of paraffins using the catalyst composition.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: May 22, 2001
    Assignee: Saudi Basic Industries Corporation
    Inventors: Edouard A. Mamedov, Shahid N. Shaikh
  • Patent number: 6231750
    Abstract: The invention provides a hydrocracking catalyst comprising at least one mineral matrix, at least one beta zeolite, at least one group VB element or at least one mixed sulphide phase comprising sulphur, optionally at least one group VIB or group VIII element, optionally at least one element selected from the group formed by silicon, boron or phosphorous, and optionally at least one group VIIA element.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: May 15, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Slavik Kasztelan, Eric Benazzi, Nathalie Marchal-George
  • Patent number: 6197719
    Abstract: A process for the activation of perovskite-type oxide by increasing its surface area and/or catalytic activity, which comprises: (i) treating perovskite-type oxide hydrothermally with liquid water with water/perovskite-type oxide ratio of above 0.1 at temperature of 50°-500° C. and period of 0.1-100 h under autogeneous pressure and drying the resulting mass or treating perovskite-type oxide hydrothermally with water vapors with or without any inert gas at space velocity of above 100 h−1, temperature of 200°-1000° C. and a period of 0.1-100 h and (ii) calcining the hydrothermally treated perovskite-type oxide in air or inert gas or under vacuum at temperature of 300°-1000° C. for a period of 0.1-100 h.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: March 6, 2001
    Assignee: Council of Scientific and Industrial Research
    Inventors: Vasant Ramchandra Choudhary, Subhabrata Banerjee
  • Patent number: 6194337
    Abstract: A catalytic cracking catalyst comprising zeolite, kaolin, alumina and/or silica, antimony and 100-5,000 wt. ppm Ni is disclosed. The Ni-antimony interact in the environment of a fluidized catalytic cracking reactor to increase the magnetic susceptibility of the catalyst, permitting removal of nickel contaminated catalyst by magnetic separation.
    Type: Grant
    Filed: October 25, 1999
    Date of Patent: February 27, 2001
    Assignee: Marathon Ashland Petroleum, LLC
    Inventors: Terry L. Goolsby, Maurice M. Mitchell
  • Patent number: 6177382
    Abstract: In a process for preparing spinel extrudates by extruding molding compositions comprising spinel powder with or without extrusion assistants, stabilizers, shrinkage reducers, pore-formers or mixtures thereof subsequent drying and calcination of the extrudates, the molding composition further comprises aluminum oxides or aluminum oxide hydrates and metal nitrates.
    Type: Grant
    Filed: March 25, 1999
    Date of Patent: January 23, 2001
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Hesse, Otto Kumberger
  • Patent number: 6177381
    Abstract: This invention relates to a layered catalyst composition, a process for preparing the composition and processes for using the composition. The catalyst composition comprises an inner core such as alpha-alumina, and an outer layer bonded to the inner core composed of an outer refractory inorganic oxide such as gamma-alumina. The outer layer has uniformly dispersed thereon a platinum group metal such as platinum and a promoter metal such as tin. The composition also contains a modifier metal such as lithium. The catalyst composition shows improved durability and selectivity for dehydrogenating hydrocarbons.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: January 23, 2001
    Assignee: UOP LLC
    Inventors: Robert H Jensen, Jeffrey C. Bricker, Qianjun Chen, Masaru Tatsushima, Kenji Kikuchi, Masao Takayama, Koji Hara, Isao Tsunokuma, Hiroyuki Serizawa
  • Patent number: 6121190
    Abstract: Catalytic composition comprising a larger quantity of Cobalt, in metal form or in the form of a derivative, and smaller quantities of Ruthenium and Tantalum, in metal form or in the form of a derivative, the above elements being dispersed on a carrier selected from the oxides of at least one of the elements selected from Si, Ti, Al, Zn, Sn, Mg.
    Type: Grant
    Filed: January 29, 1998
    Date of Patent: September 19, 2000
    Assignees: Agip Petroli S.p.A., ENI S.p.A., Institut Francais du Petrole
    Inventors: Roberto Zennaro, Andrea Gusso
  • Patent number: 6083467
    Abstract: An exhaust gas purifying catalyst in which catalytic activation particles 3 composed of a catalytic element or its compound are carried on a carrier 1. The catalytic activation particles 3, as carried on the carrier 1 and exposed to the outside of the carrier 1, are coated with the carrier 1 by 20 to 90% of their whole surface area. Also disclosed is a process for producing the exhaust gas purifying catalyst.
    Type: Grant
    Filed: February 2, 1998
    Date of Patent: July 4, 2000
    Assignees: Toyota Jidosha Kabushiki Kaisha, Katsuhiko Wakabayashi
    Inventors: Shinichi Takeshima, Toshiaki Tanaka, Tetsuya Yamashita, Satoshi Iguchi, Katsuhiko Wakabayashi, Masahiro Kishida
  • Patent number: 6075062
    Abstract: A catalyst composition containing cobalt and tantalum on an inert carrier, and having utility in Fischer-Tropsch syntheses.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: June 13, 2000
    Assignees: Agip Petroli S.p.A., Eni S.p.A., Institut Francais de Petrole
    Inventors: Roberto Zennaro, Andrea Gusso, Patrick Chaumette, Magalie Roy
  • Patent number: 6056936
    Abstract: A process is provided for the catalytic removal of sulfur compounds, such as hydrogen sulfide and sulfur dioxide, out of a gas by contacting the gas with catalyst composition containing a silicon carbide support and a catalyst component, such as a salt or elemental state of a metal, such as titanium, zirconium, yttrium, lanthanum, uranium, lead, molybdenum, iron, cobalt, copper, nickel, zinc and cadmium and an oxide of a metal, such as uranium, lead, calcium, magnesium and cadmium. The process may be conducted at a temperature above or below the dew point of sulfur.
    Type: Grant
    Filed: January 22, 1997
    Date of Patent: May 2, 2000
    Assignee: Elf Exploration Production
    Inventors: Jean Nougayrede, Andre Philippe
  • Patent number: 6017844
    Abstract: A catalyst composition and a process for using of the catalyst composition in a hydrocarbon conversion process are disclosed. The composition comprises an inorganic support, a Group VA metal or metal oxide, and optionally a Group IVA metal or metal oxide and a Group VIII metal or metal oxide. The process comprises contacting a fluid which comprises at least one saturated hydrocarbon with the catalyst composition under a condition sufficient to effect the conversion of the hydrocarbon to an olefin. Also disclosed is a process for producing the catalyst composition.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: January 25, 2000
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5948726
    Abstract: The invention relates to a method for producing an adsorbent and/or catalyst and binder system comprising I) mixing components comprising (a) a binder comprising a colloidal metal oxide or colloidal metalloid oxide, (b) an oxide adsorbent and/or catalyst particle, and (c) an acid, (ii) removing a sufficient amount of water from the mixture to cross-link components a and b to form an adsorbent and/or catalyst and binder system. The invention also relates to particles made by the process, binders, and methods for remediating contaminants in a stream.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: September 7, 1999
    Assignee: Project Earth Industries, Inc.
    Inventors: Mark L. Moskovitz, Bryan E. Kepner
  • Patent number: 5925590
    Abstract: The invention provides various solid catalysts for decomposition of exhaust gases. Catalysts include, among others, those of formula Ce.sub.0.5 La.sub.0.4 Sr.sub.0.1 Pd.sub.0.025 O.sub.3x and BiCo.sub.0.8 Cu.sub.0.2 O.sub.3x. The invention also relates to catalytic reactors for decomposition of exhaust gases utilizing solid catalysts of the invention. The invention further provides methods for synthesis of various mixed metal oxide catalysts for decomposition of exhaust gas pollutants.
    Type: Grant
    Filed: October 30, 1997
    Date of Patent: July 20, 1999
    Assignee: Eltron Research, Inc.
    Inventors: James H. White, Michael Schwartz
  • Patent number: 5905053
    Abstract: A silver catalyst for ethylene oxidation to ethylene oxide is provided containing a promoter combination consisting of an alkali metal component, a sulfur component, a fluorine component, and a pnictogen component from the group phosphorus, bismuth and antimony; the catalyst is essentially free of rhenium and transition metal components.
    Type: Grant
    Filed: September 2, 1997
    Date of Patent: May 18, 1999
    Assignee: Scientific Design Company, Inc.
    Inventors: Nabil Rizkalla, Rita Klein, Stephen Bruce Milne
  • Patent number: 5885922
    Abstract: Multimetal oxide materials containing molybdenum, vanadium, copper and one or more of the elements tungsten, niobium, tantalum, chromium and cerium and having a multiphase structure, and their use for the preparation of acrylic acid from acrolein by gas-phase catalytic oxidation, and oxometallates of the HT Cu molybdate structure type which contain Cu, Mo and at least one of the elements W, V, Nb and Ta.
    Type: Grant
    Filed: July 24, 1996
    Date of Patent: March 23, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Hartmut Hibst, Andreas Tenten, Laszlo Marosi
  • Patent number: 5877369
    Abstract: A catalyst composition and a process for using of the catalyst composition in a hydrocarbon conversion process are disclosed. The composition comprises an inorganic support, a Group VA metal or metal oxide, and optionally a Group IVA metal or metal oxide and a Group VIII metal or metal oxide. The process comprises contacting a fluid which comprises at least one saturated hydrocarbon with the catalyst composition under a condition sufficient to effect the conversion of the hydrocarbon to an olefin. Also disclosed is a process for producing the catalyst composition.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: March 2, 1999
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5866502
    Abstract: A method of preparing a V.sub.a Sb.sub.b M.sub.m N.sub.n O.sub.x catalyst useful in the ammoxidation of a C.sub.2 -C.sub.5 hydrocarbon to its corresponding .alpha., .beta. unsaturated nitrile comprising heating an aqueous mixture comprising V.sub.2 O.sub.5 and Sb.sub.2 O.sub.3 at a temperature above about 100.degree. to 250.degree. C., preferably 110.degree. to 175.degree. C., most preferably 120.degree. to 160.degree. C., under autogenous pressure with agitation to form a catalyst precursor, drying the catalyst precursor and calcining the catalyst precursor to form the finished catalyst.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: February 2, 1999
    Assignee: The Standard Oil Co.
    Inventors: Larry Michael Cirjak, Marc Anthony Pepera
  • Patent number: 5863855
    Abstract: This invention relates to a catalyst for removal of nitrogen oxides in an exhaust gas by adding ammonia to the exhaust gas and hydrogenating catalytically wherein said catalyst is in a two-layered structure comprising a lower layer which is a molded article consisting of components having denitration activity covered with an upper layer which has a abrasion resistance lower than that of the lower layer and which is a coating of particulate components having 2 peaks in its particle size distribution within the range from 0.1 to 50 .mu.m.
    Type: Grant
    Filed: July 26, 1996
    Date of Patent: January 26, 1999
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Shigeru Nojima, Kozo Iida
  • Patent number: 5851379
    Abstract: A catalytic reforming process is disclosed using a catalyst containing a Group VIII metal, low amounts of bismuth, and a zeolite L. The catalyst is a non-acidic, monofunctional reforming catalyst. Preferably, the catalyst contains one or more halogens. Preferably, the feed includes C.sub.8 hydrocarbons. The addition of small amounts of bismuth increase or substantially maintain catalyst stability. Unexpectedly low dealkylation rates are achieved using the catalyst while reforming to produce aromatics, especially to produce xylenes such as paraxylene.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: December 22, 1998
    Assignees: Chevron Chemical Company, Idemitsu Kosan Co., Ltd.
    Inventors: Robert A. Innes, Michio Sugimoto, Tetsuya Fukunaga
  • Patent number: 5821192
    Abstract: A process for preparing a catalyst having the following formula:V.sub.a Sb.sub.b M.sub.c O.sub.xwherein M=tin, titanium, lithium, sodium, potassium, molybdenum, tungsten, iron, chromium, cobalt, copper, gallium, niobium, tantalum, tellurium, bismuth, or mixtures thereof,a=0.1 to 5, preferably 0.1 to 3, most preferably 0.1 to 2b=0.1 to 5, preferably 0.1 to 3, most preferably 0.1 to 2c=0.0 to 5, preferably greater than 0 to 5, most preferably 0.01 to 3, andx is a number sufficient to satisfy the valency requirements of the elements,comprising forming an aqueous slurry comprising vanadium and antimony, adding a peptizing agent free of any lithium compounds capable of providing hydroxide ions to said slurry and spray drying said slurry to form an attrition resistant catalyst.
    Type: Grant
    Filed: September 23, 1996
    Date of Patent: October 13, 1998
    Assignee: The Standard Oil Company
    Inventors: Michael J. Seely, Maria Strada Friedrich, Dev Dhanaraj Suresh, Frank John Kocjancic
  • Patent number: 5808143
    Abstract: Catalysts of the formula I?A.sub.a B.sub.b O.sub.x !.sub.p ?C.sub.c D.sub.d Fe.sub.e Co.sub.f E.sub.i F.sub.j O.sub.y !.sub.q I,whereA is bismuth, tellurium, antimony, tin and/or copper,B is molybdenum and/or tungsten,C is an alkali metal, thallium and/or samarium,D is an alkaline earth metal, nickel, copper, cobalt, manganese, zinc, tin, cerium, chromium, cadmium, molybdenum, bismuth and/or mercury,E is phosphorus, arsenic, boron and/or antimony,F is a rare-earth metal, vanadium and/or uranium,a is from 0.01 to 8,b is from 0.1 to 30,c is from 0 to 4,d is from 0 to 20,e is from 0 to 20,f is from 0 to 20,i is from 0 to 6,j is from 0 to 15,x and y are numbers determined by the valency and frequency of the elements other than oxygen in I, and p and q are numbers whose ratio p/q is in the range from 0.001 to 0.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: September 15, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Karrer, Hans-Peter Neumann, Hans-Dieter Eichhorn, Robin Stuart Jarret
  • Patent number: 5780380
    Abstract: Semiconducting photocatalytic substance and fine oxide particles dispersed therein form a photocatalyst composition, with the photocatalyst composition having a band gap which is larger by at least 0.05 eV than the band gap of the semiconducting photocatalytic substance per se.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: July 14, 1998
    Assignee: Asahi Glass Company Ltd.
    Inventors: Eiji Endoh, Takeshi Morimoto
  • Patent number: 5753582
    Abstract: Impure gas streams containing contaminating amounts of NO.sub.x, e.g., automotive exhaust fumes and industrial waste gases, are purified by contacting same, in the presence of ammonia, at an elevated temperature, with a catalyst composition which comprises an inorganic oxide support substrate having a catalytically effective amount of a metal oxide active phase deposited thereon, such support substrate comprising at least one alumina, aluminate, titanium dioxide and/or zirconium dioxide and such catalytically active phase comprising at least one vanadium oxide and/or molybdenum oxide and/or tungsten oxide, the surface of the support substrate being chemically bonded to the metals V and/or Mo and/or W and the catalyst being devoid of V.sub.2 O.sub.3 and/or MoO.sub.3 and/or WO.sub.3 crystalline phases, and thereby selectively reducing such NO.sub.x values while minimizing the formation of N.sub.2 O.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: May 19, 1998
    Assignee: Rhone-Poulenc Chimie
    Inventors: Eric Garcin, Francis Luck, Raymond Surantyn
  • Patent number: 5747411
    Abstract: Supported catalysts which are suitable for ammonoxidation, comprisinga) a spherical or approximately spherical support material which essentially comprises aluminum oxide, silicon dioxide, titanium dioxide and/or zirconium dioxide and whose bulk density is from 0.6 to 1.2 kg/l, andb) an active material which comprises, as essential components, vanadium and antimony in oxidic form.
    Type: Grant
    Filed: August 10, 1995
    Date of Patent: May 5, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Karrer, Frank-Friedrich Pape, Ulrich Kohler, Rainer Becker, Peter Weidlich, Michael Hullmann, Heinz-Josef Kneuper
  • Patent number: 5728913
    Abstract: A method of treating hydrocarbon fuels with a base metal catalyst is provided for improving the performance of hydrocarbon fuels used internal and external combustion engines The catalyst is a base metal alloy catalyst including tin antimony, lead and mercury. The catalyst operates at ambient temperatures and atmospheric pressure and in the presence of a small but effective quantity of water. The method of treating the fuel with the catalyst may be employed at any point after refining of the fuel and prior to combustion thereof.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: March 17, 1998
    Inventor: Anthony W. Finkl
  • Patent number: 5728643
    Abstract: The present invention provides an NO.sub.x decomposition catalyst which can decompose NO.sub.x in exhaust gas to decrease the amount of NO.sub.x in exhaust gas and is improved in durability through suppression of thermal decomposition thereof, and an exhaust gas purifier wherein said catalyst is used. This NO.sub.x decomposition catalyst is a compound having a brownmillerite type structure represented by the general formula: A.sub.3-X B.sub.X C.sub.4-Y D.sub.Y O.sub.Z, the carbon content of which compound may be at most 1.25 wt. %. This NO.sub.x decomposition catalyst can be used in an exhaust gas purifier applicable to an internal combustion engine.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: March 17, 1998
    Assignee: Isuzu Ceramics Research Institute Co., Ltd.
    Inventors: Isao Naitoh, Kazuo Ohsumi
  • Patent number: 5693587
    Abstract: A method of making a promoted vanadium antimony oxide catalyst comprising reacting a monoperoxovanadium ion while in aqueous solution with the antimony compound wherein the improvement comprises adding the antimony compound to the aqueous slurry in at least two steps.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 2, 1997
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Jr., Fernando A. P. Cavalcanti, Joseph P. Padolewski
  • Patent number: 5668074
    Abstract: A material which is effective as a catalyst for isomerizing alkanes and/or cycloalkanes is prepared by a method which comprises incorporating Nb and/or Ta into a reduced material comprising Pt and/or Pd on alumina, followed by heating in a non-reducing gas and heat-treatment with at least one fluoroalkane and/or chlorofluroalkane (preferably CClF.sub.3).
    Type: Grant
    Filed: July 12, 1995
    Date of Patent: September 16, 1997
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5625118
    Abstract: A method of treating hydrocarbon fuels with a base metal catalyst is provided for improving the performance of hydrocarbon fuels used in internal and external combustion engines. The catalyst is a base metal alloy catalyst including tin, antimony, lead and mercury. The catalyst operates at ambient temperatures and atmospheric pressure. The method of treating the fuel with the catalyst may be employed at any point after refining of the fuel and prior to combustion thereof.
    Type: Grant
    Filed: July 6, 1995
    Date of Patent: April 29, 1997
    Inventor: Anthony W. Finkl
  • Patent number: 5604173
    Abstract: Particular mixed vanadium/other metal catalysts, well suited for the desulfurization of gaseous effluents containing contaminating amounts of objectionable sulfur compounds, typically via the Claus reaction and notably in the presence of oxygen, comprise a support substrate, e.g., titanium dioxide, having an active catalytic phase deposited thereon, such active catalytic phase being constituted of an electroneutral solid solution having the average composition:A.sub.4.+-.y V.sub.2.+-.x O.sub.9in which A is a metal other than vanadium, e.g., magnesium, calcium or zinc, 0.ltoreq.x.ltoreq.0.2 and 0.ltoreq.y.ltoreq.0.5.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: February 18, 1997
    Assignees: Institut De Catalyse Du Department Siberien De L'Academie Des Sciences De Russie, Vniigaz
    Inventors: Roman A. Bouyanov, Albert M. Tsyboulesky, Boris P. Zolotovsky, Dimitri P. Klevtsov, Vladimir L. Mourine
  • Patent number: 5593936
    Abstract: New hydrated niobium oxide and hydrated tantalum oxide catalysts containing pores having diameters in the range from 0.4 to 10,000 nm are characterized in that the volume of the pores of the catalyst having a diameter of from 100 to 1000 nm is at least 30% of the total pore volume of the catalyst. The catalysts can be prepared by mixing hydrated niobium oxide or hydrated tantalum oxide with an inert solid and converting this mixture into a solid pellet form, with the pressure in the apparatus for preparing catalysts in pellet form being set in such a way that the volume of the pores of the catalyst having a diameter of from 100 to 1000 nm is at least 30% of the total pore volume of the catalyst. Such catalysts are particularly suitable for preparing N-alkylanilines from anilines and alkanols.
    Type: Grant
    Filed: March 24, 1995
    Date of Patent: January 14, 1997
    Assignee: Bayer Aktiengesellschaft
    Inventors: Volker Glock, Ursula Pentling, Bernd Pennemann, Joerg-Dietrich Jentsch, Eberhard Zirngiebl, Horst Koller
  • Patent number: 5571763
    Abstract: An engine exhaust gas purifying catalyst contains, as active substances, platinum and at least one of iridium, III-B metals and IV-B metals. In particular, the catalyst contains mainly platinum and iridium and, desirably, rhodium as an additive catalyst substance.
    Type: Grant
    Filed: June 2, 1993
    Date of Patent: November 5, 1996
    Assignee: Mazda Motor Corporation
    Inventors: Takashi Takemoto, Yasuto Watanabe, Akihide Takami, Hideharu Iwakuni, Makoto Kyogoku, Kazunari Komatsu
  • Patent number: 5492873
    Abstract: The invention relates to a poison-resistant catalytically active microporous membrane to be used for heterogeneously catalyzed reactions, which membrane is characterized in that it is permeable to one of the reactants separated by said membrane, and that it is impermeable to the other reactants and the contaminants contained therein, the molecules of all of which are larger in size than the pore size of the membrane, and to a process for carrying out a heterogeneously catalyzed reaction under conditions preventing the catalyst from being poisoned. This membrane allows to conduct three-phase reactions in a new manner, whereby the reaction gas is directly transported to the active sites.
    Type: Grant
    Filed: February 4, 1994
    Date of Patent: February 20, 1996
    Assignee: Studiengesellschaft Kohle mbH
    Inventor: Wilhelm F. Maier
  • Patent number: 5472925
    Abstract: A catalyst for the production of a nitrile from an alkane, which satisfies the following conditions 1 and 2:1 the catalyst is represented by the empirical formula:Mo.sub.a V.sub.b Te.sub.c X.sub.x O.sub.n (1)wherein X is at least one element selected from the group consisting of Nb, Ta, W, Ti, Al, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ni, Pd, Pt, Sb, Bi, B and Ce,when a=1,b=0.01 to 1.0,c=0.01 to 1.0,x=0.01 to 1.0,and n is a number such that the total valency of the metal elements is satisfied; and2 the catalyst has X-ray diffraction peaks at the following angles of 2.theta. in its X-ray diffraction pattern:Diffractionangles of 2.theta. (.degree.)22.1.+-.0.328.2.+-.0.336.2.+-.0.345.2.+-.0.350.0.+-.0.3.
    Type: Grant
    Filed: February 7, 1994
    Date of Patent: December 5, 1995
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takashi Ushikubo, Kazunori Oshima, Atsushi Kayo, Tiaki Umezawa, Ken-ichi Kiyono, Itaru Sawaki, Hiroya Nakamura
  • Patent number: 5472928
    Abstract: This invention makes possible substantially continuous flow of uniformly distributed hydrogen and hydrocarbon liquid across a densely packed catalyst bed to fill substantially the entire volume of a reactor vessel by introducing the fluids as alternate annular rings of gas and liquid at a rate insufficient to levitate the catalyst bed. Catalyst are selected by density, shape and size at a design feed rate of liquids and gas to prevent ebullation of the packed bed at the design feed rates. Catalysts are selected by measuring bed expansion with hydrocarbon, hydrogen, and catalyst at the design pressures and flow velocities. The liquid and gas components of the feed flow into the bed in alternate annular rings across the full area of the bed. At the desired flow rate, such catalyst continually flows in a plug-like manner downwardly through the reactor vessel by introducing fresh catalyst at the top of the catalyst bed by laminarly flowing such catalyst in a liquid stream on a periodic or semicontinuous basis.
    Type: Grant
    Filed: April 29, 1994
    Date of Patent: December 5, 1995
    Inventors: Georgieanna L. Scheuerman, David R. Johnson, David C. Kramer