Reagent Grade (e.g., Ultra Pure) Patents (Class 502/519)
  • Patent number: 6783576
    Abstract: Gas purifier system containing a preconditioned ultra-low emission (P-ULE) carbon for reducing trace impurities such as organic compounds and carbon monoxide in reactive fluids such as ammonia, hydrogen chloride, hydrogen bromide, and chlorine to sub-ppb levels. P-ULE is capable of removing impurities from a reactive fluid down to parts-per-billion (ppb) and sub-ppb levels without concurrently emitting other impurities such as moisture or carbon dioxide into the purified reactive fluid. The P-ULE carbon is prepared by heating a carbon material to temperatures between about 300° C. to 800° C. in an ultra-dry, inert gas stream, to produce an ultra-low emission (ULE) carbon material, subjecting the ULE carbon to a second activation process under a reactive gas atmosphere to produce a P-ULE carbon and storing the P-ULE carbon in an environment that minimizes contamination of the P-ULE prior to its use in a gas purifier system.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: August 31, 2004
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Hans H. Funke, Dan Fraenkel, Virginia H. Houlding
  • Patent number: 6783577
    Abstract: A gas purifier system containing an ultra-low emission (ULE) carbon material for reducing trace impurities such as organic compounds and carbon monoxide to sub-ppb levels in gases such as nitrogen, helium and argon. Ultra-low emission (ULE) carbon materials is capable of removing impurities from a gas stream down to parts-per-billion (ppb) and sub-ppb levels without concurrently emitting other impurities such as moisture or carbon dioxide to the purified gas stream. The carbon material is superactivated by heating the carbon to temperatures between 300-800° C. in an ultra-dry, inert gas stream. The ultra-low emission (ULE) carbon material is handled and stored in an environment that minimizes contamination from moisture and other oxygenated species in order to maintain its ppb and sub-ppb impurity removal and low emission properties.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: August 31, 2004
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Hans H. Funke, Dan Fraenkel, Virginia H. Houlding
  • Patent number: 6710012
    Abstract: Trace impurities such as organic compounds and carbon monoxide are reduced to sub-ppb levels in gases such as nitrogen, helium and argon, by gas purifying systems that contain an ultra-low emission (ULE) carbon material. Ultra-low emission (ULE) carbon materials is capable of removing impurities from a gas stream down to parts-per-billion (ppb) and sub-ppb levels without concurrently emitting other impurities such as moisture or carbon dioxide to the purified gas stream. The carbon material is superactivated by heating the carbon to temperatures between 300-800° C. in an ultra-dry, inert gas stream. The ultra-low emission (ULE) carbon material is handled and stored in an environment that minimizes contamination from moisture and other oxygenated species in order to maintain its ppb and sub-ppb impurity removal and low emission properties.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: March 23, 2004
    Assignee: Matheson Tri-Gas, Inc,
    Inventors: Hans H. Funke, Dan Fraenkel, Virginia H. Houlding
  • Patent number: 6547861
    Abstract: Trace impurities such as organic compounds and carbon monoxide in reactive fluids such as ammonia, hydrogen chloride, hydrogen bromide, and chlorine are reduced to sub-ppb levels using gas purifying systems that contain a preconditioned ultra-low emission (P-ULE) carbon. P-ULE is capable of removing impurities from a reactive fluid down to parts-per-billion (ppb) and sub-ppb levels without concurrently emitting other impurities such as moisture or carbon dioxide into the purified reactive fluid. The P-ULE carbon is prepared by heating a carbon material to temperatures from 300° to about 800° C. in an ultra-dry, inert gas stream, to produce an ultra-low emission (ULE) carbon material, subjecting the ULE carbon to a second activation process under a reactive gas atmosphere to produce a P-ULE carbon and storing the P-ULE carbon in an environment that minimizes contamination of the P-ULE prior to its use in a gas purifier system.
    Type: Grant
    Filed: February 6, 2001
    Date of Patent: April 15, 2003
    Assignee: Matheson Tri-Gas,, Inc.
    Inventors: Hans H. Funke, Dan Fraenkel, Virginia H. Houlding
  • Patent number: 6425946
    Abstract: Trace impurities such as organic compounds and carbon monoxide are reduced to sub-ppb levels in gases such as nitrogen, helium and argon, by gas purifying systems that contain an ultra-low emission (ULE) carbon material. Ultra-low emission (ULE) carbon materials can be made from commercially available carbon materials in the form of pellets, extrudates and beads and is capable of removing impurities from a gas stream down to parts-per-billion (ppb) and sub-ppb levels without concurrently emitting other impurities such as moisture or carbon dioxide to the purified gas stream. The carbon material is superactivated by heating the carbon to temperatures from 300° to about 800° degrees C. in an ultra-dry, inert gas stream. The ultra-low emission (ULE) carbon material is handled and stored in an environment that minimizes contamination from moisture and other oxygenated species in order to maintain its ppb and sub-ppb impurity removal and low emission properties.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: July 30, 2002
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Hans H. Funke, Dan Fraenkel, Virginia H. Houlding