Monolith With Specified Shape Or Dimension Of Cell Opening (e.g., Honeycomb, Rings, Etc.) Patents (Class 502/527.19)
  • Patent number: 7981274
    Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: July 19, 2011
    Assignee: Pall Corporation
    Inventors: Manfred Nacken, Steffen Heidenreich
  • Patent number: 7976784
    Abstract: Catalysts, catalyst systems, and methods for removing ammonia and/or carbon monoxide in flue gases are provided where ammonia is used with a selective catalytic reduction catalyst for reducing oxides of nitrogen. An oxidation catalyst is utilized, which comprises particulate platinum or platinum/palladium dispersed on zirconia particles, the particulate platinum or platinum/palladium having an average particle size less than about 10 nm. The catalyst is effective to convert less than 20% of NO to NO2 passing through the oxidation catalyst.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: July 12, 2011
    Assignee: BASF Corporation
    Inventors: Xinsheng Liu, Xinyi Wei, Pascaline Tran, Gerard Lapadula
  • Patent number: 7935655
    Abstract: Catalytic layers for use in the electrodes of fuel cells including a non-noble metal substrate layer coated with one or a few monolayers of noble metal, such as Pt. These thin, highly porous structures with large catalytically active surface areas, should exhibit a significantly higher power output per mg of Pt and per cm2 of the membrane than the current Polymer Electrolyte Fuel Cells catalytic layers.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: May 3, 2011
    Assignee: Kent State University
    Inventor: Yuriy Viacheslavovich Tolmachev
  • Patent number: 7910518
    Abstract: A geometrically shaped solid carrier is provided that improves the performance and effectiveness of an olefin epoxidation catalyst for epoxidizing an olefin to an olefin oxide. In particular, improved performance and effectiveness of an olefin epoxidation catalyst is achieved by utilizing a geometrically shaped refractory solid carrier in which at least one wall thickness of said carrier is less than 2.5 mm.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: March 22, 2011
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventors: Serguei Pak, Andrzej Rokicki, Howard Sachs
  • Patent number: 7871958
    Abstract: A catalyst carrier includes a honeycomb structure where cells extending in a longitudinal direction are divided by cell walls; and a coating layer provided at a peripheral part of the honeycomb structure. The honeycomb structure and the coating layer contain at least one of inorganic fibers and whiskers. At least one of the inorganic fiber and whisker contained in the honeycomb structure is oriented mainly in a first direction. At least one of the inorganic fiber and whisker contained in the coating layer is oriented mainly in a second direction. The first direction and the second direction cross at substantially right angles to each other.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: January 18, 2011
    Assignee: Ibiden Co., Ltd.
    Inventor: Takahiko Ido
  • Patent number: 7867944
    Abstract: A catalyst supporting honeycomb includes a pillar-shaped honeycomb structure and catalyst particles supported on the honeycomb structure. The honeycomb structure includes cell walls extending in a longitudinal direction of the honeycomb structure to define a plurality of cells extending in the longitudinal direction. The plurality of cells include large-volume cells having first opening ends and second closing ends opposite to the first opening ends along the longitudinal direction, and small-volume cells having first closed ends and second opening ends opposite to the first closed ends along the longitudinal direction. Total cross sectional areas of the large-volume cells on a plane perpendicular to the longitudinal direction are larger than total cross sectional areas of the small-volume cells on the plane. The catalyst particles include an oxide catalyst having an average particle diameter of at least about 0.05 ?m and at most about 1.00 ?m.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: January 11, 2011
    Assignees: Ibiden Co., Ltd.
    Inventors: Athanasios G. Konstandopoulos, Kazushige Ohno, Tomokazu Oya, Kazutake Ogyu
  • Patent number: 7851403
    Abstract: A honeycomb structure includes adhesive layers and plural honeycomb units bonded to each other by interposing the adhesive layers between the plural honeycomb units. Each of the honeycomb units has partition walls extending along a longitudinal direction of the honeycomb units to define plural through holes. The plural honeycomb units include a SOx absorbent, inorganic particles, and an inorganic binder. An expression Y??0.3X+1.55 (about 1.0?X?about 2.5) is satisfied, in which X represents a content (mol/L) of the SOx absorbent in the partition walls and Y represents a ratio B/A in which A represents a Young's modulus of the honeycomb units and B represents a Young's modulus of the adhesive layers.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: December 14, 2010
    Assignee: Ibiden Co., Ltd.
    Inventors: Masafumi Kunieda, Mari Kitajima
  • Patent number: 7846865
    Abstract: In the present invention, it is an assignment to optimize a loading density of noble metal on catalyst. Pt is loaded in such an amount that a loading amount per 1 liter of a support substrate exceeds 0.75 g on an exhaust-gas upstream side of a coating layer, and a loading density of Rh in the coating layer is made so that it becomes higher on an exhaust-gas downstream side than on the exhaust-gas upstream side. The purifying performance after warming up improves by loading Rh with high density on the exhaust-gas downstream side that is likely to become rich atmosphere.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: December 7, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masanori Yamato, Oji Kuno
  • Patent number: 7833936
    Abstract: The present invention provides a method for producing a honeycomb structure which carries a catalyst component containing at least one element selected from the group consisting of alkali metals and alkaline earth metals and purifies exhaust emissions.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: November 16, 2010
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Kazutake Ogyu, Masayuki Hayashi, Masafumi Kunieda
  • Patent number: 7795172
    Abstract: A layered exhaust treatment catalyst comprising: (a) a carrier such as cordierite; (b) a first layer deposited on the carrier comprising a palladium metal component, a platinum metal component and an oxygen storage component such as ceria supported on a refractory metal oxide such as gamma-alumina; and (c) a second layer deposited on the first layer comprising a rhodium metal component, a platinum metal component and an oxygen storage component such as ceria supported on a refractory metal oxide such as gamma-alumina. Preferably, the catalyst also includes a bottom layer interposed between the carrier and the first layer. The bottom layer comprises an oxygen storage component such as ceria supported on a refractory metal oxide such as gamma-alumina. The amount of the oxygen storage component of the catalyst may be “tuned”, i.e., adjusted, to meet the needs of a vehicle's on-board diagnostic (“OBD”) catalyst efficiency monitoring system, without adversely affecting the performance of the catalyst.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: September 14, 2010
    Assignee: BASF Corporation
    Inventors: John S. Foong, Zhicheng Hu
  • Patent number: 7776786
    Abstract: The present invention provides monolithic structural catalysts. The catalysts have a high open frontal area structure and composition advantageous for use in high particulate matter environments such as coal-fired industrial applications. In an embodiment, the present invention provides a monolithic structural catalyst body comprising a high open frontal area structure and composition that can achieve an efficient selective reduction of nitrogen oxides while minimizing the oxidation of sulfur dioxide wherein the structure of the catalyst body is resistant to plugging by particulate matter.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: August 17, 2010
    Assignee: Cormetech, Inc.
    Inventors: Chris E. DiFrancesco, Thomas W. Hastings, Edward F. Kassmann, Christian Trefzger
  • Patent number: 7771678
    Abstract: The present invention relates to a catalytic converter element having a plurality of essentially parallel channels through which gas flows during operation of the catalytic converter element. The channels are bordered by channel walls which have a catalytically active coating arranged thereon in at least some areas where it is exposed to the gas. In some channels the coating thus begins with an axial offset from the admission end. This allows an improved temperature management within the catalytic converter element.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: August 10, 2010
    Assignee: J. Eberspaecher GmbH & Co. KG
    Inventor: Guenter Eberspach
  • Patent number: 7759283
    Abstract: To improve a CO conversion in stoichiometry-lean atmosphere, and additionally to prevent the rise of pressure loss. A catalytic coating layer 2 is constituted of a lower layer 20 including an oxygen storage capacity material and an upper layer 21 being formed on a surface of the lower layer 20 and including a catalytic noble metal, and a thickness of the upper layer is adapted so as to be 5 ?m-40 ?m. The upper layer 21 is good in terms of gas diffusibility, and thereby OSC resulting from the oxygen storage capacity material being included in the lower layer 20 is demonstrated maximally.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: July 20, 2010
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Masanori Yamato, Takatoshi Shinyoshi, Takumi Suzawa, Keiji Ito
  • Patent number: 7749472
    Abstract: The present invention provides for novel poisoning-resistant catalysts used for automobile exhaust gas treatment systems. To alleviate the detrimental affects of engine oil and/or fuel additive poisoning the present invention provides for an overcoat layer comprising a porous refractory oxide and one or more base metal oxides, which is coated over one or more precious metal containing washcoat layers. The overcoat of the present invention prevents phosphorous as well as other poisoning deposits, from fouling and/or negatively interacting with the underlying precious metal containing washcoats. In an alternative embodiment, the present invention provides for the coating of the upstream end of a catalytic member by the overcoat layer, thereby creating an upstream poison capture zone.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: July 6, 2010
    Assignee: BASF Corporation
    Inventors: Shau-Lin Franklin Chen, Knut Wassermann, Jin Sakakibara
  • Patent number: 7745367
    Abstract: An emission control catalyst that exhibits improved CO and HC reduction performance includes a supported platinum-based catalyst, and a supported palladium-gold catalyst. The two catalysts are coated onto different layers, zones, or monoliths of the substrate for the emission control catalyst such that the platinum-based catalyst encounters the exhaust stream before the palladium-gold catalyst. Zeolite may be added to the emission control catalyst as a hydrocarbon absorbing component to boost the oxidation activity of the palladium-gold catalyst.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: June 29, 2010
    Assignee: Nanostellar, Inc.
    Inventors: Kyle L. Fujdala, Timothy J. Truex, Jifei Jia
  • Patent number: 7740819
    Abstract: The present invention has an object to more enhance the efficiency of the purification of the CO-containing exhaust gases with a catalytic-component-supporting type catalyst, particularly, to enable both achievement of high purification efficiency and long-term stable maintenance of high purification efficiency without increasing the quantity of the catalytic component as supported. As a means of achieving this object, a process for purification of exhaust gases, according to the present invention, is a process for purification of exhaust gases to remove CO therefrom, and is characterized by comprising the step of bringing the exhaust gases into contact with a catalyst layer at a temperature of 250 to 600° C., a pressure drop of not more than 100 mmH2O, and a linear velocity of 0.5 to 10 m/s, wherein the catalyst layer includes a honeycomb-structural catalyst having an opening size of 1.0 to 3.0 mm, an opening ratio of 60 to 80%, and an inner wall thickness of less than 2 mm.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: June 22, 2010
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Atsushi Morita, Junji Okamura, Shinyuki Masaki, Noboru Sugishima, Motonobu Kobayashi
  • Patent number: 7740817
    Abstract: A catalyst which efficiently removes particulate matter, SOF, sulfate, and SOOT and the like from the exhaust gas from such an internal combustion engine as a diesel engine without inducing a rise in the back pressure of the engine is provided. The catalyst for the purification of the exhaust gas of an internal combustion engine is formed by using an open flow honeycomb containing in the channel walls thereof such pores as possess an average diameter in the range of 10-40 ?m.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: June 22, 2010
    Assignees: ICT Co., Ltd., International Catalyst Technology, Inc.
    Inventors: Takeshi Matsumoto, Takao Kobayashi, Takuji Nakane, Takahiro Uno, Makoto Horiuchi
  • Patent number: 7737077
    Abstract: This is to provide a catalyst for purifying exhaust gases, catalyst which are good in terms of the purifying performance.
    Type: Grant
    Filed: November 25, 2004
    Date of Patent: June 15, 2010
    Assignee: Cataler Corporation
    Inventors: Ichiro Kitamura, Akimasa Hirai, Kenichi Taki
  • Patent number: 7732366
    Abstract: A honeycomb structure comprises a porous ceramic which is composed of several cells aligned across a cell wall longitudinally. The cell has either one end sealed. The gas permeability coefficient k of the cell wall is between about 0.5 ?m2 and about 1.5 ?m2.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: June 8, 2010
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Masafumi Kunieda, Akihiro Ohira
  • Patent number: 7709414
    Abstract: An engine exhaust catalyst exhibits improved CO oxidation performance relative to conventional engine exhaust catalysts and includes a first supported catalyst comprising platinum and a second supported catalyst comprising palladium and gold species in close contact. The first supported catalyst may be a platinum catalyst, a platinum—palladium catalyst, or a platinum catalyst promoted with bismuth, and the second supported catalyst preferably has a palladium to gold weight ratio of about 0.85:1.0. To improve aged catalyst performance, the first and second supported catalysts are coated onto different layers, zones, or monoliths of the substrate for the engine exhaust catalyst.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: May 4, 2010
    Assignee: NanoStellar, Inc.
    Inventors: Kyle L. Fujdala, Timothy J. Truex, Jifei Jia
  • Patent number: 7704464
    Abstract: Hydrocarbon processing devices and systems are constructed to modify the combustion characteristics of hydrocarbon fuels and emissions for the purpose of emissions reduction and to increase the overall performance characteristics of the engine. According to one exemplary embodiment, a catalytic device for processing a fluid containing hydrocarbons includes a reactive body formed of a plurality of metallic materials arranged in a layered structure. The plurality of metallic materials is formed of at least two different materials. The body has an inner core member having a first density and another region, that is formed along a longitudinal length of the rolled layered structure, has a second density which is less than the first density.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: April 27, 2010
    Assignee: 0783963 BC Ltd.
    Inventor: Jeffrey A. Stephenson
  • Patent number: 7696127
    Abstract: Disclosed is an exhaust gas purifying catalyst, which comprises a CeZr-based composite oxide capable of maintaining a hollow structure to ensure an oxygen absorbing/releasing capability, even after being exposed to high-temperature exhaust gas. The exhaust gas purifying catalyst comprises a honeycomb-shaped substrate, and a catalyst layer formed on a surface of the substrate. The catalyst layer contains a composite oxide which includes cerium (Ce) and zirconium (Zr) and has a hollow structure, and a catalytic metal supported by the composite oxide. The composite oxide having the hollow structure includes, in a state after being subjected to a thermal aging in Air at 1000° C. for 24 hours, a particle with a shape having an outer diameter of 750 to 1000 nm and a shell thickness of 80 to 120 nm.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: April 13, 2010
    Assignees: Toda Kogyo Corporation, Mazda Motor Corporation
    Inventors: Tomoaki Urai, Tomohiro Honda, Katsuaki Kurata, Hideharu Iwakuni, Akihide Takami
  • Patent number: 7683231
    Abstract: A catalyst system capable of supporting combustion beyond the fuel rich limit of flammability comprising a catalytic component, a first support and a second support and wherein the catalytic component is present on both the first and the second support, and a process for the production of an olefin, said process comprising passing a mixture of a hydrocarbon and an oxygen-containing gas over said catalyst system to produce said olefin. The first support and the second support must differ in at least one of the following aspects: support material, support type and/or structural dimension.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: March 23, 2010
    Assignee: Ineos Europe Limited
    Inventors: Ian Allan Beattie Reid, Vaughan Clifford Williams
  • Patent number: 7662458
    Abstract: A honeycomb structured body includes a plurality of honeycomb members which are bonded to one another by interposing an adhesive layer. Each of the honeycomb members has a number of cells placed in parallel with one another in the longitudinal direction with a cell wall therebetween. When the longitudinal direction is defined as the orientation axis, the degree of orientation ? of the inorganic fibers in the adhesive layer obtained by the Saltykov method is set in the range of about 0.2???about 0.7 or in the range of about ?0.7???about ?0.2 in the adhesive layer.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: February 16, 2010
    Assignee: Ibiden Co., Ltd.
    Inventors: Takeshi Ninomiya, Masaki Imaeda
  • Patent number: 7662739
    Abstract: A catalyst body including a catalytic material containing an alkali metal and/or an alkaline earth metal, a carrier carrying the catalytic material, and a method of manufacturing the catalyst body are provided. The carrier has a cordierite binder phase and aggregate phases dispersed in the cordierite binder phase.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: February 16, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Misako Fujii, Kenji Morimoto, Shinji Kawasaki
  • Patent number: 7641956
    Abstract: The honeycomb structure is an aggregate type honeycomb formed from a plurality of cells assembled together side by side laterally and cell walls isolating adjacent ones of the cells from each other by joining with a sealant layer (adhesive layer) or integral type honeycomb monolith, and a sealant layer (coating layer) provided on the outer surface of the aggregate type honeycomb or the integral type honeycomb monolith. The sealant layer (adhesive layer) or a sealant layer (coating layer) formed on the outer surface of aggregate type honeycomb or the integral type honeycomb monolith contains oxide particles, inorganic binder and a coloring agent.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: January 5, 2010
    Assignee: Ibiden Co. Ltd.
    Inventor: Yutaka Yoshida
  • Patent number: 7638460
    Abstract: An exhaust gas purifying catalyst of the present invention has a substrate, and a catalyst layer formed on an inner wall of the substrate and composed of at least a single layer. The catalyst layer contains a carrier supporting noble metal. Further, a maximum height of profile of a surface of a top layer in the catalyst layer is not less than 2 ?m and not more than 50 ?m, and the top layer contains the carrier supporting noble metal.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: December 29, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Masanori Nakamura, Katsuo Suga, Kiyoshi Miyazaki, Jun Ikezawa
  • Patent number: 7615194
    Abstract: A composition for purifying an ozone-containing gas comprising activated carbon, in which the percentage of the volume of pores having a pore diameter of 0.4-0.8 nm in the volume of pores having a pore diameter of 0.4-2.0 nm is 75% or more, and an ozone decomposition catalyst powder is disclosed. Also disclosed is a filter for purifying an ozone-containing exhaust gas comprising activated carbon powder, in which the percentage of the volume of pores having a pore diameter of 0.4-0.8 nm in the volume of pores having a pore diameter of 0.4-2.0 nm is 75% or more, and an ozone decomposition catalyst powder carried on a fiber supporting body. The composition and filter of the present invention can remarkably reduce the content of ozone and volatile organic compounds in ozone-containing exhaust gas from printers.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: November 10, 2009
    Assignee: Nichias Corporation
    Inventors: Yuji Matumura, Masahiko Yoneda, Kazuki Yamana, Satoshi Minobe
  • Patent number: 7611680
    Abstract: An engine exhaust catalyst containing precious metal nanoparticles is promoted with bismuth. The bismuth promotion improves the catalyst's CO oxidation performance. Also, by varying the amount of bismuth that is added, the NO conversion rate that can be realized with the catalyst can be controlled. The control over the NO conversion rate is important because the passive regenerative performance of a particulate filter used in engine exhaust systems is based on the amount NO2 that is present in the exhaust stream that reaches the particulate filter. The amount of NO2 being produced needs to be optimized (not necessarily maximized) so that adequate particulate filter regeneration performance can be maintained while avoiding unused, toxic NO2 from being exhausted into the atmosphere.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: November 3, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Jifei Jia, Kyle L. Fujdala, Timothy J. Truex
  • Patent number: 7608561
    Abstract: An exhaust gas purifying catalyst comprising: a honeycomb-like substrate disposed in an exhaust passage for an engine; and a catalytic layer formed on a cell wall of said substrate, said catalytic layer including a mixed oxide which contains Ce (cerium) and Zr (zirconium), and retains a catalytic noble metal in such a manner that said noble metal atoms are located at crystal lattice points or between the lattice points of the mixed oxide, wherein said mixed oxide includes a first mixed oxide containing CeO2 in a mass greater than that of ZrO2, and a second mixed oxide containing ZrO2 in a mass greater than that of CeO2.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: October 27, 2009
    Assignee: Mazda Motor Corporation
    Inventors: Seiji Miyoshi, Hiroshi Yamada, Koji Minoshima, Akihide Takami, Hideharu Iwakuni
  • Patent number: 7601671
    Abstract: A method for preparing an exhaust gas catalyst includes preparing a washcoat comprising a catalytically effective amount of at least one catalytically active metal disposed upon an oxide support; disposing the catalytically active metal-oxide support washcoat upon a catalyst substrate; drying the washcoated catalyst substrate using microwave energy to affix the precious metals to the oxide support; and conventionally calcining the dried washcoated catalyst substrate. The catalysts comprising a substrate having dispersed thereon an inorganic oxide washcoat, the washcoat having been affixed to the substrate by microwave drying, exhibit high exhaust gas purifying performance and long durability. The catalysts thus produced further provide a long in-service lifetime for reforming organic fuel species into hydrogen, carbon monoxide and light hydrocarbons used in the nitrogen oxides reduction process.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: October 13, 2009
    Assignee: Umicore AG & Co. KG
    Inventor: William J. LaBarge
  • Patent number: 7563744
    Abstract: The present invention relates to a catalyst for the purification of exhaust gases from an internal combustion engine, which comprises a catalytically active coating on an inert ceramic or metal honeycomb body, said coating comprising at least one platinum group metal selected from the group consisting of platinum, palladium, rhodium and iridium on a fine, oxidic support material. As an oxidic support material, the catalyst comprises a low-porosity material on the basis of silicon dioxide that comprises aggregates of essentially spherical primary particles having an average particle diameter of between 7 and 60 nm.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: July 21, 2009
    Assignee: Umicore AG & Co. KG
    Inventors: Harald Klein, Ulrich Neuhausen, Egbert Lox, Jürgen Gieshoff, Thomas Kreuzer
  • Patent number: 7560154
    Abstract: A method for manufacturing a honeycomb structure includes: machining a peripheral portion of a honeycomb substrate having a plurality of cells separated by porous partition walls made of ceramic, applying slurry for forming a coating member on a face exposed to outer periphery of partition walls positioned in the outermost periphery to obtain a honeycomb body with slurry, and subjecting the honeycomb body with slurry to heat-drying to obtain a honeycomb structure having the coat member in the outer periphery. The slurry contains a powder of potsherd having a particle size of 15 to 75 ?m, and has a water content of 26 to 34% by mass. In the method, even if the slurry is subjected to compulsory drying from the beginning, the coating member hardly has cracks, and a honeycomb structure having no cracks on the coating member can be obtained.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: July 14, 2009
    Assignee: NGK Insulators, Ltd.
    Inventor: Shigeki Katoh
  • Patent number: 7560047
    Abstract: The present invention relates to a structured catalyst for reforming of gasoline and a method of preparing the same, more particularly to a structured catalyst for reforming of gasoline for fuel-cell powered vehicles prepared by wash-coating the transition metal based reforming catalyst on the surface of the ceramic honeycomb support wash-coated with sub-micron sized alumina or its precursor to sufficiently increase the effective surface area and the performance of the catalyst and a method of preparing the same.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: July 14, 2009
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Jong Woo Ryu, Dong Min Kang, Byung Gwon Lee, Byoung Sung Ahn, Sang Deuk Lee
  • Patent number: 7547659
    Abstract: The present invention relates to a structured catalyst for reforming of gasoline and a method of preparing the same, more particularly to a structured catalyst for reforming of gasoline for fuel-cell powered vehicles prepared by wash-coating the transition metal based reforming catalyst on the surface of the ceramic honeycomb support wash-coated with sub-micron sized alumina or its precursor to sufficiently increase the effective surface area and the performance of the catalyst and a method of preparing the same.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 16, 2009
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Jong Woo Ryu, Dong Min Kang, Byung Gwon Lee, Byoung Sung Ahn, Sang Deuk Lee
  • Patent number: 7534738
    Abstract: An emission control catalyst that exhibits improved CO and HC reduction performance includes a supported platinum-based catalyst, and a supported palladium-gold catalyst. The two catalysts are coated onto different layers, zones, or monoliths of the substrate for the emission control catalyst such that the platinum-based catalyst encounters the exhaust stream before the palladium-gold catalyst. Zeolite may be added to the emission control catalyst as a hydrocarbon absorbing component to boost the oxidation activity of the palladium-gold catalyst.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: May 19, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Kyle L. Fujdala, Timothy J. Truex
  • Patent number: 7517826
    Abstract: A multi-layer emission control catalyst exhibits improved CO and HC reduction performance. The bottom layer includes a supported catalyst comprising platinum and palladium particles or palladium and gold particles. The middle layer includes zeolites. The top layer includes a supported catalyst comprising platinum and palladium particles. The use of zeolite mixture in the middle layer further improves CO and HC reduction performance in comparison with using zeolite of a single type. The use of a supported catalyst comprising palladium and gold particles in the bottom layer further improves CO and HC reduction performance in comparison with using a supported catalyst comprising platinum and palladium particles.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: April 14, 2009
    Assignee: Nanostellar, Inc.
    Inventors: Kyle L. Fujdala, Timothy J. Truex
  • Patent number: 7507844
    Abstract: A carrier and a catalyst useful for the oxidation of ethylene to ethylene oxide which uses the carrier. The carrier is composed of an inert, refractory solid support such as alpha alumina and has a surface exhibiting a plurality of nanometer scale protrusions projecting outwardly from the surface, and has a catalytically effective amount of silver thereon.
    Type: Grant
    Filed: May 9, 2005
    Date of Patent: March 24, 2009
    Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KG
    Inventor: Serguei Pak
  • Patent number: 7504359
    Abstract: A honeycomb structural body comprises one or plural pillar-shaped porous ceramic members in which many through-holes are arranged side by side in a longitudinal direction through partition walls and either one end portions of these through-holes are sealed. The partition wall forming the structural body has a surface roughness of not less than 10 ?m as a maximum roughness Rz defined in JIS B0601-2001 and an average pore size of 5-100 ?m in a pore distribution measured by a mercury pressure method, and satisfies the following relationship: A?90?B/20 or A?100?B/20 when a ratio pores having a pore size of 0.9-1.1 times the average pore size to total pore volume is A (%) and a thickness of the partition wall is B (?m), and there is proposed an effective honeycomb structural body having excellent pressure loss and catching efficiency and a high catalyst reactivity.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: March 17, 2009
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazutake Ogyu, Kazushige Ohno, Atsushi Kudo
  • Patent number: 7491373
    Abstract: A system and method including a radially non-uniformly plugged flow-through honeycomb substrate positioned upstream of a wall-flow particulate filter for controlled thermal regeneration of the wall-flow particulate filter, the flow-through honeycomb substrate having a flow-through region including a first portion of parallel channels and a flow-control region including a second portion of parallel channels, the first portion of the parallel channels including unplugged channels and the second portion of the parallel channels including plugged channels, with the flow-control region adjusting flow distribution through the flow-through honeycomb substrate.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: February 17, 2009
    Assignee: Corning Incorporated
    Inventors: Thomas Dale Ketcham, Yuming Xie
  • Patent number: 7491674
    Abstract: A catalyst body including a catalytic material containing an alkali metal and/or an alkaline earth metal, a carrier carrying the catalytic material, and a method of manufacturing the catalyst body are provided. The carrier has a cordierite binder phase and aggregate phases dispersed in the cordierite binder phase.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: February 17, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Misako Fujii, Kenji Morimoto, Shinji Kawasaki
  • Patent number: 7449427
    Abstract: The honeycomb structured body of the present invention is a honeycomb structured body in which a plurality of porous ceramic members are combined with one another through an adhesive layer, each of the porous ceramic members having a plurality of cells which are allowed to penetrate in a longitudinal direction with a wall portion therebetween and either one end of which is sealed, with a catalyst supporting layer being adhered to the wall portion, wherein an average pore diameter of the porous ceramic member is larger than an average particle diameter of particles constituting the catalyst supporting layer, and when a pore diameter distribution of the porous ceramic member and a particle diameter distribution of particles constituting the catalyst supporting layer are drawn with the pore diameter and the particle diameter being on the same axis, a pore volume in an overlapped area of both the distributions is about 10% or less to the entire pore volume of the porous ceramic member.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: November 11, 2008
    Assignee: Ibiden Co., Ltd
    Inventors: Kazushige Ohno, Hiroki Sato, Masayuki Hayashi, Kazutake Ogyu
  • Patent number: 7410929
    Abstract: A cell structure 10 having a plurality of cells 2 which are partitioned with partition walls 1 to form a honeycomb and which are flow paths of fluid, an outer wall 5 which encloses the cells 2 and a cavity 3 which pierces in the direction of a central axis P of the structure through a portion including the central axis P or a given axis parallel to the central axis P, where the cell structure further has an inner wall 4 on the inner surface of the cavity 3, a method for producing the cell structure, and a catalyst structure. The cell structure having the cavity has an excellent isostatic breaking strength and can exhibit proper sealing function in its cavities. Furthermore, a method for producing the cell structure, the catalyst structure, etc. are provided.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: August 12, 2008
    Assignee: NGK Insulators, Ltd.
    Inventors: Yukihito Ichikawa, Makoto Miyazaki, Yasushi Kato
  • Patent number: 7316806
    Abstract: A reforming catalyst for partial oxidation to reform hydrocarbon compound including a sulfur-containing compound includes platinum and rhodium. Even in reforming a hydrocarbon compound including a sulfur-containing compound such as, for example, a town gas, the catalyst effectively prevents poisoning and elongates catalyst life.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: January 8, 2008
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Masaaki Okuno, Akiyoshi Nakajima
  • Patent number: 7304013
    Abstract: Bulk and supported catalysts are prepared from an aqueous slurry containing a catalytically active material and a binder. The slurry is either coated onto a support and dried to form a porous, high surface area phase containing the catalytically active material, or reduced to a paste-like consistency, molded and dried to form a bulk catalyst. The processes and catalysts may be employed in various catalytic chemical processes to achieve high effectiveness factor of the catalytically active material while achieving a lower pressure drop.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: December 4, 2007
    Assignee: Corning Incorporated
    Inventors: William P. Addiego, Charles M. Sorensen, Jr.
  • Patent number: 7287370
    Abstract: A NOx-trap composition comprises: (a) at least one first NOx storage component comprising at least one alkali metal supported on at least one first support material; and (b) a platinum oxidation catalyst and at least one second NOx storage component not being an alkali metal supported on at least one second support material, whereby the platinum oxidation catalyst and the at least one alkali metal are physically segregated thereby susbtantially maintaining the hydrocarbon conversion activity of the platinum oxidation catalyst.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: October 30, 2007
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Raj Rao Rajaram, Stephen Poulston
  • Patent number: 7279213
    Abstract: Thin-walled ceramic honeycomb products of improved resistance to isostatic pressure damage are provided wherein the skin layers disposed over the cellular matrix portions of the honeycombs are formed of ceramic materials differing from the materials of the matrix as to composition, density, or other physical parameters effective to increase the elastic modulus of the skin layer relative to the cellular matrix and thereby reduce pressure-induced tangential strain in regions of the matrix adjacent to the skin layers.
    Type: Grant
    Filed: December 14, 2004
    Date of Patent: October 9, 2007
    Assignee: Corning Incorporated
    Inventors: Suresh T. Gulati, Sujanto Widjaja
  • Patent number: 7256154
    Abstract: The present invention relates to a structured catalyst for reforming of gasoline and a method of preparing the same, more particularly to a structured catalyst for reforming of gasoline for fuel-cell powered vehicles prepared by wash-coating the transition metal based reforming catalyst on the surface of the ceramic honeycomb support wash-coated with sub-micron sized alumina or its precursor to sufficiently increase the effective surface area and the performance of the catalyst and a method of preparing the same.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: August 14, 2007
    Assignee: Korea Institute of Science and Technology
    Inventors: Dong Ju Moon, Jong Woo Ryu, Dong Min Kang, Byung Gwon Lee, Byoung Sung Ahn, Sang Deuk Lee
  • Patent number: 7235507
    Abstract: A diesel oxidation catalyst comprising a honeycomb substrate washcoated with a mixture of clay, a refractory oxide and a zeolite is disclosed. The washcoated substrate is subsequently deposited with a precious metal catalyst and a sulfur oxidation suppressant.
    Type: Grant
    Filed: August 14, 2004
    Date of Patent: June 26, 2007
    Assignee: Sud-Chemie Inc.
    Inventors: Li Xu, Yinyan Huang, Gregory Cullen, Zhongyuan Dang, Amiram Bar-Ilan
  • Patent number: 7183236
    Abstract: An object of the present invention is to realize low pressure loss and high purification performance in a constitution in which a primary catalyst component and co-catalyst component are loaded onto a ceramic support that allows catalyst components to be loaded directly. According to the present invention, a primary catalyst component in the form of a catalyst precious metal and a co-catalyst component in the form of an oxygen occluding component are loaded on the surface of a honeycomb-shaped ceramic support, including the inner surfaces of pores. As a result of the large loaded amount of co-catalyst component entering inside the pores, the loaded amount of co-catalyst component on the cell wall surfaces is reduced, thereby making it possible to inhibit increases in pressure loss. In addition, since the primary catalyst component and co-catalyst component are in close proximity to each other, catalyst performance is improved.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: February 27, 2007
    Assignee: Denso Corporation
    Inventors: Tomomi Hase, Tomohiko Nakanishi, Hideaki Ueno, Takatoshi Shinyoshi