Sulfur Or Sulfur Compound Removal Patents (Class 502/517)
  • Patent number: 8927450
    Abstract: A reclaiming apparatus 106 includes: a sealed container 106a that is an absorbent reservoir for storing therein a part of an absorbent that has absorbed CO2 in flue gas, and a heater that heats the absorbent stored in the sealed container 106a. The reclaiming apparatus 106 distributes a part of the absorbent stored in the sealed container 106a, and brings the distributed absorbent into counter-current contact with steam. Because a part of the absorbent stored in the absorbent reservoir is brought into counter-current contact with the steam, absorbent component contained therein becomes volatilized, and is separated from depleted materials. In this manner, the absorbent component can be extracted from the depleted materials, and a loss of the absorbent can be reduced.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 6, 2015
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Masahiko Tatsumi, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 8765623
    Abstract: A hydrocarbon selective catalytic reduction (HC-SCR) catalyst is regenerated using a nitrogen-based reductant agent. The HC-SCR catalyst is in communication with a power system such as an internal combustion engine and receives exhaust gasses from the internal combustion engine. Sulfur in the exhaust gasses may deactivate the HC-SCR catalyst by sulfur oxides forming thereon. To remove the sulfur oxides, a nitrogen-based reductant agent is introduced to the exhaust gasses. The nitrogen-based reductant agent decomposes to nitrogen oxides and hydrogen. The hydrogen reacts with the sulfur oxides to form hydrogen sulfides thereby removing the sulfur oxides from the HC-SCR catalyst.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: July 1, 2014
    Assignee: Caterpillar Inc.
    Inventor: Praveen S. Chavannavar
  • Patent number: 8722559
    Abstract: In a NOx removal catalyst used for removing nitrogen oxide in flue gas, when a silica (Si) component as an inhibitor that causes an increase in an SO2 oxidation rate accumulates on a surface of the NOx removal catalyst, the silica component accumulating on the surface of the NOx removal catalyst is dissolved, thereby regenerating the catalyst. Accordingly, the inhibitor such as the silica component covering the surface of the NOx removal catalyst can be removed, thereby enabling to provide a catalyst without having an increase in the SO2 oxidation rate of the regenerated NOx removal catalyst.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: May 13, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Masashi Kiyosawa
  • Patent number: 8513157
    Abstract: The present disclosure relates to a fluid purification device that has a deactivation resistant photocatalyst having nanocrystallites of less than 14 nanometers (nm) in diameter with at least 200 m2 surface area/cm3 of skeletal volume in cylindrical pores of 5 nm in diameter or larger, with the mode of the pore size distribution 10 nm or more.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 20, 2013
    Assignee: Carrier Corporation
    Inventors: Thomas Henry Vanderspurt, Treese Hugener-Campbell, Norberto O. Lemcoff, Stephen O. Hay, Wayde R. Schmidt, Joseph J. Sangiovanni, Zissis A. Dardas, Di Wei
  • Patent number: 8507404
    Abstract: Provided are improved regenerable SOx trap formulations for on-board vehicle applications. The regenerable sulfur trap formulations reduce the rate of sulfur poisoning of a downstream nitrogen storage reduction (NSR) catalyst trap in exhaust gas cleaning systems for combustion engines by adsorbing SOx as metal sulfate under lean exhaust conditions and desorbing the accumulated SOx under rich exhaust conditions. The regenerable sulfur oxides trap catalyst compositions include a metal (M) oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof and a metal (M)-La—Zr oxide, wherein M is selected from Cu, Fe, Mn, Ag, Co and combinations thereof. In addition, provided are improved exhaust gas cleaning systems and methods for treating exhaust gas from a combustion source that include a hydrogen generation system, a regenerable sulfur oxides trap, and a regenerable nitrogen storage reduction (NSR) catalyst trap.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: August 13, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: El-Mekki El-Malki, Walter Weissman, Paul J. Polini
  • Patent number: 8466079
    Abstract: A method for regenerating at least one impurity-adsorbing sorbent bed includes passing impurity-containing fluid through the impurity-adsorbing bed. The impurity-adsorbing sorbent bed adsorbs an impurity in the impurity-containing fluid to produce a purified fluid. A portion of the purified fluid is sent back through the impurity-adsorbing sorbent bed that contains the adsorbed impurity. The impurity-adsorbing sorbent bed is exposed to microwave energy to desorb the impurity adsorbed on the impurity-adsorbing sorbent bed.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: June 18, 2013
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Thomas H. Vanderspurt, Sarah J. Arsenault, Theresa A. Hugener-Campbell, Sean C. Emerson, Zidu Ma, James D. MacLeod, Susanne M. Opalka
  • Patent number: 8329607
    Abstract: Provided are diesel exhaust components where palladium is segregated from a molecular sieve, specifically a zeolite, in a catalytic material. In the catalytic material, therefore, there are at least two layers: a palladium-containing layer that is substantially free of a molecular sieve and a hydrocarbon trap layer that comprises at least one molecular sieve and is substantially free of palladium. The palladium is provided on a high surface area, porous refractory metal oxide support. The catalytic material can further comprise a platinum component, where a minor amount of the platinum component is in the hydrocarbon trap layer, and a majority amount of the platinum component is in the palladium-containing layer. Systems and methods of using the same are also provided.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: December 11, 2012
    Assignee: BASF Corporation
    Inventors: M. Shahjahan Kazi, Michel Deeba, Torsten Neubauer, Alfred Helmut Punke, Torsten Wolfgang Mueller-Stach, Gerd Grubert, Stanley A. Roth, Jeffrey Barmont Hoke, Shlang Sung, Yuejin Li, Xinyi Wei, Chung-Zong Wan
  • Patent number: 8084661
    Abstract: A process for the regeneration of spent sulfuric acid including contacting spent sulfuric acid containing acid soluble oils (ASO) with sulfur dioxide to extract at least a portion of the ASO from the spent sulfuric acid into the sulfur dioxide. The sulfuric acid phase having a reduced ASO content and a sulfur dioxide phase containing at least a portion of the ASO may be recovered. The resulting sulfuric acid and sulfur dioxide phases may be further separated to recover ASO, sulfur dioxide, and sulfuric acid.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: December 27, 2011
    Assignee: Catalytic Distillation Technologies
    Inventor: William M. Cross, Jr.
  • Patent number: 8043989
    Abstract: A system is provided for desulfurizing a hydrocarbon fuel containing a light amount of methanol and a slight amount of water. The desulfurization system uses a Y-type zeolite-based desulfurizing agent containing at least copper arranged upstream of the system and an X-type zeolite-based desulfurizing agent containing at least silver arranged downstream of the system and thus can maintain desulfurization effect for a long period of time.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 25, 2011
    Assignee: Nippon Oil Corporation
    Inventors: Yoshiyuki Nagayasu, Atsushi Segawa, Kazunori Miyazawa, Yoshihiro Kobori
  • Patent number: 8017545
    Abstract: The present invention relates to a method of making a chemical compound comprising nickel, aluminum, oxygen and sulfur having a general formula Ni2xAl2O2x+3?zSz, wherein 0.5?x?3 and 0?z?2x. The material is effective for the removal of S-compounds from gaseous streams, effective for catalyzing a water gas shift reaction and suppresses the formation of carbon monoxide and hydrogen under conditions where a water gas shift reaction is catalyzed.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: September 13, 2011
    Assignee: UOP LLC
    Inventors: Alakananda Bhattacharyya, Manuela Serban, Kurt M. Vanden Bussche, Lisa M. King
  • Patent number: 7947623
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h,, wherein M is at least one group VIB metal; promoter metal L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale).
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: May 24, 2011
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jaime Lopez, Axel Brait, Bruce Reynolds, Kaidong Chen
  • Patent number: 7754645
    Abstract: A process to prepare hydroprocessing bulk catalysts is provided. The hydroprocessing catalyst has the formula (Mt)a(Xu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; X is at least at least a metal compound selected from a non-noble Group VIII metal, a Group VIIIB metal, a Group VIB metal, a Group IVB metal, and a Group IIB metal (“Promoter Metal”); t, u, v, w, x, y, z representing the total charge for each of the components (M, X, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 13, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Jaime Lopez, Oleg Mironov, Axel Brait
  • Patent number: 7737072
    Abstract: A hydroprocessing catalyst is provided. The hydroprocessing catalyst has the formula (Mt)a(Xu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; X is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, X, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale). In one embodiment, the at least one diffraction peak is greater than 2 degrees wide at ½ height.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 15, 2010
    Assignee: Chevron USA Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jaime Lopez, Axel Brait, Bruce Reynolds, Kaidong Chen
  • Patent number: 7737073
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; promoter metal L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale).
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: June 15, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman, Jaime Lopez, Axel Brait, Bruce Reynolds, Kaidong Chen
  • Patent number: 7682423
    Abstract: Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl2O4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 23, 2010
    Assignee: Research Triangle Institute
    Inventors: Santosh Kumar Gangwal, Brian Scott Turk, Raghubir Prasael Gupta
  • Patent number: 7678731
    Abstract: An improved hydroprocessing catalyst having improved morphology/dispersion characteristics is provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, X, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst is prepared by a process in which at least a sulfur additive is added to the sulfidation process in forming the catalyst precursor.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 16, 2010
    Assignee: Chevron USA Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 7678730
    Abstract: A hydroprocessing bulk catalyst is provided. A process to prepare hydroprocessing bulk catalysts is also provided. The hydroprocessing catalyst has the formula (Mt)a(Lu)b(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one group VIB metal; L is optional and if present, L is at least one Group VIII non-noble metal; t, u, v, w, x, y, z representing the total charge for each of the components (M, L, S, C, H, O and N, respectively); ta+ub+vd+we+xf+yg+zh=0; 0=<b; and 0=<b/a=<5, (a+0.5b)<=d<=(5a+2b), 0<=e<=11(a+b), 0<=f<=7(a+b), 0<=g<=5(a+b), 0<=h<=0.5(a+b). The catalyst has an X-ray powder diffraction pattern with at least one broad diffraction peak at any of Bragg angles: 8 to 18°, 32 to 40°, and 55 to 65° (from 0 to 70° 2-? scale).
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 16, 2010
    Assignee: Chevron USA Inc.
    Inventors: Oleg Mironov, Alexander E. Kuperman
  • Patent number: 7592283
    Abstract: Provided is a method of regenerating a honeycomb type SCR catalyst which is used in selective catalytic reduction (SCR), comprising treating a waste honeycomb type SCR catalyst used in an industrial boiler with a mixed solution containing 0.1 M to 1.0 M H2SO4, 0.005 M to 0.1 M NH4VO3 and 0.005 M to 0.1 M 5(NH4)2O.12WO3.5H2O in an air lift loop reactor.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: September 22, 2009
    Assignee: Korea Electric Power Corporation
    Inventors: Jung Bin Lee, Tae Won Lee, Kwang Chul Song, In Young Lee
  • Patent number: 7427581
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline and diesel fuels are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promotors are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline and diesel fuels whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: September 23, 2008
    Assignee: China Petroleum & Chemical Corporation
    Inventor: Gyanesh P. Khare
  • Patent number: 7323151
    Abstract: A process for the selective removal of sulphur compounds from synthesis gas being rich in carbon monoxide and containing hydrogen, carbon monoxide and containing hydrogen, carbon dioxide and steam comprising contacting the synthesis gas at a maximum contact temperature of 100° C. with an absorbent comprising Cu/ZnO compounds and being prepared by thermal decomposition of a corresponding carbonate and activation of the thermal decomposed carbonate with a reducing gas.
    Type: Grant
    Filed: February 15, 2003
    Date of Patent: January 29, 2008
    Assignee: Haldor Topsoe A/S
    Inventors: Jens-Henrik B. Hansen, Birgitte Hammershoi, Inga D. Sigurdardottir
  • Patent number: 7268097
    Abstract: A desulfurizing agent comprising a silica-alumina carrier having an Si/Al mole ratio of 10 or less and nickel carried thereon; a desulfurizing agent for hydrocarbons derived from petroleum which comprises a carrier and a metal component carried thereon and has a specific surface area of pores having a pore diameter of 3 nm or less of 100 m2/g or more; an Ni-Cu based desulfurizing agent comprising a carrier and, carried thereon, (A) nickel, (B) copper, and (C) an alkali metal or another metal; a desulfurizing agent for hydrocarbons derived from petroleum which comprises a carrier and a metal component carried thereon and has a hydrogen adsorption capacity of 0.4 mmol/g or more; and methods for producing these nickel-based and nickel-copper-based desulfurizing agents. The above desulfurizing agents are capable of adsorbing and removing with good efficiency the sulfur contained in hydrocarbons derived from petroleum to a content of 0.2 wt. ppm or less and have a long service life.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: September 11, 2007
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Hisashi Katsuno, Satoshi Matsuda, Kazuhito Saito, Masahiro Yoshinaka
  • Patent number: 7056537
    Abstract: The present invention relates to a method of abating hydrogen sulfide gas emitted by or generated in landfills. Certain embodiments of the present invention relate to contacting hydrogen sulfide gas with Fuller's earth or other carrier materials and metals such as silver, copper, iron, zinc or mixtures thereof, and other components.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: June 6, 2006
    Assignee: Aceto Corporation
    Inventor: Richard Weschler
  • Patent number: 7021049
    Abstract: An automobile exhaust system includes a catalytic converter, a NOx trap, and a sulfur oxide trap. The sulfur oxide trap improves the efficiency of the NOx trap. Sulfur oxide has a deleterious effect on the performance of nitrogen oxide traps. The sulfur oxide trap comprises a monolithic substrate which is over-coated with an aluminum oxide layer and a mixed oxide layer of calcium oxide and magnesium oxide. In a variation, a sulfur oxide trap is integrated with a nitrogen oxide trap by coating the catalyst contained within a nitrogen oxide trap with a mixed oxide layer of calcium oxide and magnesium oxide. In each embodiment, the sulfur oxide trap can be regenerated by heating at elevated temperature for a short time period.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: April 4, 2006
    Assignee: Ford Global Technologies, LLC
    Inventors: Amy Berris, Jun (John) Li, Mohinder Singh Chattha, William Lewis Henderson Watkins
  • Patent number: 7008896
    Abstract: The present invention is directed to a process for the preparation of crystalline anionic clay-containing bodies from sources comprising a trivalent metal source and a divalent metal source comprising the steps of: a) preparing a precursor mixture containing a liquid, a divalent metal source and/or a trivalent metal source, at least one of them being insoluble in the liquid; b) shaping the precursor mixture to obtain shaped bodies; c) optionally thermally treating the shaped bodies; and d) aging the shaped bodies to obtain crystalline anionic clay-containing bodies; with the proviso that if no divalent or trivalent metal source is present in the precursor mixture of step a), such source is added to the shaped bodies after shaping step b) and before aging step d); and with the further proviso that the combined use of an aluminium source as the trivalent metal source and a magnesium source as the divalent metal source is excluded.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: March 7, 2006
    Assignee: Akzo Nobel NV
    Inventors: Dennis Stamires, William Jones, Paul O'Connor
  • Patent number: 6951635
    Abstract: Zinc oxide-based sorbents, and processes for preparing and using them are provided, wherein the sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents contain an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl2O4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, containing a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: October 4, 2005
    Assignee: Research Triangle Institute
    Inventors: Santosh Kumar Gangwal, Brian Scott Turk, Raghubir Prasad Gupta
  • Patent number: 6828273
    Abstract: When a polybasic acid salt containing at least one species selected from the group consisting of an alkaline earth metal, a transition metal, and Al is caused to be present on the surfaces of titanium dioxide fine particles, there are obtained photocatalytic particles and powder exhibiting sufficent photocatalytic properties when irradiated with light from a light source of low quantity of light. By use of the photo-functional particles and powder, an organic polymer composition, a slurry, a coating agent, and a product having a surface exhibiting photocatalytic property and hydrophilicity are obtained.
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: December 7, 2004
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Jun Tanaka, Masayuki Sanbayashi, Yoshinori Ueyoshi, Hiroyuki Hagihara
  • Patent number: 6812189
    Abstract: The disclosure is directed to sorbent compositions for removing reduced sulfur species (e.g., H2S, COS and CS2) a feed stream. The sorbent is formed from a multi-phase composition including a zinc titanate phase and a zinc oxide-aluminate phase. The sorbent composition is substantially free of unreacted alumina.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: November 2, 2004
    Assignees: Research Triangle Institute, Intercat, Inc.
    Inventors: Albert A. Vierheilig, Raghubir P. Gupta, Brian S. Turk
  • Patent number: 6773490
    Abstract: A process for reversible sorption of sulfur trioxide onto a sorbent comprising a) contacting from about 15% to 100% sulfur trioxide with the sorbent under anhydrous conditions at a temperature of from about 35° C. to about 150° C. thereby sorbing the sulfur trioxide onto the sorbent, b) desorbing sulfur trioxide from the sorbent at a temperature of from about 150° C. to about 350° C. at about atmospheric pressure, or under a vacuum pressure, and c) recycling said sorbent by continuously repeating steps a) and b), wherein said sorbent consists essentially of silica or zeolite having a silicon to aluminum ratio in the ranges of from about 1 to about 4.4 or greater than about 5.1, and having a pore size of at least 0.5 nm is disclosed.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: August 10, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Stephen Ernest Jacobson, Howard M. Blank, David Richard Corbin
  • Patent number: 6649555
    Abstract: A deactivated sorbent composition is reactivated by contacting the deactivated sorbent with a reducing stream under activation conditions sufficient to reduce the amount of sulfates associated with the sorbent composition.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: November 18, 2003
    Assignee: ConocoPhillips Company
    Inventors: Glenn W. Dodwell, Ronald E. Brown, Robert W. Morton, Jason J. Gislason
  • Patent number: 6620763
    Abstract: This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: September 16, 2003
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Venkat S. Venkataramani, Raul E. Ayala
  • Patent number: 6610265
    Abstract: A fuel processing system is operative to remove substantially all of the sulfur present in a logistic fuel stock supply. The fuel stock can be gasoline, diesel fuel, or other like fuels which contain relatively high levels of organic sulfur compounds such as mercaptans, sulfides, disulfides, and the like. The system is a part of a fuel cell power plant. The fuel stock supply is fed through a reformer where the fuel is converted to a hydrogen rich fuel which contains hydrogen sulfide. The hydrogen sulfide-containg reformer exhaust is passed through a sulfur scrubber, to which is added a small quantity of air, which scrubber removes substantially all of the sulfur in the exhaust stream by means of the Claus reaction. The desulfurizing step causes sulfur to deposit on the scrubber bed, which after a period of time, will prevent further sulfur from being removed from the reformer exhaust stream.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: August 26, 2003
    Assignee: UTC Fuel Cells, LLC
    Inventors: Donald F. Szydlowski, Roger R. Lesieur, Richard A. Sederquist
  • Patent number: 6558533
    Abstract: The present invention is directed to a method of desulfurization of a sulfur laden hydrocarbon liquids that comprises contacting the liquid with a sponge nickel metal alloy, removing the sulfur free liquid, regeneration of the alloy by contact with an aqueous solution of an oxidant and reusing the alloy for further desulfurization of additional sulfur laden liquid.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: May 6, 2003
    Assignee: W.R. Grace & Co.-Conn
    Inventors: Stephen Raymond Schmidt, Richard Franklin Wormsbecher, Robert Hibbard Harding
  • Patent number: 6541419
    Abstract: A sulfur sorber for the reduction of gaseous sulfur compounds, e.g., H2S, in a gas stream The sulfur sorber, e.g., zinc oxide, is present in the form of one or more layers on the surface of a monolith carrier, e.g., cordierite. The layers have a total thickness of at least 3 g/in3 of the carrier. Preferably, the sorber is present in the form of at least three layers on the surface of the monolith carrier.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: April 1, 2003
    Assignee: Engelhard Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto
  • Patent number: 6521200
    Abstract: A process for the recovery of sulphur trioxide, solutions of sulphuric acid, or organic derivatives thereof, using organic compounds and/or supercritical fluids, and catalyst. The process comprises the steps of passing a mixture of SO2 and an oxygen-containing gas over an activated carbon catalyst at a temperature of at least 15° C. and preferably at a pressure of 1-200 atmospheres, and stripping the activated carbon with either (i) a liquid organic compound selected from the group consisting of ketones, ethers, decalin, tetrahydrofurans, sulpholanes, glymes and formamides and which is non-reactive with sulphur trioxide or sulphuric acid, or (ii) a liquid organic compound capable of forming organic sulphates or sulphonates by reaction with sulphur trioxide or sulphuric acid. The process may be used to obtain sulphuric acid, or organic sulphates or sulphonates.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: February 18, 2003
    Assignee: University of Waterloo
    Inventors: Peter Lewis Silveston, Robert Ross Hudgins, Radu Valentin Vladea
  • Patent number: 6506356
    Abstract: A catalyst for recovering elemental sulfur by the selective oxidation of hydrogen sulfide is represented by the following chemical formula: VaTibXcOf wherein, a is such a mole number that vanadium amounts to 5-40% by weight based on the total weight of the catalyst; b is such a mole number that titanium amounts to 5-40% by weight based on the total weight of the catalyst; X is an element selected from the group consisting of Fe, Mn, Co, Ni, Sb and Bi; c is such a mole number that X amounts to 15% by weight or less based on the total weight of the catalyst; and f is such a mole number that oxygen is contained to the final 100% by weight. The catalyst can recover elemental sulfur at high rates for a long period of time without being deteriorated in activity. The high catalytic activity is maintained even when excess water is present in the reaction gas.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: January 14, 2003
    Assignees: Envichem Co., Ltd., Pohang University of Science & Technology
    Inventors: Jong Shik Chung, Moon Young Shin
  • Patent number: 6429170
    Abstract: Attrition resistant, sorbent compositions for the removal of elemental sulfur and sulfur compounds, such as hydrogen sulfide and organic sulfides, from cracked-gasoline and diesel fuels are prepared by the impregnation of a sorbent support comprising zinc oxide, expanded perlite, and alumina with a promoter such as nickel, nickel oxide or a precursor of nickel oxide followed by reduction of the valence of the promoter metal in the resulting promoter metal sorbent support composition.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: August 6, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Glenn W. Dodwell
  • Patent number: 6350422
    Abstract: A process for removing hydrogen sulfide from a fluid stream by contacting a hydrogen sulfide-containing stream with a sorbent composition wherein said sorbent composition is produced by mixing at least one zinc component which is zinc oxide or a compound convertible to zinc oxide, at least one silica component where the silica component comprises silica or a compound convertible to silica, at least one colloidal metal oxide, and optionally at least one pore generator component so as to form a mixture, extruding the mixture, sphering the resulting extrudate to form spherical particles having a size of form about 0.5 to about 15 millimeters drying the resulting spherical particles, calcining the dried particles, steaming the resulting calcined particles, sulfiding the steamed particles by contacting them with sulfides or sulfur at a temperature of about 200° C. to 1400° C.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: February 26, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Gyanesh P. Khare, Donald R. Engelbert
  • Patent number: 6346190
    Abstract: Particulate sorbent compositions consisting essentially of zinc ferrite, nickel and an inorganic binder, wherein the zinc ferrite and nickel of reduced valence, are provided for the desulfurization of a feedstream of cracked-gasoline or diesel fuels in a desulfurization zone by a process which comprises contacting of such feedstreams in a desulfurization zone followed by separation of the resulting low sulfur-containing stream and sulfurized sorbent and thereafter regenerating and activating the separated sorbent by reduction thereof before recycle of same to the desulfurization zone.
    Type: Grant
    Filed: March 21, 2000
    Date of Patent: February 12, 2002
    Assignee: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Patent number: 6299851
    Abstract: A method for selectively oxidizing hydrogen sulfide to elemental sulfur is disclosed. The method is performed at a temperature ranged from 50 to 400° C. and at a pressure ranged from 0.1 to 50 atm. The elemental sulfur can be effectively recovered from a gas mixture containing hydrogen sulfide in the presence of a catalyst. The catalyst includes a vanadium-containing material and a catalytic substance selected from the group consisting of scandium (Sc), yttrium (Y), lanthanum (La), samarium (Sm) and compounds thereof. In another embodiment, this catalyst further includes an antimony-containing promoter (antimony compounds) which further exhibit a more effective catalytic performance.
    Type: Grant
    Filed: June 17, 1999
    Date of Patent: October 9, 2001
    Assignee: National Science Council
    Inventors: Kuo-Tseng Li, Ren-Hai Chi
  • Patent number: 6274533
    Abstract: Novel sorbent systems for the desulfurization of cracked-gasoline are provided which are comprised of a bimetallic promotor on a particulate support such as that formed of zinc oxide and an inorganic or organic carrier. Such bimetallic promoters are formed of at least two metals of the group consisting of nickel, cobalt, iron, manganese, copper, zinc, molybdenum, tungsten, silver, tin, antimony and vanadium with the valence of same being reduced, preferably to zero. Processes for the production of such sorbents are provided wherein the sorbent is prepared from impregnated particulate supports or admixed to the support composite prior to particulation, drying, and calcination. Further disclosed is the use of such novel sorbents in the desulfurization of cracked-gasoline whereby there is achieved not only removal of sulfur but also an increase in the olefin retention in the desulfurized product. Such sorbents can also be utilized for the treatment of other sulfur-containing streams such as diesel fuels.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: August 14, 2001
    Assignee: Phillips Petroleum Company
    Inventor: Gyanesh P. Khare
  • Patent number: 6251359
    Abstract: A method for selectively oxidizing hydrogen sulfide to elemental sulfur is disclosed. The elemental sulfur can be effectively recovered from a gas mixture containing hydrogen sulfide in the presence of a multi-component catalyst. The multi-component catalyst includes an antimony-containing substance and a vanadium-and-magnesium-containing material. The antimony containing substance may be antimonous oxide (Sb2O3) or antimony tetraoxide (&agr;-Sb2O4), and the vanadium and magnesium containing material may be magnesium pyrovanadate (Mg3V2O8) or Mg2V2O7.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: June 26, 2001
    Assignee: National Science Council
    Inventors: Kuo-Tseng Li, Ren-Hai Chi
  • Patent number: 6224840
    Abstract: The present invention relates to a &ggr;-Al2O3 sorbent impregnated with alkali salt and CuO, which has a superior SO2 sorption capacity and a high regeneration conversion rate. A &ggr;-Al2O3 sorbent of the present invention is impregnated with alkali salt and copper oxide, whose alkali salt and copper oxide(CuO) contents are 1 to 10 wt. % and 5 to 20 wt. % against 100 wt. % &ggr;-Al2O3 carrier, respectively. The &ggr;-Al2O3 sorbent of the invention has a superior SO2 sorption capacity and a high regeneration conversion rate, which facilitates efficient removal of SO2 by the conventional dry method.
    Type: Grant
    Filed: February 29, 2000
    Date of Patent: May 1, 2001
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Sang-Done Kim, Sang-Mun Jeong, Kyung-Seun Yoo
  • Patent number: 6207127
    Abstract: The invention provides a catalyst; a method for making the catalyst and a method for using the catalyst to promote the selective oxidation of hydrogen sulfide into elemental sulfur. The catalyst may be prepared by contacting a catalyst support, such as silica, with a solution containing ammonium metal salts, such as ammonium iron citrate and ammonium zinc citrate, and an amount of chloride (e.g., ammonium chloride) that is between about 0.1 and about 20 weight percent of the metal ions in the solution, to produce a support material impregnated with ammonium metal citrate salts and ammonium chloride. This impregnated catalyst support is then dried and calcined to produce a catalyst, such as iron and zinc oxide mixture supported on silica. It has been found that by adding chloride to the impregnated catalyst support prior to calcination and drying, that the sintering of the metal oxides can be controlled and the formation of a mixed metal oxide is promoted.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: March 27, 2001
    Assignees: Gastec N.V., Stork Engineers & Contractors B.V.
    Inventors: John Wilhelm Geus, Robert Johan Andreas Maria Terörde
  • Patent number: 6083471
    Abstract: A process for catalytically oxidizing the H.sub.2 S present at low concentration in a gas to sulphur wherein the gas together with a gas containing free oxygen in a quantity to provide and O.sub.2 to H.sub.2 S mole ratio ranging from 0.05 to 10 are contacted with a catalyst for selectively oxidizing H.sub.2 S to sulphur, the catalyst comprising a support based on silicon carbide associated with a catalytic active phase containing at least one transition metal such as Fe, Ni, Cr, Co, Cu, Ag, Mn, Mo, Ti, W or V, in a form of a metal compound and/or in the elemental state. Prior to treating the gas, the oxidation catalyst is subjected to an activation treatment which loads the active phase of the catalyst to provide maximum sulphurization of the metal of the catalyst. In an alternate embodiment, the oxidation of the H.sub.2 S is performed below the dew point of the sulphur. In another embodiment, the oxidation is performed at a temperature above the dew point of sulphur and in particular between 200.degree. C.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: July 4, 2000
    Assignee: Elf Exploration Production
    Inventors: Andre Philippe, Sabine Savin-Poncet, Jean Nougayrede, Marc Ledoux, Cuong Pham Huu, Claude Crouzet
  • Patent number: 5958830
    Abstract: A process to make a sorbent composition said process comprising:(1) contacting(1.1) at least one zinc component, where said zinc component comprises zinc oxide, or a compound convertible to zinc oxide,(1.2) at least one silica component, where said silica component comprises silica, or a compound convertible to silica,(1.3) at least one colloidal oxide component, where said colloidal oxide component comprises a mixture that comprises a metal oxide, and optionally(1.4) at least one pore generator component; to form a first mixture; and thereafter,(2) extruding said first mixture to form an extruded, first mixture; and thereafter,(3) sphering said extruded, first mixture to form a sphered, extruded, first mixture that comprises particles where said particles have a particle size from about 0.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: September 28, 1999
    Assignee: Phillips Petroleum Company
    Inventors: Gyanesh P. Khare, Donald R. Engelbert
  • Patent number: 5948398
    Abstract: A metal oxide-carrying activated carbon having an oxidation catalytic activity comprises a treated activated carbon obtained by carbonizing a carbon material, activating the obtained carbon with an activating gas comprising carbon dioxide and water vapor, said activating gas containing not more than 15% by volume of water vapor, and then cooling the activated carbon down to a temperature of not more than 300.degree. C. under the same atmosphere; and, carried thereon, 0.1 to 20% by weight as converted into metal of an oxide of at least one metal selected from the group consisting of iron, chromium, nickel, cobalt, manganese, zinc, copper, magnesium and calcium. A deodorant is obtained by adding 1 to 50 parts by weight of a plastic powder having an average particle diameter of 1 to 50 .mu.m to 100 parts by weight of the above metal oxide-carrying activated carbon. The above.
    Type: Grant
    Filed: September 14, 1994
    Date of Patent: September 7, 1999
    Assignee: Kuraray Chemical Co., Ltd.
    Inventors: Tetsuya Hanamoto, Yukihito Ohta, Eiji Tanaka, Hong Sang Eui, Park Young Min, Choi Yong Bok, Lee Chang Woo
  • Patent number: 5866503
    Abstract: Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.
    Type: Grant
    Filed: June 24, 1997
    Date of Patent: February 2, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Ranjani V. Siriwardane
  • Patent number: 5858912
    Abstract: The present invention relates to the use of a non-aqueous liquid such as phenols, glycols, aromatic hydrocarbons, diesel fuel, kerosene, and mixtures thereof as a moistening agent in a packed bed process, wherein the packed bed contains a composition for removing sulfur compounds from fluid streams, the composition containing a carrier composition, an iron oxide composition, and a non-aqueous liquid moistening agent. The non-aqueous liquid moistening agent is used in place of water and thus avoids the problems associated with using water as a moistening agent.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: January 12, 1999
    Assignee: The SulfaTreat Company
    Inventor: Richard B. Fox
  • Patent number: 5714431
    Abstract: The present invention provides a zinc titanate sorbent material useful in desulfurization applications. The zinc titanate material is in the form of generally spherical particles of substantially uniform chemical distribution. The sorbent material is capable of absorbing sulfur compounds from a gaseous feed in an amount of at least about 15 weight percent based on the weight of the sorbent. The sorbent material is prepared by a process including: (a) forming a zinc oxide/titanium dioxide dry blend, (b) preparing a substantially uniform aqueous slurry comprising the zinc oxide/titanium dioxide dry blend, organic binder, and at least about 1 weight percent inorganic binder based on the solids weight of the slurry, (c) spray drying the slurry to produce substantially spherical particles, and (d) calcining the particles at a temperature of between about 750.degree. C. to about 950.degree. C. The dry blend is formed by mixing between about 0.
    Type: Grant
    Filed: October 19, 1994
    Date of Patent: February 3, 1998
    Assignee: Research Triangle Institute
    Inventors: Raghubir P. Gupta, Santosh K. Gangwal, Suresh C. Jain
  • Patent number: 5703003
    Abstract: Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.
    Type: Grant
    Filed: November 1, 1995
    Date of Patent: December 30, 1997
    Assignee: United States Department of Energy
    Inventor: Ranjani V. Siriwardane