Specified Support Particles Of Peculiar Structure Or Physical Form (e.g., Whiskers, Fiber Pieces, Etc.) Patents (Class 502/527.14)
  • Patent number: 8993473
    Abstract: Embodiments of the present invention include improved shaped catalyst structures containing catalytic material comprised of mixed oxides of vanadium and phosphorus and using such shaped catalyst structures for the production of maleic anhydride.
    Type: Grant
    Filed: October 7, 2009
    Date of Patent: March 31, 2015
    Assignee: Huntsman Petrochemical LLC
    Inventors: Larry E. Melde, William A. Smith
  • Patent number: 8865611
    Abstract: A method of forming a catalyst, comprising: providing a plurality of support particles and a plurality of mobility-inhibiting particles, wherein each support particle in the plurality of support particles is bonded with its own catalytic particle; and bonding the plurality of mobility-inhibiting particles to the plurality of support particles, wherein each support particle is separated from every other support particle in the plurality of support particles by at least one of the mobility-inhibiting particles, and wherein the mobility-inhibiting particles are configured to prevent the catalytic particles from moving from one support particle to another support particle.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: October 21, 2014
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger
  • Patent number: 8641980
    Abstract: Fluffy powders, such as calcined kaolin clays or air floated clays, can be compacted using a process which comprises applying increasing amounts of pressure to a powder moving through a confinement area. The compacted product has an improved bulk density and improved wet out and slurry incorporation times as compared to the non-compacted starting material feed.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: February 4, 2014
    Assignee: Thiele Kaolin Company
    Inventor: William H. Wiggins, Sr.
  • Patent number: 8586496
    Abstract: A method is described for preparing a molecular sieve-containing catalyst for use in a catalytic process conducted in a stirred tank reactor. The method comprises providing a mixture comprising a molecular sieve crystal and forming the mixture into catalyst particles having an average cross-sectional dimension of between about 0.01 mm and about 3.0 mm. The mixture may include a binder and the catalyst particles are then calcined to remove water therefrom and, after calcination and prior to loading the catalyst particles into a reactor for conducting the catalytic process, the catalyst particles are coated with a paraffin inert to the conditions employed in the catalytic process.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: November 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Carolyn B. Duncan, Jon E. R. Stanat, Daria N. Lissy, Jane C. Cheng
  • Patent number: 8563460
    Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 22, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557728
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has one or more holes extending therethrough, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst or catalyst unit preferably has one or more flutes miming along its length. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557727
    Abstract: A method of forming a catalyst, comprising: providing a plurality of support particles and a plurality of mobility-inhibiting particles, wherein each support particle in the plurality of support particles is bonded with its own catalytic particle; and bonding the plurality of mobility-inhibiting particles to the plurality of support particles, wherein each support particle is separated from every other support particle in the plurality of support particles by at least one of the mobility-inhibiting particles, and wherein the mobility-inhibiting particles are configured to prevent the catalytic particles from moving from one support particle to another support particle.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 15, 2013
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger
  • Patent number: 8557729
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has two or more flutes running along its length, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst may be used particularly in reactions where hydrogen is a reactant such as hydroprocessing, hydrogenation, water-gas shift reactions, methanation, hydrocarbon synthesis by the Fischer-Tropsch reaction, methanol synthesis and ammonia synthesis.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: Daniel Lee Cairns, Mileta Babovic, Terence James Fitzpatrick, Elizabeth Margaret Holt, Colin William Park, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8497224
    Abstract: The invention comprises a process for manufacturing a catalyst substrate which is a shaped porous structure, said process comprising the steps of providing non-woven fibers with an average length in the range of 4-50 mm, an average diameter in the range of 5-300 microns, and a length over diameter ratio in the range of 50 to 500 into a mould to form a fibrous aggregate with volume (V), and compressing the fibrous aggregate to form a porous structure. The compression is carried out in such a manner that the volume of the fibrous aggregate in compressed state (Vcompressed) is at most 90% of the volume (V) of the fibrous aggregate before compression. The invention further relates to the catalyst substrate prepared and to a catalyst comprising the catalyst substrate.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: July 30, 2013
    Assignee: Shell Oil Company
    Inventors: Desmond Marinus Cornelis Dekker, Gerardus Petrus Lambertus Niesen, Daan Vlaar
  • Patent number: 8349758
    Abstract: A catalyst with large surface area structure, in particular for steam-reforming catalysts, which is characterized in that the large surface area structure is formed of a large number of round or parallel penetrating holes of polygonal cross-section, wherein the catalyst carrier is prepared in the injection molding process, coated with a washcoat and then impregnated with the active component. The catalyst carrier includes at least one sinterable material and has a lateral pressure resistance of at least 700 N. Also, a process for the preparation of such catalysts and the use thereof in a reactor.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: January 8, 2013
    Assignee: Sud-Chemie AG
    Inventors: Wolfgang Gabriel, Ingo Hanke
  • Patent number: 8334233
    Abstract: A catalyst layer-supporting substrate includes a substrate and a catalyst layer. The catalyst layer includes a catalyst material and pores. The catalyst layer is formed on the substrate. The catalyst material has a layer or wire shape. A half-value width of a main peak of the catalyst material, as determined from X-ray diffraction spectrum of the catalyst layer, is 1.5° or more. A porosity of the catalyst layer is 30% or more.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: December 18, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wu Mei, Jun Tamura, Mutsuki Yamazaki, Yoshihiko Nakano
  • Patent number: 8197779
    Abstract: The present invention relates to a catalyst for removing nitrogen oxides from an exhaust gas, a method for preparing the same and a method for removing nitrogen oxide in an exhaust gas using the same, and more particularly, to a catalyst for removing nitrogen oxides from the exhaust gas in which a ceramic fiber carrier is treated by hydrothermal reaction prior to washcoating to improve the hydrothermal stability of catalyst, a method for preparing the same and a method for removing nitrogen oxide in an exhaust gas using the same. The catalyst prepared according to the present invention has excellent hydrothermal stability and an activity of the catalyst remains for a long time. Further, by using this catalyst to remove nitrogen oxides in an exhaust gas, a removal ratio of the nitrogen oxides is greatly enhanced.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 12, 2012
    Assignee: LG Hausys, Ltd.
    Inventors: Ju-hyung Lee, In-sik Nam, Seong-moon Jung, Jong-sik Choi, Sun-joo Kim, Hyuk-jae Kwon, Young-jin Kim, Joon-hyun Baik
  • Patent number: 8003562
    Abstract: A silica base composite photocatalyst that has appropriate water purification capability, inhibiting precipitation of metal oxides; and a process for producing the same. The silica base composite photocatalyst is one composed mainly of a composite oxide phase consisting of an oxide phase (first phase) composed mainly of silica component and a titania phase (second phase) wherein the ratio of presence of the second phase increases aslope toward the surface layer, characterized in that at least one metal oxide selected from among strontium titanate and barium titanate is contained in the second phase.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: August 23, 2011
    Assignee: Ube Industries, Ltd.
    Inventors: Hiroyuki Yamaoka, Yoshikatsu Harada, Teruaki Fujii, Shinichirou Otani, Tadashi Matsunaga
  • Patent number: 7951738
    Abstract: The present invention provides a process for production of a zeolite separation membrane with satisfactory separation performance. The process for production of a zeolite separation membrane according to the invention is comprising: a seed crystal-attaching step in which: a sealed body (10), which is obtained by sealing both ends of a cylindrical porous body (11) with sealing members (12a, 12b), is immersed from the sealing member (12a) end into a suspension (22) containing zeolite seed crystals; the suspension (22) is allowed to permeate from the exterior of the porous body (11) to the interior thereof; the zeolite seed crystals are thereby attached to the porous body (11); and a seed crystal-attached porous body is obtained; and a zeolite membrane-forming step in which: the seed crystal-attached porous body is contacted with a reaction solution containing the raw material of a zeolite membrane; the zeolite membrane is formed on the porous body (11); and a zeolite separation membrane is obtained.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: May 31, 2011
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Hiroyuki Chida, Takehito Mizuno
  • Patent number: 7910514
    Abstract: An inorganic fiber catalyst includes an alumina-silica fiber base material, and a plurality of catalyst component particles contained in the alumina-silica fiber base material. A mean particle diameter of the catalyst component particles contained in at least a surface portion of the alumina-silica fiber base material is 50 nm or less, and a standard deviation of particle diameters of the catalyst component particles is 30 or less.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: March 22, 2011
    Assignees: Nissan Motor Co., Ltd., Nitivy Co., Ltd.
    Inventors: Hideaki Morisaka, Masahiro Takaya, Yasunari Hanaki, Kouji Masuda, Michiaki Sagesaka, Naoki Harakawa
  • Patent number: 7879758
    Abstract: A catalytically active porous element for promoting catalytic gas phase reactions is proposed, said element comprising a porous structural element of sintered ceramic or metallic primary particles, which are selected from fibrous and/or granular particles, a secondary structure of titania nano particles deposited on the surface of said sintered primary particles and a catalytic component deposited on the surface of the titania nano particles. Thereby porous catalytic elements for catalytic gas phase reactions which are useful not only in NOX reduction reactions but also for other catalytic gas phase reactions are provided.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: February 1, 2011
    Assignee: Pall Corporation
    Inventors: Steffen Heidenreich, Manfred Nacken
  • Patent number: 7858554
    Abstract: A porous cordierite substrate and a method of forming a porous cordierite substrate including providing a fiber that includes at least one cordierite precursor material and providing at least one organic binder material. The fiber and the organic binder material are mixed with a fluid. The mix of fiber, organic binder material and fluid is extruded into a green substrate. The green substrate is fired to enable the formation of bonds between the fibers and to form a porous cordierite fiber substrate.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: December 28, 2010
    Assignee: Geo2 Technologies, Inc.
    Inventors: James Jenq Liu, Bilal Zuberi, Jerry G. Weinstein, Rachel A. Dahl, William M. Carty
  • Patent number: 7799727
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7776786
    Abstract: The present invention provides monolithic structural catalysts. The catalysts have a high open frontal area structure and composition advantageous for use in high particulate matter environments such as coal-fired industrial applications. In an embodiment, the present invention provides a monolithic structural catalyst body comprising a high open frontal area structure and composition that can achieve an efficient selective reduction of nitrogen oxides while minimizing the oxidation of sulfur dioxide wherein the structure of the catalyst body is resistant to plugging by particulate matter.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: August 17, 2010
    Assignee: Cormetech, Inc.
    Inventors: Chris E. DiFrancesco, Thomas W. Hastings, Edward F. Kassmann, Christian Trefzger
  • Patent number: 7772147
    Abstract: A solid catalyst carrier substrate coated with a surface area-enhancing washcoat composition including a catalytic component, a metal oxide and a refractory fibrous or whisker-like material having an aspect ratio of length to thickness in excess of 5:1.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: August 10, 2010
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul John Collier, Alison Mary Wagland
  • Patent number: 7638460
    Abstract: An exhaust gas purifying catalyst of the present invention has a substrate, and a catalyst layer formed on an inner wall of the substrate and composed of at least a single layer. The catalyst layer contains a carrier supporting noble metal. Further, a maximum height of profile of a surface of a top layer in the catalyst layer is not less than 2 ?m and not more than 50 ?m, and the top layer contains the carrier supporting noble metal.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 29, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masanori Nakamura, Katsuo Suga, Kiyoshi Miyazaki, Jun Ikezawa
  • Patent number: 7638459
    Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
  • Patent number: 7410929
    Abstract: A cell structure 10 having a plurality of cells 2 which are partitioned with partition walls 1 to form a honeycomb and which are flow paths of fluid, an outer wall 5 which encloses the cells 2 and a cavity 3 which pierces in the direction of a central axis P of the structure through a portion including the central axis P or a given axis parallel to the central axis P, where the cell structure further has an inner wall 4 on the inner surface of the cavity 3, a method for producing the cell structure, and a catalyst structure. The cell structure having the cavity has an excellent isostatic breaking strength and can exhibit proper sealing function in its cavities. Furthermore, a method for producing the cell structure, the catalyst structure, etc. are provided.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: August 12, 2008
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukihito Ichikawa, Makoto Miyazaki, Yasushi Kato
  • Patent number: 7381680
    Abstract: A porous ceramic body having increased strength is formed by exposing a porous ceramic body to a source of boron and heating the porous body to a sufficient temperature in an oxygen containing atmosphere to form the porous ceramic body. The porous ceramic body has a boron containing oxide glassy phase on at least a portion of the ceramic grains of the porous ceramic body.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: June 3, 2008
    Assignee: Dow Global Technologies Inc.
    Inventors: Robert T. Nilsson, Robin P. Ziebarth
  • Patent number: 7381681
    Abstract: A porous ceramic body having increased strength is formed by exposing a porous ceramic body to a source of boron and heating the porous body to a sufficient temperature in an oxygen containing atmosphere to form the porous ceramic body. The porous ceramic body has a boron containing oxide glassy phase on at least a portion of the ceramic grains of the porous ceramic body.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: June 3, 2008
    Assignee: Dow Global Technologies Inc.
    Inventors: Robert T. Nilsson, Robin P. Ziebarth
  • Patent number: 7323432
    Abstract: A catalyst assembly comprising a substrate, nanofilaments which have a nanometer-size diameter and are formed on the substrate, and particles which have a nanometer-size diameter, at least one of the nanofilaments and the particles having a catalytic function, is provided to use a catalyst more efficiently and to provide a catalytic function more efficiently. Interstices between the nanofilaments serve as distribution channels of a reactive gas, and the reactive gas spreads sufficiently not only around the ends of nanofilaments but also inside a catalyst assembly. A combination of nanofilaments and particles enables dispersion of a catalyst at a distance of not more than about 100 nanometers.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: January 29, 2008
    Assignees: DENSO Corporation, Koichi Niihara, Tadachika Nakayama
    Inventors: Koichi Niihara, Tadachika Nakayama, Jun Hasegawa, Miho Ito
  • Patent number: 7279213
    Abstract: Thin-walled ceramic honeycomb products of improved resistance to isostatic pressure damage are provided wherein the skin layers disposed over the cellular matrix portions of the honeycombs are formed of ceramic materials differing from the materials of the matrix as to composition, density, or other physical parameters effective to increase the elastic modulus of the skin layer relative to the cellular matrix and thereby reduce pressure-induced tangential strain in regions of the matrix adjacent to the skin layers.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: October 9, 2007
    Assignee: Corning Incorporated
    Inventors: Suresh T. Gulati, Sujanto Widjaja
  • Patent number: 7214643
    Abstract: A metal oxide which has a large pore volume, and is very useful as a catalyst support. An alkaline material is added to an aqueous solution in which a compound of a metal element for composing an oxide is dissolved, a resultant mixture is co-precipitated, an obtained precipitate is washed, a washed precipitate is stirred in water along with a surfactant, and is calcined. By adding the surfactant after washing, the pH is not changed so that the adding effect of the surfactant is achieved to its upper most limit, thereby obtaining a metal oxide which has a large pore volume and a large mean diameter of secondary particles, and exhibits excellent gas diffusion properties.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: May 8, 2007
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Toshio Yamamoto, Akihiko Suda, Kae Yamamura, Hideo Sobukawa
  • Patent number: 7214822
    Abstract: A coated catalyst whose coating of active composition is a multimetal oxide comprising the elements Mo, V and Te and/or Sb can be used for the gas-phase catalytic oxidation of propane to acrylic acid.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: May 8, 2007
    Assignee: BASF Aktiengesellschaft
    Inventors: Frieder Borgmeier, Andreas Tenten, Hartmut Hibst
  • Patent number: 7202189
    Abstract: A catalyst, a process for using the catalyst whereby the catalyst effectively transalkylates C7, C9, and C10 aromatics to C8 aromatics are disclosed. The catalyst comprises a support such as mordenite plus a metal component. The catalyst provides an enhanced life and activity for carrying out the transalkylation reactions at relatively low temperatures. This is achieved by reducing the maximum particle diameter of cylindrical pellets to 1/32 inch (0.08 cm) or a trilobe to 1/16 inch (0.16 cm).
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: April 10, 2007
    Assignee: UOP LLC
    Inventors: Antoine Negiz, Edwin P. Boldingh, Gregory J. Gajda, Sergey V. Gurevich
  • Patent number: 7094729
    Abstract: A method of producing a Raney type catalyst, the method comprising melting together a Raney metal and aluminium to form an alloy mixture, pouring the mixture through a nozzle, directing a gas jet on to the mixture to form a spray of droplets, which droplets are directed on to a metallic substrate, the substrate material and thickness and latent heat and superheat of the sprayed material upon initial contact with the substrate being such that the temperature is sufficiently high for an exothermic reaction to take place between the alloy mixture and the substrate such that intermetallic bonds are formed therebetween, and subsequently chemically removing at least some of the aluminium from the sprayed material.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: August 22, 2006
    Assignee: Ceram Research Limited
    Inventors: Nicholas John Elsworth Adkins, Stephen Michael Andrew Sillitto, George Paul Yiasemides
  • Patent number: 6998366
    Abstract: Raney alloy catalysts applied to a support are described, said catalysts having an extremely thin layer of Raney alloy with a thickness of 0.01 to 100 ?m. These catalysts are prepared by vapor deposition of the appropriate metals under reduced pressure. They are generally suitable for all known hydrogenation and dehydrogenation reactions and are extremely abrasion-resistant.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: February 14, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Mathias Haake, Gerhard Dörsam, Helmut Boos
  • Patent number: 6936565
    Abstract: Compositions including modified carbide-containing nanorods and/or modified oxycarbide-containing nanorods and/or modified carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including modified oxycarbide-containing nanorods and/or modified carbide containing nanorods and/or modified carbon nanotubes bearing modified carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided.
    Type: Grant
    Filed: October 29, 2001
    Date of Patent: August 30, 2005
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy
  • Patent number: 6890878
    Abstract: Provided is a catalyst formulation which exhibits extended catalyst life. The formulation comprises a mixture of a ceramic foam material uniformly interspersed between the solid catalyst particles, with the volume percent of ceramic material in the mixture preferably ranging from 20 to 60 volume %. The catalyst formulation is particularly applicable to solid catalyst particles comprised of a phosphoric acid impregnated substrate, and is particularly useful for processes such as catalytic hydrocarbon condensation processes.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: May 10, 2005
    Assignee: United Refining Company
    Inventor: John H. Moore
  • Patent number: 6878847
    Abstract: A catalyst useful for catalytic vapor-phase oxidation of isobutylene, t-butanol or propylene to produce respectively corresponding unsaturated aldehyde and unsaturated carboxylic acid is provided. The catalyst consists of ring-formed shaped bodies composed of (i) a catalyst composition containing at least molybdenum and bismuth as the active ingredients and (ii) inorganic fibers. The catalyst excels in mechanical strength, can give the object products at high yield and shows little activity degradation with time.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: April 12, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiroto Kasuga, Eiichi Shiraishi
  • Patent number: 6875717
    Abstract: A method and system for the in situ synthesis of a combinatorial library including impregnating a first component with a second component. The method and system advantageously may be employed in the synthesis of materials for screening for usefulness as a catalyst.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: April 5, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Claus G. Lugmair, Damodara M. Poojary, Alfred Hagemeyer, Daniel M. Giaquinta
  • Patent number: 6858769
    Abstract: A catalyst for the selective oxidation of hydrogen has been developed. It comprises an inert core such as cordierite and an outer layer comprising a lithium aluminate support. The support has dispersed thereon a platinum group metal and a promoter metal, e.g. platinum and tin respectively. This catalyst is particularly effective in the selective oxidation of hydrogen in a dehydrogenation process.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: February 22, 2005
    Assignee: UOP LLC
    Inventors: Guy B. Woodle, Andrew S. Zarchy, Jeffery C. Bricker, Andrzej Z. Ringwelski
  • Patent number: 6841508
    Abstract: Compositions including oxycarbide-based nanorods and/or carbide-based nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are provided. Rigid porous structures including oxycarbide-based nanorods and/or carbide based nanorods and/or carbon nanotubes bearing carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided. The fluid phase catalytic reactions catalyzed include hydrogenation, hydrodesulfurisation, hydrodenitrogenation, hydrodemetallisation, hydrodeoxigenation, hydrodearomatization, dehydrogenation, hydrogenolysis, isomerization, alkylation, dealkylation and transalkylation.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: January 11, 2005
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: David Moy, Chunming Niu, Jun Ma, James M. Willey
  • Patent number: 6824755
    Abstract: This invention relates generally to a method for producing single-wall carbon nanotube (SWNT) catalyst supports and compositions thereof. In one embodiment, SWNTs or SWNT structures can be employed as the support material. A transition metal catalyst is added to the SWNT. In a preferred embodiment, the catalyst metal cluster is deposited on the open nanotube end by a docking process that insures optimum location for the subsequent growth reaction. The metal atoms may be subjected to reductive conditions.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: November 30, 2004
    Assignee: William Marsh Rice University
    Inventors: Daniel T. Colbert, Hongjie Dai, Jason H. Hafner, Andrew G. Rinzler, Richard E. Smalley
  • Publication number: 20040235659
    Abstract: A puddle 21 composed mainly of a ceramic and/or a metal is molded to obtain a honeycomb molded material 22; the honeycomb molded material 22 is dried, or dried and fired to obtain a honeycomb carrier; there are formed, at two portions of each partition wall 3 of the honeycomb carrier, each present at a given site extending, along the axial direction of the honeycomb carrier, from the two end faces 8 and 9 of the carrier at which each cell 1 formed by each partition wall 3 is open, reinforced portions 11 having an erosion resistance at least larger than that of other partition wall portion, whereby a honeycomb intermediate structure 31 is produced; after or before loading of catalyst thereon, the honeycomb intermediate structure 31 is cut along the diameter direction; then, a catalyst is loaded as necessary to obtain a honeycomb catalyst.
    Type: Application
    Filed: March 16, 2004
    Publication date: November 25, 2004
    Inventors: Fumio Abe, Yasushi Kato
  • Patent number: 6800584
    Abstract: Gold-containing catalysts, which catalyst is comprised of gold on a nanostructure support, which support is characterized as graphite nanofibers comprised of graphite sheets, which graphite sheets are oriented substantially perpendicular or parallel to the longitudinal axis of the nanofiber and wherein said graphite nanofiber contains exposed surfaces and wherein at least about 95% of said exposed surfaces are comprised of edge sites.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: October 5, 2004
    Assignee: Catalytic Materials LLC
    Inventors: R. Terry K. Baker, Nelly M. Rodriguez
  • Patent number: 6797666
    Abstract: A honeycomb filter is composed mainly of silicon carbide or of metallic silicon and silicon carbide; the filter being formed by bonding a plurality of honeycomb segments each of which has a plurality of through-holes being partitioned by porous partition walls. The filter is plugged alternately at the exhaust gas inlet face and exhaust gas outlet face of honeycomb segments. Each two adjacent honeycomb segments are contacted with each other at each a portion of their sides facing each other. They are bonded with each other at least at part of each portion of said sides other than the contacted portion through a bonding material having a strength lower than that of a basal body of honeycomb segment. Thus, the thermal stresses generated among the respective portions constituting the filter is reduced. The generation of cracks, etc. can be also prevented considerably.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: September 28, 2004
    Assignee: NGK Insulators, Ltd.
    Inventors: Takashi Harada, Toshiyuki Hamanaka
  • Patent number: 6790806
    Abstract: The core/jacket catalyst molding with a core made from an inorganic support material and with a jacket made from a catalytically active material can be prepared by coextruding an aqueous molding composition which comprises the support material or a precursor thereof, with an aqueous molding composition which comprises the catalytically active material or a precursor thereof, then drying the coextrudate, and then calcining the dried coextrudate.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: September 14, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Hesse, Rainer Anderlik, Hans-Gerhard Fritz, Jochen Hammer
  • Patent number: 6784134
    Abstract: A catalyst suited for catalytic vapor-phase oxidation of isobutylene, t-butanol or propylene to produce respectively corresponding unsaturated aldehyde and unsaturated carboxylic acid is provided. Said catalyst consists of ring-formed shaped bodies composed of (i) a catalyst composition containing at least molybdenum and bismuth as the active ingredients and (ii) inorganic fibers. The catalyst excels in mechanical strength, can give the object products at high yield and shows little activity degradation with time.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: August 31, 2004
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hiroto Kasuga, Eiichi Shiraishi
  • Patent number: 6756195
    Abstract: The present invention relates, inter alia, to methodologies for the synthesis, screening and characterization of organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention provide for the combinatorial synthesis, screening and characterization of libraries of supported and unsupported organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention can be applied to the preparation and screening of large numbers of organometallic compounds which can be used not only as catalysts (e.g., homogeneous catalysts), but also as additives and therapeutic agents.
    Type: Grant
    Filed: January 21, 1999
    Date of Patent: June 29, 2004
    Assignee: Symyx Technologies, Inc.
    Inventors: W. Henry Weinberg, Eric McFarland, Isy Goldwasser, Thomas Boussie, Howard Turner, Johannes A. M. Van Beek, Vince Murphy, Timothy Powers
  • Patent number: 6686308
    Abstract: A supported catalyst is provided comprising catalyst metal nanoparticles having an average particle size of 3.0 nm or less, or more typically 2.0 nm or less, and typically having a standard deviation of particle size of 0.5 nm or less, which are supported on support particles at a loading of 30% or more. Typical catalyst metals are selected from platinum, palladium, ruthenium, rhodium, iridium, osmium, molybdenum, tungsten, iron, nickel and tin. Typical support particles are carbon. A method of making a supported catalyst is provided comprising the steps of: a) providing a solution of metal chlorides of one or more catalyst metals in solvent system containing at least one polyalcohol, typically ethylene glycol containing less than 2% water; b) forming a colloidal suspension of unprotected catalyst metal nanoparticles by raising the pH of the solution, typically to a pH of 10 or higher, and heating said solution, typically to 125 ° C.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: February 3, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Shane Shanhong Mao, Guoping Mao
  • Patent number: 6683146
    Abstract: A process for producing an acrylic polymer capable of providing a polymer controlled in molecular weight and free of colorization, and a heterogeneous polymerization catalyst used in the process for producing an acrylic polymer are provided. The heterogeneous polymerization catalyst contains (A) a radical generating substance, (B) a metallic halide containing a metallic element selected from the group consisting of the Group 4 to Group 12 elements and a halogen element selected from the group consisting of chlorine, bromine and iodine, and (C) a carrier carrying a ligand capable of forming a coordination bond with the metallic halide (B). The process for producing an acrylic polymer contains a step of polymerizing a monomer containing at least an acrylate and/or a methacrylate in the presence of the heterogeneous polymerization catalyst.
    Type: Grant
    Filed: November 14, 2002
    Date of Patent: January 27, 2004
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Yoshihiro Inaba, Satoshi Hiraoka
  • Patent number: 6670298
    Abstract: The present invention relates, inter alia, to methodologies for the synthesis, screening and characterization of organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention provide for the combinatorial synthesis, screening and characterization of libraries of supported and unsupported organometallic compounds and catalysts (e.g., homogeneous catalysts). The methods of the present invention can be applied to the preparation and screening of large numbers of organometallic compounds which can be used not only as catalysts (e.g., homogeneous catalysts), but also as additives and therapeutic agents.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: December 30, 2003
    Assignee: Symyx Technologies, Inc.
    Inventors: W. Henry Weinberg, Eric McFarland, Isy Goldwasser, Thomas Boussie, Howard Turner, Johannes A. M. Van Beek, Vince Murphy, Timothy Powers
  • Patent number: 6667012
    Abstract: The present invention provides a catalytic converter for treating internal combustion engine exhaust comprising a substrate, fumed metal oxide aggregates adhered to the substrate, wherein no non-fumed metal oxide is present in the intra-aggregate voids, and at least one catalyst adhered to the fumed metal oxide aggregates. The present invention also provides a method of preparing such a catalytic converter, as well as a method of treating the exhaust of an internal combustion engine comprising contacting the exhaust of an internal combustion engine with a catalytic converter of the present invention.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: December 23, 2003
    Assignee: Cabot Corporation
    Inventors: Joginder N. Anand, George P. Fotou, Cheng-Hung Hung, Joseph D. Smith
  • Patent number: 6656875
    Abstract: The present invention concerns alumina extrudates with characteristics, in particular porosity, which are adapted for their use as catalyst supports or catalysts, in particular for hydrotreating petroleum cuts. It also concerns processes for forming the alumina to achieve the properties of the extrudates of the invention.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: December 2, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Luc Le Loarer, Hubert Nussbaum, Denis Bortzmeyer