More Than Two Overlapping Layers Patents (Class 502/527.13)
  • Patent number: 8252258
    Abstract: Provided is a diesel oxidation catalyst for the treatment of exhaust gas emissions from a diesel engine and a method for treating a diesel exhaust gas stream, the method comprising providing a diesel oxidation catalyst and contacting said diesel exhaust gas stream with said diesel oxidation catalyst for the treatment of exhaust gas emissions. More particularly, the present invention is directed to a catalyst structure comprising three distinct layers; in which layer comprises a precious metal component such as palladium is located between two hydrocarbon storage layers comprising a molecular sieve such as a zeolite.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: August 28, 2012
    Assignee: BASF Corporation
    Inventors: Torsten W. Müller-Stach, Torsten Neubauer, Alfred H. Punke, Gerd Grubert, Attilio Siani, Corinna Freitag
  • Patent number: 8246923
    Abstract: There is described Pd enriched diesel oxidation catalysts and their application as catalysts for the oxidation of CO and HC emissions from a compression ignition/diesel engine. The catalysts are characterized by increased performance and hydrothermal durability these goals being achieved by employing a layered design to eliminate low temperature catalyst quenching by toxic HC species in the exhaust stream.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: August 21, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Barry W. L. Southward, John G. Nunan
  • Patent number: 8241725
    Abstract: A honeycomb structure whose shape is composed of plural honeycomb segments being bonded integrally by means of a bonding material; the honeycomb structure having inner partition walls with plural first pores and defining respective cells serving as flow channels for exhaust gas, outer circumferential wall having second pores, and surrounding the inner partition walls, and inner partition walls having third pores and contacting with a processed outer circumferential surface becoming an outermost circumference through processing of an outer circumferential portion. A filling composition for the second pores and a filling composition for the third pores having the specified functions respectively are also provided.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: August 14, 2012
    Assignee: NGK Insulators, Ltd.
    Inventors: Takuya Hiramatsu, Kenji Morimoto
  • Patent number: 8211824
    Abstract: A catalytic metal 5 is supported on oxide particles 4, 6 in a first catalyst layer 2, and first binder particles 7 which are fine, and have oxygen ion conductivity are interposed among the oxide particles. A catalytic metal 11 is supported on oxide particles 8, 9, 12 in a second catalyst layer 3 provided on or above the first catalyst layer 2, and second binder particles 13 which are fine, and are capable of storing and releasing oxygen are interposed among the oxide particles.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 3, 2012
    Assignee: Mazda Motor Corporation
    Inventors: Masaaki Akamine, Masahiko Shigetsu
  • Patent number: 8211392
    Abstract: Provided is a catalyst composition, in particular a diesel oxidation catalyst, for the treatment of exhaust gas emissions, such as the oxidation of unburned hydrocarbons (HC), and carbon monoxide (CO). More particularly, the present invention is directed to a catalyst structure comprising at least two, specifically three distinct layers, at least one of which contains an oxygen storage component (OSC) that is present in a layer separate from the majority of the platinum group metal (PGM) components, such as palladium and platinum.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: July 3, 2012
    Assignee: BASF Corporation
    Inventors: Gerd Grubert, Torsten Neubauer, Alfred H. Punke, Torsten W. Müller-Stach, Attilio Siani, Stanley A. Roth, Jeffrey B. Hoke, Shiang Sung, Yuejin Li, Xinyi Wei, Michel Deeba
  • Patent number: 8202483
    Abstract: In at least part of a catalyst layer of a particulate filter, a second catalyst part is exposed on the surface of the catalyst layer to overlie a first catalyst part, the first catalyst part contains Pt-carried activated alumina particles, the second catalyst part contains ZrNd-based mixed oxide particles containing a rare earth metal M and at least one of the first catalyst part and the second catalyst part further contains CeZr-based mixed oxide particles containing a rare earth metal R.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: June 19, 2012
    Assignee: Mazda Motor Corporation
    Inventors: Koichiro Harada, Kenji Suzuki, Kenji Okamoto, Hiroshi Yamada, Akihide Tamani
  • Patent number: 8158550
    Abstract: The invention relates to a multilayer catalyst for the partial oxidation of hydrocarbons in gaseous phase, comprising a monolithic ceramic or metallic substrate having a solid macroporous structure consisting of one or more structures, on which a first active layer with a crystal-line perovskitic structure is deposited, having general formula AxA? 1-xByB? 1-YO3±? wherein: A is a cation of at least one of the rare earth elements, A? is a cation of at least one element selected from groups Ia, IIa and VIa of the periodic table of elements, B is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb, or VIII of the periodic table of elements, B? is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb or VIII of the periodic table of elements Mg2+ or Al3+, x is a number which is such that 0?x?1, y is a number which is such that 0?y?1, and ? is a number which is such that 0???0, 5, a second more external active layer consisting of a dispersion of a noble metal and a possible s
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: April 17, 2012
    Assignee: Consiglio Nazionale Delle Ricerche
    Inventors: Stefano Cimino, Francesco Donsi, Raffaele Pirone, Gennaro Russo
  • Patent number: 8153549
    Abstract: A catalyst for treating an exhaust gas has at least a carrier and plural layers formed on the carrier, wherein at least one layer of the above plural layers has an interstice in the layer, and at least one layer of the above plural layers contains a catalyst component. The above catalyst for treating an exhaust gas allows the enhancement of the diffusion of an exhaust gas in a catalyst layer, which results in the improvement of catalyst efficiency.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: April 10, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Jin Cho, Kenji Tanikawa
  • Patent number: 8133837
    Abstract: Decreasing HC emission is made possible. An exhaust gas-purifying catalyst includes a substrate, a hydrocarbon-adsorbing layer covering the substrate, and a catalytic layer covering the hydrocarbon-adsorbing layer. The catalytic layer includes a layered structure of a first catalytic layer including a precious metal and a carrier supporting it, and a second catalytic layer including the same precious metal as the precious metal of the first catalytic layer and a carrier supporting it and having a concentration of the precious metal higher than that in the first catalytic layer.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: March 13, 2012
    Assignee: Cataler Corporation
    Inventors: Yuji Yabuzaki, Akimasa Hirai, Kenichi Taki
  • Patent number: 8119554
    Abstract: Shaped bodies having catalytic properties which can be obtained by a process comprising the steps: a) production of a shaped body by means of a powder-based rapid prototyping process, b) if appropriate, a heat treatment of the shaped body, c) if appropriate, application of at least one catalytically active component to the shaped body, d) if appropriate, a further heat treatment, where steps b), c) and/or d) can be carried out a number of times, are used as reactor internals in heterogeneously catalyzed chemical reactions.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 21, 2012
    Assignee: BASF SE
    Inventors: Nawid Kashani-Shirazi, Veronika Wloka, Wolfgang Gerlinger, Andrea Schmidt, Kerstin Heinen, Wolfgang Kollenberg
  • Patent number: 8101539
    Abstract: A purifying catalyst includes catalyst powder composed of a transition metal oxide of which an average particle diameter is within 1 nm to 2 ?m and in which an electron binding energy of oxygen is shifted to an energy side lower than 531.3 eV. The purifying catalyst shows good purification performance even when noble metal is not contained as an essential component.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: January 24, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hirofumi Yasuda, Yasunari Hanaki, Toru Sekiba, Shigeru Chida, Junji Ito
  • Patent number: 8088707
    Abstract: A supported catalyst with a solid sphere structure of the present invention includes an oxide supporting body and a metal such as Ni, Co, Fe, or a combination thereof distributed on the surface and inside of the supporting body. The supported catalyst with a solid sphere structure can maintain a spherical shape during heat treatment and can be used with a floating bed reactor due to the solid sphere structure thereof.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: January 3, 2012
    Assignee: Cheil Industries Inc.
    Inventors: Byeong Yeol Kim, Yun Tack Lee, Seung Yong Bae, Young Sil Lee
  • Patent number: 8084389
    Abstract: A noble metal is supported on an upstream-side catalytic portion 20 at least, and an SOx storage material, such as Mg and K that lower the noble metal's activities, is supported on a downstream-side catalytic portion 21. The noble metal being supported on the upstream-side catalytic portion 20 oxidizes SO2 efficiently to turn it into SOx, because the lowering of oxidizing activities is suppressed. These SOx are retained by means of storage in the SOx storage material being loaded on the downstream-side catalytic portion 21. Therefore, the SOx storing performance improves, and it is good in terms of durability as well.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: December 27, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshitsugu Ogura, Takayuki Endo
  • Patent number: 8034738
    Abstract: It is intended to highly efficiently produce a high-density brush-shaped carbon nanostructure useful in the production of CNT assembly, such as rope-shaped CNTs, and provide a catalyst body for production of brush-shaped carbon nanostructure that enables the production. The catalyst body for production of brush-shaped carbon nanostructure is one comprising a substrate (32), an aggregation suppressive layer (34) superimposed on a surface thereof and a catalyst layer superimposed on the aggregation suppressive layer (34). The catalyst layer is a catalyst particle layer (44) consisting of metallic catalyst particles (42) composed mainly of a catalytic metal. The metallic catalyst particles (42) have an average particle diameter, D, satisfying the relationship 0.5 nm?D?80 nm, and individual particles of the metallic catalyst particles (42) have a diameter, d, falling within the range of the above average particle diameter (D).
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: October 11, 2011
    Assignee: Taiyo Nippon Sanso Corporation
    Inventors: Yoshikazu Nakayama, Toru Sakai, Takeshi Nagasaka
  • Patent number: 8007750
    Abstract: A layered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Methods of making and using the same are also provided. In one or more embodiments, the catalyst comprises three layers of catalytic material in conjunction with a carrier. A first layer comprises a platinum component on a first support; a second layer comprises a rhodium component on a second support; and a third layer comprises a palladium component and a third support. The palladium, rhodium, and/or platinum can independently be deposited on a support of high surface area refractory metal oxide, or of an oxygen storage component, or both.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 30, 2011
    Assignee: BASF Corporation
    Inventors: Shau-Lin Franklin Chen, Jin Sakakibara, Tian Luo, Harold Rabinowitz
  • Patent number: 7998896
    Abstract: An exhaust gas purifying catalyst having a good ignition performance is provided. The exhaust gas purifying catalyst 1 includes a catalyst substrate 3 and a catalyst coating layer 5 which contains a noble metal and a refractory inorganic oxide and is formed on the catalyst substrate. The exhaust gas purifying catalyst is characterized in that the catalyst coating layer 5 includes an upstream portion 11 located upstream and a downstream portion 13 located downstream in a flow direction of an exhaust gas. The upstream portion 11 has a layered structure including an upstream portion inside layer 17 and an upstream portion outside layer 15. The upstream portion inside layer contains a cerium-zirconium composite oxide in which a relative proportion of CeO2 is 50 to 95 wt %, as the refractory inorganic oxide, and the upstream portion outside layer 15 and the downstream portion 13 contain a cerium-zirconium composite oxide in which a relative proportion of ZrO2 is 50 to 95 wt %, as the refractory inorganic oxide.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: August 16, 2011
    Assignee: Cataler Corporation
    Inventors: Ichiro Kitamura, Kenichi Taki, Akimasa Hirai
  • Patent number: 7981390
    Abstract: Catalyst articles comprising substantially only a palladium precious metal component and related methods of preparation and use are disclosed. Disclosed is a catalyst article comprising a first layer formed on a carrier substrate, wherein the first layer comprises a refractory metal oxide and has a surface that is substantially uniform; and a second layer formed on the first layer, wherein the second layer comprises i) an oxygen storage component that is about 50-90% by weight of the second layer and ii) a palladium component in an amount of about 10-150 g/ft3 of palladium, wherein the palladium component is substantially the only platinum group metal component. One or more improved properties are exhibited by the catalyst article.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: July 19, 2011
    Assignee: BASF Corporation
    Inventors: Michael P. Galligan, Xinsheng Liu, Pascaline H. Tran, Young Gin Kim, Ye Liu
  • Patent number: 7922988
    Abstract: A layered three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Engine exhaust treatment system and methods of using the same are also provided. The catalytic material can be provided in layers such that a larger amount of oxygen storage component is provided in a downstream zone as compared to an upstream zone. For example, the upstream zone can be configured to have one, two, or three layers, and the downstream zone can be independently configured to have one, two, or three layers. In one or more embodiments, the catalyst supported on a carrier has three layers, where at least two of the layers are zoned to have an oxygen storage component being present in an upstream zone in an amount that is less than the oxygen storage component present in the downstream zone.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: April 12, 2011
    Inventors: Michel Deeba, Stephan Siemund, Xinyi Wei, Stefan Kotrel, Knut Wassermann, Glenn Svoboda, Harold Rabinowitz
  • Patent number: 7867943
    Abstract: An exhaust gas purifying catalyst which is made excellent in heat resistance and in S-resistance by keeping the catalytic activity of Pt particles in a satisfactory state. The exhaust gas purifying catalyst is made such that a coating layer containing a compound oxide of cerium and an oxide of a metal for stabilizing the oxide of said cerium and an oxide containing no cerium is formed on a substrate, and such that platinum particles are carried on the catalyst. Said compound oxide has a pore volume of 0.1 cc/g or more, and said platinum particles are selectively adsorbed at the electron accepting points on said compound oxide.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: January 11, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinichi Takeshima
  • Patent number: 7816299
    Abstract: A stacked bed catalyst system comprising at least one first catalyst selected from conventional hydrotreating catalyst having an average pore diameter of greater than about 10 nm and at least one second catalyst comprising a bulk metal hydrotreating catalyst comprised of at least one Group VIII non-noble metal and at least one Group VIB metal and optionally a binder material.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 19, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gary P. Schleicher, Kenneth L. Riley
  • Patent number: 7799727
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7795172
    Abstract: A layered exhaust treatment catalyst comprising: (a) a carrier such as cordierite; (b) a first layer deposited on the carrier comprising a palladium metal component, a platinum metal component and an oxygen storage component such as ceria supported on a refractory metal oxide such as gamma-alumina; and (c) a second layer deposited on the first layer comprising a rhodium metal component, a platinum metal component and an oxygen storage component such as ceria supported on a refractory metal oxide such as gamma-alumina. Preferably, the catalyst also includes a bottom layer interposed between the carrier and the first layer. The bottom layer comprises an oxygen storage component such as ceria supported on a refractory metal oxide such as gamma-alumina. The amount of the oxygen storage component of the catalyst may be “tuned”, i.e., adjusted, to meet the needs of a vehicle's on-board diagnostic (“OBD”) catalyst efficiency monitoring system, without adversely affecting the performance of the catalyst.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: September 14, 2010
    Assignee: BASF Corporation
    Inventors: John S. Foong, Zhicheng Hu
  • Patent number: 7759283
    Abstract: To improve a CO conversion in stoichiometry-lean atmosphere, and additionally to prevent the rise of pressure loss. A catalytic coating layer 2 is constituted of a lower layer 20 including an oxygen storage capacity material and an upper layer 21 being formed on a surface of the lower layer 20 and including a catalytic noble metal, and a thickness of the upper layer is adapted so as to be 5 ?m-40 ?m. The upper layer 21 is good in terms of gas diffusibility, and thereby OSC resulting from the oxygen storage capacity material being included in the lower layer 20 is demonstrated maximally.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: July 20, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Masanori Yamato, Takatoshi Shinyoshi, Takumi Suzawa, Keiji Ito
  • Patent number: 7754171
    Abstract: A multilayered, three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Provided is a catalytic material of at least four layers in conjunction with a carrier, where each of the layers includes a support, at least three layers comprise a precious metal component, and at least one layer comprises an oxygen storage component (OSC). The catalytic material can further comprise a fifth layer, where at least four layers comprise a precious metal component, at least one layer comprises an oxygen storage component, and at least one layer is substantially free of an oxygen storage component.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: July 13, 2010
    Assignee: BASF Corporation
    Inventors: Shau-Lin F. Chen, Knut Wassermann, Stephan Siemund, Tian Luo, Torsten Neubauer, Jin Sakakibara, Harold Rabinowitz
  • Patent number: 7749472
    Abstract: The present invention provides for novel poisoning-resistant catalysts used for automobile exhaust gas treatment systems. To alleviate the detrimental affects of engine oil and/or fuel additive poisoning the present invention provides for an overcoat layer comprising a porous refractory oxide and one or more base metal oxides, which is coated over one or more precious metal containing washcoat layers. The overcoat of the present invention prevents phosphorous as well as other poisoning deposits, from fouling and/or negatively interacting with the underlying precious metal containing washcoats. In an alternative embodiment, the present invention provides for the coating of the upstream end of a catalytic member by the overcoat layer, thereby creating an upstream poison capture zone.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: July 6, 2010
    Assignee: BASF Corporation
    Inventors: Shau-Lin Franklin Chen, Knut Wassermann, Jin Sakakibara
  • Patent number: 7745367
    Abstract: An emission control catalyst that exhibits improved CO and HC reduction performance includes a supported platinum-based catalyst, and a supported palladium-gold catalyst. The two catalysts are coated onto different layers, zones, or monoliths of the substrate for the emission control catalyst such that the platinum-based catalyst encounters the exhaust stream before the palladium-gold catalyst. Zeolite may be added to the emission control catalyst as a hydrocarbon absorbing component to boost the oxidation activity of the palladium-gold catalyst.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: June 29, 2010
    Assignee: Nanostellar, Inc.
    Inventors: Kyle L. Fujdala, Timothy J. Truex, Jifei Jia
  • Patent number: 7741243
    Abstract: Provided is a production method of a catalyst layer which is improved in catalyst activity and catalyst utilization efficiency. The method of producing a catalyst layer includes the steps of forming a first layer including a catalyst precursor on a substrate by a vapor phase process; forming cracks in the first layer; and reducing the first layer having the cracks formed therein.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: June 22, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Atsuhito Yoshizawa
  • Patent number: 7737077
    Abstract: This is to provide a catalyst for purifying exhaust gases, catalyst which are good in terms of the purifying performance.
    Type: Grant
    Filed: November 25, 2004
    Date of Patent: June 15, 2010
    Assignee: Cataler Corporation
    Inventors: Ichiro Kitamura, Akimasa Hirai, Kenichi Taki
  • Patent number: 7709414
    Abstract: An engine exhaust catalyst exhibits improved CO oxidation performance relative to conventional engine exhaust catalysts and includes a first supported catalyst comprising platinum and a second supported catalyst comprising palladium and gold species in close contact. The first supported catalyst may be a platinum catalyst, a platinum—palladium catalyst, or a platinum catalyst promoted with bismuth, and the second supported catalyst preferably has a palladium to gold weight ratio of about 0.85:1.0. To improve aged catalyst performance, the first and second supported catalysts are coated onto different layers, zones, or monoliths of the substrate for the engine exhaust catalyst.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: May 4, 2010
    Assignee: NanoStellar, Inc.
    Inventors: Kyle L. Fujdala, Timothy J. Truex, Jifei Jia
  • Patent number: 7704464
    Abstract: Hydrocarbon processing devices and systems are constructed to modify the combustion characteristics of hydrocarbon fuels and emissions for the purpose of emissions reduction and to increase the overall performance characteristics of the engine. According to one exemplary embodiment, a catalytic device for processing a fluid containing hydrocarbons includes a reactive body formed of a plurality of metallic materials arranged in a layered structure. The plurality of metallic materials is formed of at least two different materials. The body has an inner core member having a first density and another region, that is formed along a longitudinal length of the rolled layered structure, has a second density which is less than the first density.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: April 27, 2010
    Assignee: 0783963 BC Ltd.
    Inventor: Jeffrey A. Stephenson
  • Patent number: 7674743
    Abstract: This catalyst system simultaneously removes ammonia and enhances net NOx conversion by placing an NH3—SCR catalyst formulation downstream of a lean NOx trap. By doing so, the NH3—SCR catalyst adsorbs the ammonia from the upstream lean NOx trap generated during the rich pulses. The stored ammonia then reacts with the NOx emitted from the upstream lean NOx trap-enhancing the net NOx conversion rate significantly, while depleting the stored ammonia. By combining the lean NOx trap with the NH3—SCR catalyst, the system allows for the reduction or elimination of NH3 and NOx slip, reduction in NOx spikes and thus an improved net NOx conversion during lean and rich operation.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: March 9, 2010
    Assignee: Ford Global Technologies, LLC
    Inventors: Haren Sakarai Gandhi, John Vito Cavataio, Robert Henry Hammerle, Yisun Cheng
  • Patent number: 7662743
    Abstract: The present invention provides an NOx purifying catalyst that removes NOx with sufficient efficiency even under low temperature operation such as diesel engine automobiles. An NOx purifying catalyst for processing NOx in exhaust gas by rich/lean control of the air-fuel ratio of the exhaust gas, includes a first catalytic layer containing ?-zeolite having iron and/or cerium elements, and a second catalytic layer including a noble metal and cerium oxide-based material; in which the second and the first catalytic layers are coated on a support in that order so that the first catalytic layer is the uppermost layer. The NOx purifying catalyst purifies NOx as showed in Reaction Formulations (1) to (4). Lean condition 1: NO+½O2?NO2??(1) Rich condition: CO+H2O?CO2??(2) NOx+H2?NH3??(3) Lean condition 2: NOx+NH3+O2?N2+H2O??(4).
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 16, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Naohiro Satoh, Osami Yamamoto, Koichi Inaba
  • Patent number: 7638460
    Abstract: An exhaust gas purifying catalyst of the present invention has a substrate, and a catalyst layer formed on an inner wall of the substrate and composed of at least a single layer. The catalyst layer contains a carrier supporting noble metal. Further, a maximum height of profile of a surface of a top layer in the catalyst layer is not less than 2 ?m and not more than 50 ?m, and the top layer contains the carrier supporting noble metal.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 29, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masanori Nakamura, Katsuo Suga, Kiyoshi Miyazaki, Jun Ikezawa
  • Patent number: 7638459
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7622096
    Abstract: A layered three-way conversion catalyst having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides is disclosed. Engine exhaust treatment system and methods of using the same are also provided. In one or more embodiments, the catalyst supported on a carrier has three layers, where at least two of the layers are zoned to have an oxygen storage component being present in an upstream zone in an amount that is less than the oxygen storage component present in the downstream zone.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: November 24, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Michel Deeba, Knut Wassermann, Glenn Svoboda, Harold Rabinowitz, Stephan Slemund, Xinyi Wei
  • Patent number: 7585477
    Abstract: The invention provides a catalyst for catalytic reduction of nitrogen oxides contained in exhaust gases wherein fuel is supplied and subjected to combustion under periodic rich/lean conditions and the resulting exhaust gases are brought into contact therewith, which catalyst comprises: (A) a catalyst component A comprising (c) ceria or (d) praseodymium oxide or (e) an oxide and/or a composite oxide of at least two elements selected from the group consisting of cerium, zirconium, praseodymium, neodymium, terbium, samarium, gadolinium and lanthanum; (B) a catalyst component B comprising (d) a noble metal catalyst component selected from the group consisting of platinum, rhodium, palladium and oxides thereof and (e) a carrier; and (C) a catalyst component C comprising (f) a solid acid, and (g) a solid acid supporting an oxide of at least one element selected from the group consisting of vanadium, tungsten, molybdenum, copper, iron, cobalt, nickel and manganese.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: September 8, 2009
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tadao Nakatsuji, Norio Suzuki, Hiroshi Ohno, Naohiro Sato, Tomoko Morita, Katsuji Wada
  • Patent number: 7547656
    Abstract: An exhaust gas cleaning catalyst comprising: a carrier substrate; a catalyst carrying layer formed on the carrier substrate; and a noble metal catalyst carried by the catalyst carrying layer; wherein said catalyst carrying layer comprises at least two layers, and of the at least two layers, lower layer on the side of the carrier substrate is a metal oxide layer with porosity of 40˜75% and upper layer on the side of the top surface is a metal oxide layer having thermal conductivity of 5 W/mK or less.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: June 16, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masahide Miura
  • Patent number: 7534738
    Abstract: An emission control catalyst that exhibits improved CO and HC reduction performance includes a supported platinum-based catalyst, and a supported palladium-gold catalyst. The two catalysts are coated onto different layers, zones, or monoliths of the substrate for the emission control catalyst such that the platinum-based catalyst encounters the exhaust stream before the palladium-gold catalyst. Zeolite may be added to the emission control catalyst as a hydrocarbon absorbing component to boost the oxidation activity of the palladium-gold catalyst.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: May 19, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Kyle L. Fujdala, Timothy J. Truex
  • Patent number: 7531479
    Abstract: A method of depositing a catalytically reactive coating to a substrate including selecting a target light off temperature for a predetermined catalytic combustion environment, selecting a thermal barrier coating composition, selecting a catalytic material and codepositing the thermal barrier coating composition and the catalytic material onto the substrate in proportions selected to produce the target light off temperature when exposed to the combustion environment. The method may include controlling the codepositing step to cause the thermal barrier coating composition to interact with the catalytic material to produce a phase having a light off temperature different from the respective light off temperatures of the thermal barrier coating composition and the catalytic material. A catalyst element may include a substrate and a first layer comprising a thermal barrier coating composition and a catalytic material throughout its depth disposed over a first portion of the substrate.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: May 12, 2009
    Assignee: Siemens Energy, Inc.
    Inventors: Andrew Jeremiah Burns, Ramesh Subramanian, Vasudevan Srinivasan
  • Patent number: 7517826
    Abstract: A multi-layer emission control catalyst exhibits improved CO and HC reduction performance. The bottom layer includes a supported catalyst comprising platinum and palladium particles or palladium and gold particles. The middle layer includes zeolites. The top layer includes a supported catalyst comprising platinum and palladium particles. The use of zeolite mixture in the middle layer further improves CO and HC reduction performance in comparison with using zeolite of a single type. The use of a supported catalyst comprising palladium and gold particles in the bottom layer further improves CO and HC reduction performance in comparison with using a supported catalyst comprising platinum and palladium particles.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 14, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Kyle L. Fujdala, Timothy J. Truex
  • Patent number: 7510994
    Abstract: A catalyst is provided which is low in methane selectivity in a high CO conversion region and high in chain growth probability ? in a Fischer-Tropsch synthesis and comprises a support comprising silica or alumina and an oxide of zirconium and/or titanium loaded thereon in film form in an amount ranging from 0.5 percent by mass to 10.0 percent in terms of metal, and one or more metals selected from the group consisting of cobalt, nickel and ruthenium loaded on the support.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: March 31, 2009
    Assignee: Nippon Oil Corporation
    Inventors: Masakazu Ikeda, Toshio Waku, Nobuo Aoki
  • Patent number: 7446070
    Abstract: An exhaust gas-purifying catalyst includes a zeolite and a perovskite composite oxide containing palladium placed at its B site.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: November 4, 2008
    Assignees: Cataler Corporation, Daihatsu Motor Co., Ltd.
    Inventors: Asuka Hori, Keiichi Narita, Yasunori Sato, Hirohisa Tanaka, Ichiro Takahashi, Nobuhiko Kajita
  • Patent number: 7446076
    Abstract: Catalytic converter comprises a carrier having exhaust gas passages therein, a lower catalytic layer coated over the carrier and comprising hollow oxide powder loaded with catalytic metal, and an upper catalytic layer coated over the lower catalytic layer, directly exposed to exhaust gas flowing in the exhaust gas passages and comprising solid oxide powder loaded with catalytic metal. The hollow oxide powder may be ceria or alumina base oxide. Further it may be mixed oxide such as Ce—Zr mixed oxide or La contained alumina as well.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: November 4, 2008
    Assignee: Mazda Motor Corporation
    Inventors: Seiji Miyoshi, Akihide Takami, Hiroshi Yamada, Masaaki Akamine, Hideharu Iwakuni, Koichiro Harada
  • Patent number: 7384889
    Abstract: An exhaust gas purifying catalyst of the present invention contains alumina, and ceria loading palladium and platinum, and the ratio of palladium (IV) oxide to palladium (II) oxide by peak separation of the 3d orbital of palladium in X-ray photoelectron spectroscopy is within a range from 70:30 to 99:1. Thereby, the catalyst is capable of reducing the CO concentration and increasing the H2 concentration in an exhaust gas even after durability at high temperature.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: June 10, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Junji Ito
  • Patent number: 7374729
    Abstract: Provided are an exhaust treatment catalyst and an exhaust article containing the catalyst. The catalyst comprises: (a) a carrier; (b) a first layer deposited on the carrier, said first layer comprising substantially only at least one refractive metal oxide; (c) a second layer deposited on the first layer, said second layer comprising substantially only at least one oxygen storage component and at least one binder therefor; and (d) a third layer deposited on the second layer, said third layer comprising at least one layer of one or more platinum group metal components supported on a refractory metal oxide support. Optionally, a fourth layer is deposited on the third layer wherein the fourth layer comprises one or more platinum group metal components supported on a refractory metal oxide support. As a further option, an overcoat layer may be deposited on the third or fourth layer wherein the overcoat layer comprises a catalyst poison sorbent.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: May 20, 2008
    Assignee: BASF Catalysts LLC
    Inventors: Shau-Lin Franklin Chen, Zhicheng Hu
  • Patent number: 7361625
    Abstract: A carrier supporting titania thereon is further caused to carry a metal compound thereon. This metal compound is hydrogen reduced in a heating atmosphere at a first treatment temperature, then oxidized in a heating atmosphere at a second treatment temperature not higher than the first treatment temperature to thereby obtain a photocatalyst. In this event, metal is released from an extremely strong reduction state and thus highly dispersed on the catalyst in the form of fine particles so that high activity of the catalyst can be obtained. Then, by purifying gas while feeding light and heat to the photocatalyst by, for example, blacklights, a volatile organic compound such as acetaldehyde can be decomposed at a high decomposition rate through cooperation between photocatalytic activity and thermal catalytic activity of the photocatalyst.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: April 22, 2008
    Assignee: Sundecor Co., Ltd
    Inventors: Katsuyuki Nakano, Eiko Higashi, Masanori Nanri
  • Patent number: 7306771
    Abstract: A filter catalyst for purifying exhaust gases having a catalytic layer comprising the first catalyst support 2 having an average particle diameter of 1 ?m or less, the second catalyst support 3 having an average particle diameter from 1/20 to ½ of the average pore diameter of the filter cellular walls 12 and catalytic ingredients, on the filter cellular walls 12 having an average pore diameter of from 20 to 40 ?m, and the catalytic layer having uneven surfaces is used. Since the second catalyst support hardly enters into the pore with a diameter of 20 ?m or less, it exists partly on the filter cellular walls and the inside surface of the wall. Therefore, since particles collide with the convex part of the catalytic layer, it becomes possible to collect them easily and the collecting rate for particles and the ability of the particles purification are improved.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: December 11, 2007
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Seiji Okawara
  • Patent number: 7271127
    Abstract: Disclosed is a catalyst for a partial oxidation reforming reaction of fuel in the form of disk having through-hole. In addition, according to the invention, there is provided a fuel reforming apparatus and method using the catalyst. The catalyst for a partial oxidation reforming reaction of fuel according to the invention makes it possible to progress the partial oxidation reforming reaction of fuel smoothly, to improve the efficiency when reforming the fuel and to simplify the fuel reforming reactor. According to the fuel reforming apparatus and method, since the heat of reaction is efficiently controlled and used, a simple on-off operation, reduction of starting time and a stable operational condition are accomplished, which are indispensably required for a fuel reforming system in fuel cells, such as household, portable and car fuel cells.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: September 18, 2007
    Assignee: Korea Institute of Science and Technology
    Inventors: Suk-Woo Nam, Sang Jun Kong, Seong-Ahn Hong, In-Hwan Oh, Tae-Hoon Lim, Heung Yong Ha, Sung Pil Yoon, Jonghee Han, EunAe Cho
  • Patent number: 7238640
    Abstract: The present invention provides a catalyst for use in a NOx trap that has reduced NOx release during rich purges, increased NO conversion efficiency under stoichiometric conditions, and improved sulfur tolerance. The catalyst of this embodiment includes a precious metal, an oxygen storage component in contact with the precious metal, and a NOx storage material. The oxygen storage component in contact with the precious metal is present in an amount that provides sufficient oxygen storage capacity to reduce the NOx release from the NOx trap during rich purges to less than 20% of the NOx that is stored in the NOx trap across the operating temperature window of the NOx trap, increase the NOx conversion efficiency under stoichiometric conditions to a value greater than 70%, and increase the sulfur tolerance of the NOx trap.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: July 3, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Hungwen Jen, Gopichandra Surnilla, Christian Goralski, Jr., Joseph Theis, Justin Ura
  • Patent number: 7235511
    Abstract: An exhaust gas purifying catalyst includes a carrier and a catalyst layer provided on the carrier. The catalyst layer includes active Al2O3 on which a noble metal is carried, an oxygen storage agent on which Rh is carried, Al2O3 coated with ZrO2 on which Rh is carried, and a binder material.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: June 26, 2007
    Assignees: Tokyo Roki Co., Ltd., Mazda Motor Corporation
    Inventors: Tomohiko Kawamoto, Katsuyuki Fujita, Tadashi Tokuyama, Masahiko Shigetsu, Masaaki Akamine, Hisaya Kawabata, Hideharu Iwakuni, Akihide Takami