Treating With Free Oxygen Containing Gas Patents (Class 502/38)
  • Publication number: 20100105540
    Abstract: The present invention provides a process for the regeneration of a catalyst comprising at least one metal from Group VIII and at least one metal from Group VIB which are deposited on a refractory oxide support, comprising: at least one first step of heat treatment of the catalyst in the presence of oxygen and at a temperature ranging from 350° C. to 550° C.
    Type: Application
    Filed: October 5, 2009
    Publication date: April 29, 2010
    Applicant: EURECAT S.A.
    Inventors: Pauline Galliou, Eric Nagy, Pierre Dufresne
  • Patent number: 7696120
    Abstract: Disclosed is method for restoring catalytic activity to a hydroprocessing catalyst that has become spent due to its use or to the deposition of carbon thereon. The method includes a carbon reduction step whereby carbon is removed from the spent hydroprocessing catalyst in a controlled manner to within a specifically defined concentration range. Following the carbon removal step, the resulting catalyst, having a reduced concentration of carbon, is subjected to a chelation treatment whereby the resulting carbon-reduced catalyst is contacted with a chelating agent and aged for a time period necessary for realizing the benefit from the controlled carbon reduction step. In a preferred embodiment, the catalyst resulting from the chelation treatment is subjected to a sulfurization treatment involving the incorporation of elemental sulfur therein and contacting therewith an olefin.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: April 13, 2010
    Assignee: Shell Oil Company
    Inventors: Josiane Marie-Rose Ginestra, James Dallas Seamans, Kenneth Scott Lee
  • Patent number: 7687675
    Abstract: This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen N. Vaughn, Kenneth R. Clem, James H. Beech, Jr., Peter Nicholas Loezos, Richard B. Hall, Jesse Frederick Goellner
  • Publication number: 20100062925
    Abstract: A method for regenerating desulfurization sorbents that minimizes the in situ formation of one or more silicates. It has been discovered that regenerating sulfur-laden sorbent particles in a carbon oxide-rich environment unexpectedly reduces the in situ silicate formation rate, as compared to similar sorbents regenerated using conventional methods.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 11, 2010
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Robert W. Morton, Roland Schmidt, Glenn W. Dodwell, Gregory C. Allred
  • Patent number: 7666376
    Abstract: The invention relates to a device for the, (in particular continuous), oxidation of particulates from the exhaust gases of diesel motors. Said device consists of an open-pored body as a particle filter, on whose surface an oxidation catalyst is finely dispersed. The device is characterized in that from an exhaust gas temperature as low as 150° C., the catalyst causes the oxidation of particulates attached to the filter using the residual oxygen of the exhaust gas, thus keeping the filter body continuously free of particulates during almost all the operating conditions of the motor.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: February 23, 2010
    Assignee: Forschungszentrum Julich
    Inventors: Jürgen Dornseiffer, Helmut Hackfort, Edgar Hünnekes
  • Patent number: 7655589
    Abstract: Disclosed is an improved regeneration process and system for the regeneration of a spent FCC catalyst in a regenerator without vertical partitions by introducing different fluidization gas streams to different regions of a dense phase catalyst zone at the lower end of the regenerator such as a high velocity central region and a low velocity annular zone are formed, positioned below a common dilute catalyst phase.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: February 2, 2010
    Assignee: Shell Oil Company
    Inventors: Ye Mon Chen, David Jon Brosten, Benjamin Karl Bussey
  • Patent number: 7629287
    Abstract: A method of reclaiming a titanosilicate from a deactivated or spent oxidation catalyst containing a titanosilicate having deposited thereon one or more catalytic metals, such as gold, and optionally, one or more promoter metals, the method involving treating the deactivated catalyst with an oxidant; contacting the oxidant-treated catalyst with acid, preferably aqua regia; washing the titanosilicate to remove residual acid; and optionally drying and/or calcining. A method of reconstituting an active oxidation catalyst from a spent or deactivated oxidation catalyst, the method involving reclaiming the titanosilicate as noted above, and then depositing one or more catalytic metals and, optionally, one or more promoter metals onto the reclaimed titanosilicate.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: December 8, 2009
    Assignee: Dow Global Technologies, Inc.
    Inventors: Susan J. Siler, Joseph D. Henry, David L. Trent, Larry N. Ito, David G. Barton
  • Patent number: 7625482
    Abstract: Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: December 1, 2009
    Assignee: nGimat Co.
    Inventors: Andrew T. Hunt, Richard C. Breitkopf
  • Patent number: 7619128
    Abstract: This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 17, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen Neil Vaughn, Kenneth R. Clem, James H. Beech, Jr., Pete N. Loezos
  • Patent number: 7612007
    Abstract: A process for regenerating a catalyst consisting of a mixed oxide having molybdenum, bismuth and iron used for preparing an unsaturated aldehyde and/or an unsaturated carboxylic acid by catalytically oxidizing propylene, isobutylene and/or tert.-butanol with molecular oxygen in a gas phase, in which the catalyst is regenerated by thermally treating the deteriorated catalyst in an atmosphere of a gas containing molecular oxygen at a temperature of 200 to 500° C., and then thermally treating the catalyst in the presence of a reducing compound at a temperature of 200 to 500° C.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: November 3, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Naoki Miura, Koichi Nagai, Noriaki Suyasu
  • Patent number: 7604784
    Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: October 20, 2009
    Assignee: Metals Recovery Technology Inc.
    Inventor: Joseph L. Thomas
  • Publication number: 20090253949
    Abstract: This invention relates to a process for pretreating a zeolite catalyst, specifically a zeolite which has been modified with phosphorus. The catalyst may be used in a process for alkylation of aromatics, specifically toluene methylation. The pretreatment is first to contact the catalyst with the process reactants used in a process for alkylation of aromatics for at least two hours at conditions to produce an alkylated aromatic product and then with a gaseous stream containing oxygen at a temperature and for a time until there is no oxygen consumption. The zeolite may be a MFI zeolite. This pretreatment procedure for a phosphorus-modified zeolite catalyst produces a catalyst which has increased run time, i.e., decreased deactivation rate, compared to a fresh catalyst, even after successive regenerations.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 8, 2009
    Inventors: Ashim Kumar Ghosh, Mohammad Shafiei, Manuel Castelan, Pamela Harvey, Neeta Kulkarni
  • Patent number: 7598197
    Abstract: This invention provides processes, systems and devices for cooling catalyst, preferably regenerated catalyst, by superheating steam and boiling water. The inventive process advantageously provides ideal cooling conditions while ensuring minimal hydrothermal deactivation of the catalyst during the cooling process. The invention is particularly well-suited for cooling catalyst in an oxygenate to olefins reaction system.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: October 6, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Christopher L. Becker, James H. Beech, Jr.
  • Patent number: 7585803
    Abstract: A method of operating a continuous system for a catalyst regeneration process wherein the regeneration section includes a combustion zone, at least one oxygen boost zone, a halogenation zone and a drying zone in serial progression.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: September 8, 2009
    Assignee: UOP LLC
    Inventors: Scott J. Price, Paul R. Cottrell
  • Publication number: 20090192341
    Abstract: This invention relates to efficiently regenerating catalyst particles by minimizing the formation of localized “hot spots” and “cold spots” in a regeneration zone. Specifically this invention relates to a method for controlling regenerator temperature in an oxygenates-to-olefins system, comprising the steps of: contacting an oxygenate feed in a reactor with a catalytically effective amount of molecular sieve-containing catalyst under conditions effective for converting said oxygenate to a product containing light olefins and forming a coked catalyst; contacting a portion of the coked catalyst in a regenerator, having a catalyst bed height (Hc), an inlet height (Hi), and an outlet height (Ho), with an oxygen-containing regeneration medium under conditions effective to at least partially regenerate the coked catalyst; and conducting a portion of the catalyst from the regenerator to a catalyst cooler to form a cooled catalyst portion, wherein Ho is greater than Hi.
    Type: Application
    Filed: March 31, 2008
    Publication date: July 30, 2009
    Inventors: James H. Beech, JR., Chunshe Cao, Michael P. Nicoletti, James R. Lattner, Jesse F. Goellner, Rutton D. Patel, Timothy M. Healy
  • Publication number: 20090156871
    Abstract: A method of preparing a catalyst comprising selecting a zeolite having a mean particle size of equal to or less than about 6 microns, blending the zeolite with a binder and water to form a paste, shaping the paste into a bound zeolite support, adding a metal to the bound zeolite support to form a metalized catalyst support, and adding at least one halide to the metalized catalyst support to form the catalyst. A catalytic reforming process for converting hydrocarbons to aromatics comprising: contacting a catalyst comprising a silica bound zeolite, a Group VIII metal supported thereby, and at least one halide with a hydrocarbon feed in a reaction zone under reforming conditions and recovering aromatics from the reaction zone, wherein the silica bound zeolite comprises a zeolite having a mean particle size of equal to or less than about 6 microns and a median particle size of equal to or less than about 5 microns.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventor: Gyanesh P. Khare
  • Patent number: 7538059
    Abstract: A mixed metal oxide, which may be an orthorhombic phase material, is regenerated, selectively enriched or selectively poisoned as a catalyst to reduce catalyst aging for the production of unsaturated carboxylic acids, or unsaturated nitrites, from alkanes, or mixtures of alkanes and alkenes, by contacting said mixed metal oxide with a an oxidizing gas such as oxygen, air, steam and combinations thereof is permitted to flow through the catalyst in a regenerator at a temperature of from 300° C. to 600° C. to form said regenerated catalyst.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: May 26, 2009
    Assignee: Rohm and Haas Company
    Inventors: Fernando Antonio Pessoa Cavalcanti, Scott Han, Peter David Klugherz, Andrew Michael Lemonds, Daniel J. Martenak, Elsie Mae Vickery, Donald Lee Zolotorofe
  • Patent number: 7524786
    Abstract: The present invention relates to a process for the preparation of synthesis gas (i.e., a mixture of carbon monoxide and hydrogen), typically labeled syngas. More particularly, the present invention relates to a regeneration method for a syngas catalyst. Still more particularly, the present invention relates to the regeneration of syngas catalysts using a re-dispersion technique. One embodiment of the re-dispersion technique involves the treatment of a deactivated syngas catalyst with a re-dispersing gas, preferably a carbon monoxide-containing gas such as syngas. If necessary, the catalyst is then exposed to hydrogen for reduction and further re-dispersion.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: April 28, 2009
    Assignee: ConocoPhillips Company
    Inventors: Daxiang Wang, Baili Hu, Yaming Jin, Harold A. Wright
  • Patent number: 7517500
    Abstract: A process and apparatus are disclosed contacting hydrocarbon feed with catalyst in a reactor vessel under conditions more vigorous than bubbling bed conditions and preferably fast fluidized flow conditions. The vigorous conditions assure thorough mixing of catalyst and feed to suppress formation of dry gas and the promotion of hydrogen transfer reactions.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: April 14, 2009
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 7497942
    Abstract: In the regeneration of a cracking catalyst in a regeneration zone operated in a partial combustion mode, NH3 and HCN in the regenerator flue gas are reduced by incorporating into the regenerator precious metals such as ruthenium, rhodium, iridium, or mixtures thereof.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: March 3, 2009
    Assignee: BASF Catalysts, LLC
    Inventor: Mingting Xu
  • Publication number: 20090047198
    Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
    Type: Application
    Filed: June 24, 2005
    Publication date: February 19, 2009
    Inventor: Joseph L. Thomas
  • Publication number: 20090023822
    Abstract: A system and process to activate, regenerate and use a Fischer-Tropsch catalyst at Fisher-Tropsch vessel reaction temperatures from about 100° C. to about 300° C.
    Type: Application
    Filed: July 19, 2007
    Publication date: January 22, 2009
    Inventor: Peter J. Tijm
  • Patent number: 7470644
    Abstract: The invention pertains to a process for combusting coke of a coke-containing FCC catalyst in a regeneration unit of a FCC unit having the introduction of oxygen-containing gas through a gas-transport unit into the regeneration unit and combusting the coke by means of an oxygen-containing gas, in which the oxygen-containing gas is cooled in a cooling unit before it is brought in contact with the coke-containing FCC catalyst. The invention further relates to an apparatus for performing said process.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: December 30, 2008
    Assignee: Shell Oil Company
    Inventors: Jacobus Mathias Hendrikus Dirkx, Richard Joseph Higgins, Rene Samson
  • Patent number: 7459595
    Abstract: This invention provides processes for transporting catalyst, preferably in an oxygenate to olefins reaction system. In one embodiment, an oxygenate contacts molecular sieve catalyst particles in a reactor under conditions effective to form an effluent stream comprising light olefins and forming coked catalyst particles. At least a portion of the coked catalyst particles are transported from the reactor or a device associated therewith to a catalyst regenerator through a conduit in a fluidized manner with a fluidizing medium comprising air and steam. At least a portion of the coked catalyst particles are regenerated in the catalyst regenerator to form regenerated catalyst particles, which are ultimately directed back to the reactor.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: December 2, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Jr., James R. Lattner, Richard E. Walter
  • Patent number: 7452838
    Abstract: This invention relates to efficiently regenerating catalyst particles by minimizing the formation of localized “hot spots” and “cold spots” in a regeneration zone. In one embodiment, the invention includes mixing spent catalyst from a reactor and cold catalyst from a catalyst cooler in a mixing zone and directing the mixed catalyst to the regeneration zone in a fluidized manner with a fluidizing medium. In the regeneration zone, the mixed catalyst contacts an oxygen-containing regeneration medium under conditions effective to regenerate the spent catalyst contained therein.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: November 18, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Brian A. Cunningham, Todd R. Steffens, James H. Beech, Jr., Richard E. Walter
  • Patent number: 7423191
    Abstract: A method of converting oxygenate-containing feedstock to light olefins comprises charging a reactor with catalyst, feeding the feedstock into the reactor, contacting the feedstock with the catalyst and converting the feedstock to olefins while depositing byproducts on catalyst resulting in spent catalyst, regenerating the spent catalyst by combustion gases, and stripping the regenerated catalyst of gases entrained in the regenerating step. The stripping step is accomplished using nitrogen gas to strip the entrained gases from the regenerate catalyst. In one embodiment, regenerated catalyst is passed through a regenerated catalyst stripper before it is returned to the reactor.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 9, 2008
    Assignee: UOP LLC
    Inventors: John J. Senetar, Richard A. Johnson, II
  • Publication number: 20080214384
    Abstract: A process for regenerating a catalyst used in the preparation of acrolein from glycerol, which comprises tungsten compounds and has acidic properties and at least one promoter.
    Type: Application
    Filed: January 22, 2008
    Publication date: September 4, 2008
    Inventors: Hubert Redlingshofer, Christoph Weckbecker, Klaus Huthmacher, Andreas Dorflein
  • Patent number: 7419929
    Abstract: A process for the production of ethylbenzene by the ethylation of benzene in the critical phase over a molecular sieve aromatic alkylation catalyst comprising cerium-promoted zeolite beta. An aromatic feedstock having a benzene content of at least 90 wt. % is supplied into a reaction zone and into contact with the cerium-promoted zeolite beta having a silica/alumina mole ratio within the range of 50-150 and a cerium-aluminum ratio of 0.5-1.5. Ethylene is supplied to the alkylation reaction zone in an amount to provide a benzene/ethylene mole ratio of 1-15. The reaction zone is operated at temperature and pressure conditions in which benzene is in the super critical phase to cause ethylation of the benzene in the presence of the cerium zeolite beta alkylation catalyst. An alkylation product is produced containing ethylbenzene as a primary product with the attendant production of heavier alkylated by-products of no more than 60 wt. % of the ethylbenzene.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: September 2, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Kevin P Kelly, James R. Butler
  • Publication number: 20080190852
    Abstract: Finely divided ferrous carbonate absorbent, siderite granules or absorbent particles made by mixing, agglomerating and shaping finely powdered ferrous carbonate, preferably siderite, in combination with minor effective amounts of water or an optional binder, followed by drying, are used to treat and significantly reduce concentrations of hydrogen sulfide, carbonyl sulfide, organic disulfides, mercaptans and other sulfurous compounds and contaminants in gaseous and liquid fluid streams such as natural gas, light hydrocarbon streams, crude oil, acid gas mixtures, carbon dioxide gas and liquid streams, anaerobic gas, landfill gas, geothermal gases and liquids, and the like. Methods for absorbing sulfur compounds in a moist atmospheric environment and for regenerating the absorbent by contacting it with air and steam or, continuously, by mixing the feed stream with moist air are also disclosed.
    Type: Application
    Filed: September 15, 2006
    Publication date: August 14, 2008
    Inventor: Floyd Farha
  • Patent number: 7405174
    Abstract: A process for regeneration of a catalyst that comprises at least one EUO-structural-type zeolite in acid form and at least one hydro-dehydrogenating metal, used in a process for isomerization of a hydrocarbon feedstock that comprises aromatic compounds with eight carbon atoms, comprising at least a) a stage for eliminating a majority of the coke, deposited on said catalyst, by combustion in the presence of a gas that contains oxygen at a temperature that is less than or equal to 600° C., and b) a stage for oxychlorination of the product that is obtained from stage a), carried out between 200 and 550° C. in the presence of at least one gas mixture that contains at least oxygen, water and chlorine and/or at least one chlorinated compound, is described.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: July 29, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Sylvie Lacombe, Julia Magne-Drisch, Eric Sanchez
  • Publication number: 20080159930
    Abstract: In one exemplary embodiment, a process for regenerating a hydrocarbon conversion catalyst for a hydrocarbon conversion zone can generally include passing the hydrocarbon conversion catalyst through, sequentially, a catalyst-disengaging zone having a first atmosphere, an adsorption zone having a second atmosphere, and a regeneration zone including a combustion zone; introducing an inert gas between the first atmosphere and the second atmosphere; and passing a flue gas from the combustion zone to the adsorption zone.
    Type: Application
    Filed: April 6, 2007
    Publication date: July 3, 2008
    Inventors: David J. Fecteau, Leon Yuan
  • Patent number: 7375143
    Abstract: Embodiments of the invention relate to processes and apparatus for the washing and recovery of metal-containing catalyst solids in a form suitable for reclamation. More specifically, a catalyst recovery process comprises removing an organic residue with a washing medium from a metal-containing catalyst solids, recovering washed solids, and treating the washed solids under oxidative conditions to form non-reactive solids. The treatment oxidative conditions may be effective to convert the metal(s) into an oxide form and/or may facilitate the removal of remaining organic residue from the washed solids. The treatment of the washed solids may comprise calcination. In some embodiments, the metal-containing catalyst solids may be recovered from a slurry stream, and the process further comprises passing the slurry stream though a separation unit to obtain a catalyst-enriched retentate slurry.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: May 20, 2008
    Assignee: ConocoPhillips Company
    Inventors: Sara I. Kopponen, Ralph T. Goodwin, Kristi A. Fjare, Barbara A. Belt, Brian J. Levitt, Kindra Snow-McGregor, Richard J. Wissbaum, Mariella L. Raven, Frank B. Walter
  • Patent number: 7351677
    Abstract: The present invention provides a process and a device for regeneration of a nitrogen oxide storage catalyst in the exhaust system of a diesel engine. The process comprises a first and a second regeneration strategy. The first regeneration strategy is applied when the exhaust gas temperature is above a threshold value and comprises changing the air/fuel-ratio from a lean to a rich value during a first regeneration period. The second regeneration strategy is applied when the exhaust gas temperature is below a threshold value and comprises switching the air/fuel-ratio back and forth between lean and rich air/fuel-ratios, forming a sequence of between 2 and 10 rich pulses and between 2 and 10 lean pulses during a second regeneration period.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: April 1, 2008
    Assignee: Umicore AG & Co. KG
    Inventors: Friedemann Rohr, Peter Kattwinkel, Stefan D. Peter, Thomas Kreuzer, Egbert Lox
  • Patent number: 7344682
    Abstract: An improved oxidizer for liquid reduction-oxidation desulphurization processes uses a hollow fiber membrane contactor. A pressurized, oxygen containing gas stream is introduced into the interior of the hollow fiber membrane while a liquid reduction-oxidation catalyst solution contacts the exterior of the membrane. Oxygen diffuses through the membrane into the liquid reduction-oxidation catalyst solution whereby the solution is oxidized and can be recycled for further us in a desulphurization process.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: March 18, 2008
    Assignee: Merichem Company
    Inventors: Gary J. Nagl, Myron Reicher, Derek McManus
  • Patent number: 7312173
    Abstract: This invention relates to regeneration of coked catalyst by combustion so that the catalyst can be reused in a hydrocarbon conversion reaction. The completion of coke burn is generally measured with a combination of temperature or change in oxygen concentration. Dropping outlet temperatures require time to wait for increases in inlet temperature to correspondingly move down the regenerator. Faster response times might be expected from increasing oxygen concentration, but a small increase in concentration can lead to a significant increase in peak burn temperature which negatively impacts catalyst life. Controlled peak burning is difficult over the entire bed by merely controlling inlet and outlet oxygen concentrations. The invention accordingly combines a measured lag time for temperature travel with an inlet temperature ramping step to ensure complete coke combustion with high oxygen efficiency, thus providing a rapid regeneration that permits more time for operation at desired reaction conditions.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: December 25, 2007
    Assignee: UOP LLC
    Inventors: Leon Yuan, James L. Bixby, Kyle P. Austin, Brian D. Nabozny
  • Patent number: 7297651
    Abstract: The invention relates to a process for removing sulfur particles from an aqueous catalyst solution used to remove hydrogen sulfide from a gas stream (1, 5), comprising the steps of directing a flow of a suspension (12) comprising reduced catalyst solution and sulfur particles to an oxidizer zone (20), where the catalyst solution is regenerated by contacting said suspension with a gas (22) containing oxygen; and removing sulfur from said suspension at least by gravity sedimentation at a bottom (21) of said oxidizer zone (20). According to the invention a flow deflecting means (34) is disposed at least at an outlet (35) for the oxidized catalyst solution leaving said oxidizer zone (20) such as to prevent any turbulent state caused at least by a stream of oxidized catalyst solution leaving said oxidizer zone (20).
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: November 20, 2007
    Assignee: Research Institute of Petroleum Industry
    Inventors: Mohammad Reza Khattaty, Khaled Forsat, Reza Hashemi, Hossein Manafi Varkiani
  • Patent number: 7291311
    Abstract: Process for controlling the combustion zone of a fluidized bed process comprising a regeneration zone and a reaction zone, the catalyst circulating between these two zones, and the regeneration zone comprising a combustion stage of the coke deposited on the catalyst in the reaction zone, control of the combustion zone being performed on the basis of a characteristic variable of the operation of said combustion zone, said characteristic variable being the object of automatic regulation by acting on the catalyst throughput, characterized in that the value of the catalyst throughput or of any control variable connected unequivocally to the catalyst is determined based on information on the operating values of the combustion zone, at least one of which corresponds to an independent evaluation of the level of coke deposited on the catalyst.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 6, 2007
    Assignee: Institut Francais du Petrole
    Inventor: Eric Sanchez
  • Patent number: 7285258
    Abstract: Gold oxide is precipitated together with iron oxide from a solution containing a gold source and an iron source; the gel formed thereby is washed, dried, ground to a size range of 0.85 mm to 4.25 mm, calcined and activated by passing a hydrogen and oxygen containing gas through it; then used as a catalyst for oxidizing CO to CO2 in the presence of a large excess of hydrogen.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: October 23, 2007
    Assignee: Pressure Chemical Company
    Inventor: Joseph Pugach
  • Publication number: 20070243997
    Abstract: Degradation of catalyst activity for silicoaluminophosphate catalysts is minimized for oxygenate-to-olefin reaction systems that are exposed to airborne salt concentrations above a threshold value. When airborne salt concentrations above the threshold value are detected, an air intake flow can be diverted into a cleaning flow path and/or an alternative source of regeneration media can be provided.
    Type: Application
    Filed: March 2, 2007
    Publication date: October 18, 2007
    Inventors: James H. Beech, Christopher David William Jenkins
  • Patent number: 7259283
    Abstract: A process for the regeneration of a deactivated zeolite beta catalyst such as rare earth promoted zeolite beta catalyst deactivated in the course of an aromatic alkylation reaction. A zeolite beta conversion catalyst deactivated with the deposition of coke is heated to a temperature in excess of 300° C. in an oxygen-free environment. An oxidative regeneration gas is supplied to the catalyst bed with oxidation of a portion of a relatively porous coke component to produce an exotherm moving through the catalyst bed. At least one of the temperature and oxygen content of the gas is progressively increased to oxidize a porous component of the coke. Regeneration gas is supplied having at least one of an increased oxygen content or increased temperature to oxidize a less porous refractory component of the coke. The regeneration process is completed by passing an inert gas through the catalyst bed at a reduced temperature.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: August 21, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Kevin P. Kelly, James R. Butler
  • Patent number: 7256149
    Abstract: Used noble metal-containing titanium zeolite catalysts, that have been employed in the liquid-phase epoxidation of olefins with hydrogen and oxygen in the presence of a buffer, are regenerated by heating the used catalyst at a temperature of at least 250° C. in the presence of a oxygen-containing gas stream, followed by reduction at a temperature of at least 20° C. in the presence of a hydrogen-containing gas stream to form a reactivated catalyst.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: August 14, 2007
    Assignee: Lyondell Chemical Technology, L.P.
    Inventors: Roger A. Grey, Mark P. Kaminsky
  • Patent number: 7256318
    Abstract: This invention is directed to controlling regenerator temperature in an oxygenate to olefin process. Because a significant amount of heat can produced in the regenerator during the regeneration process, at least a portion of the heat must be removed to keep the system from getting too hot. This invention removes heat during the regeneration of the catalyst, using appropriate circulation of catalyst between the reactor and the regenerator. Sufficient circulation can eliminate the need for the use of a catalyst cooler in the regeneration system.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: August 14, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James R. Lattner, Keith Holroyd Kuechler, Nicolas P. Coute, Paul N. Chisholm
  • Publication number: 20070179042
    Abstract: A mixed metal oxide, which may be an orthorhombic phase material, is regenerated, selectively enriched or selectively poisoned as a catalyst to reduce catalyst aging for the production of unsaturated carboxylic acids, or unsaturated nitrites, from alkanes, or mixtures of alkanes and alkenes, by contacting said mixed metal oxide with a an oxidizing gas such as oxygen, air, steam and combinations thereof is permitted to flow through the catalyst in a regenerator at a temperature of from 300° C. to 600° C. to form said regenerated catalyst.
    Type: Application
    Filed: January 8, 2007
    Publication date: August 2, 2007
    Inventors: Fernando Antonio Pessoa Cavalcanti, Scott Han, Peter David Klugherz, Andrew Michael Lemonds, Daniel J. Martenak, Elsie Mae Vickery, Donald Lee Zolotorofe
  • Patent number: 7226883
    Abstract: An improved oxidizer for liquid reduction-oxidation desulphurization processes uses a hollow fiber membrane contactor. A pressurized, oxygen containing gas stream is introduced into the interior of the hollow fiber membrane while a liquid reduction-oxidation catalyst solution contacts the exterior of the membrane. Oxygen diffuses through the membrane into the liquid reduction-oxidation catalyst solution whereby the solution is oxidized and can be recycled for further us in a desulphurization process.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: June 5, 2007
    Assignee: Merichem Chemicals & Refinery Services LLC
    Inventors: Gary J. Nagl, Myron Reicher, Derek McManus
  • Patent number: 7217401
    Abstract: A method for reducing the amount of mercury affixed to a sorbent and/or fly ash is disclosed. The method includes the steps of providing an amount of sorbent and/or fly ash wherein at least a portion of the amount of sorbent and/or fly ash has particulates having mercury compounds affixed to the particulates; and exposing the amount of sorbent and/or fly ash to heated flowing air until mercury compounds are liberated from at least some of the particulates. Preferably, the amount of sorbent and/or fly ash is maintained in the heated flowing air until the sorbent reaches a temperature of at least 700° F. (372° C.). When the sorbent is activated carbon, it is preferred that the amount of sorbent and/or fly ash is maintained in the heated flowing air until the activated carbon reaches a temperature in the range of 700° F. (372° C.) to 1000° F. (538° C.).
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: May 15, 2007
    Assignee: Wisconsin Electric Power Company
    Inventors: Bruce W. Ramme, Terry L. Coughlin, Bryna D. Goeckner, Bryan C. Fisher, John J. Noegel
  • Patent number: 7214636
    Abstract: The present invention is directed to a swaged catalyst regenerator and processes for using the catalyst regenerator. In one embodiment, the swaged catalyst regenerator includes a regeneration zone having a first major diameter and into which a regeneration medium and an at least partially coked catalyst from a reactor can be fed. The catalyst regenerator also includes a separation zone having a second major diameter. The separation zone is provided to separate entrained catalyst from gaseous components, e.g., combustion products of a regeneration process, and return the entrained catalyst to the regeneration zone. The ratio of the second major diameter to the first major diameter is at least 1.1, 1.4, 1.7, 2.0, 2.3, 2.6 or 2.9. By providing a catalyst regenerator having these characteristics, desirable regeneration characteristics that minimize entrained catalyst loss can be achieved.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: May 8, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James Harding Beech, Jr., Richard E. Walter
  • Patent number: 7199069
    Abstract: A method for oxidizing carbon adsorbable organic compounds in a controlled manner within a bed of activated carbon. The bed of activated carbon is exposed to a source of molecular oxygen, such as air, and is controlled within a temperature range whereby the molecular oxygen is slowly oxidizing the activated carbon. Under this controlled set of conditions, the activated carbon will oxidize organic compounds present within the bed of activated carbon. This technique has widespread versatility for the controlled destruction of organic vapors and liquids by activated carbon and applications for the regeneration of spent activated carbons containing previously adsorbed organic compounds.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: April 3, 2007
    Inventor: Hugh Stanley McLaughlin
  • Patent number: 7172685
    Abstract: A hydrocarbon desulfurization system employing regenerable solid sorbent particulates in a fluidized bed desulfurization reactor. The sulfur-loaded sorbent particulates are continuously withdrawn from the reactor and transferred to a regenerator. A novel solids transport mechanism provides for the safe and effective transfer of the sulfur-loaded sorbent particulates from the high pressure hydrocarbon environment of the reactor to the low pressure oxygen environment of the regenerator.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: February 6, 2007
    Assignee: Conocophillips Company
    Inventors: Max W. Thompson, Behzad Jazayeri, Robert Zapata, Manuel Hernandez
  • Patent number: 7157397
    Abstract: A process is described for the synthesis of mesitylene, characterized in that mesitylene is obtained starting exclusively from pseudocumene, without the use of any other chemical compound, operating in continuous, at a temperature ranging from 225 to 400° C., at a pressure ranging from 1 to 50 bar, at a weight space velocity ranging from 0.1 to 10 hours?1, and in the presence of a catalyst containing a zeolite selected from ZSM-5 zeolite having a crystal lattice based on silicon oxide and aluminum oxide, and ZSM-5 zeolite modified by the partial or total substitution of Si with a tetravalent element such as Ti or Ge and/or the partial or total substitution of Al with other trivalent elements, such as Fe, Ga or B.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: January 2, 2007
    Assignees: Polimeri Europa S.p.A., Enitecnologie S.p.A.
    Inventors: Leonardo Dalloro, Alberto Cesana, Robert{dot over (o)} Buzzoni, Franco Rivetti, Giovanni Antonio Fois, Caterina Rizzo, Virginio Arrigoni
  • Patent number: 7053260
    Abstract: The present invention provides a process for making an olefin product from an oxygenate feedstock which comprises: a) contacting the feedstock in a reaction zone with a catalyst comprising i) a molecular sieve having defined pore openings and ii) a CO oxidation metal, under conditions effective to convert the feedstock into an olefin product stream comprising C2–C3 olefins and to form carbonaceous deposits on the catalyst so as to provide a carbon-containing catalyst; b) contacting at least a portion of the carbon-containing catalyst with a regeneration medium comprising oxygen in a regeneration zone comprising a fluid bed regenerator having a dense fluid phase and a dilute fluid phase under conditions effective to obtain a regenerated catalyst portion, wherein the difference between the temperature of the dilute phase and the temperature of the dense phase is no greater than 100° C.; c) introducing said regenerated catalyst portion into said reaction zone; and d) repeating steps a)–c).
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: May 30, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Paul N. Chisholm, Stephen Neil Vaughn, Shun Chong Fung, Keith Holroyd Kuechler, James R. Lattner, Kenneth Ray Clem, Patrick J. Maher, Dean C. Draemel