Superconducting Wire, Tape, Cable, Or Fiber, Per Se Patents (Class 505/230)
  • Patent number: 6310297
    Abstract: A strongly-linked polycrystalline oxide superconductor article includes an oxide superconductor selected from the group consisting 124-type and 247-type oxide superconductors having fine, highly aligned oxide superconductor grains less than &mgr;m long a longest dimension. The oxide superconductor article has at least a 25% retention of critical current density in a 0.1 Tesla field.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 30, 2001
    Assignee: American Superconductor Corp.
    Inventors: Lawrence J. Masur, Eric R. Podtburg
  • Patent number: 6300285
    Abstract: An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: October 9, 2001
    Assignee: The Regents of the University of California
    Inventors: Peter R. Roberts, William Michels, John F. Bingert
  • Publication number: 20010021689
    Abstract: The present invention provides an oxide superconducting wire including a component provided in the form of a tape and a metal tape. The component in the form of a tape has an oxide superconducting member and a metal coating member formed mainly of silver and coating a surface of the oxide superconducting member. The metal tape, bonded in a heat treatment (e.g., fusion- or diffusion-bonded) to a surface of the component in the form of a tape, does not contain any superconducting material and it is formed mainly of silver and it also contains at least one component other than silver.
    Type: Application
    Filed: February 21, 2001
    Publication date: September 13, 2001
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Tetsuyuki Kaneko
  • Patent number: 6271473
    Abstract: A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % a copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amount of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to atomic %. The base material is filled with a Bi-containing oxide of Bi1PbuSrxCayCuzOw wherein u=0-0.3, X=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: August 7, 2001
    Assignees: Sumitomo Heavy Industries Ltd., National Research Institute for Metals
    Inventors: Yoshiaki Tanaka, Tomoyuki Yanagiya, Fumiaki Matsumoto, Masao Fukutomi, Toshihisa Asano, Kazunori Komori, Hiroshi Maeda
  • Patent number: 6271474
    Abstract: An oxide superconducting stranded wire having inter-strand insulation and high critical current is provided. A wire including an oxide superconducting material and a matrix covering the material and consisting essentially of silver or a silver alloy is coated with a paint containing, as a main component, an organometallic polymer such as a silicone polymer or aluminum primary phosphorus in a paint reservoir, and the paint is baked in a baking furnace via a drying furnace. A plurality of such wires with the baked paint are twined into a stranded wire, which is then heated up to a temperature necessary for sintering the oxide superconducting material. The stranded wire thus obtained through the step of sintering may have high critical current. A heat-resisting insulating coating layer may be formed by baking the paint.
    Type: Grant
    Filed: November 9, 1998
    Date of Patent: August 7, 2001
    Assignees: Sumitomo Electric Industries, Ltd., The Tokyo Electric Power Company
    Inventors: Jun Fujikami, Nobuhiro Saga, Shuji Hahakura, Kazuya Ohmatsu, Hideo Ishii, Shoichi Honjo, Yoshihiro Iwata
  • Patent number: 6270908
    Abstract: A laminate article comprises a substrate and a biaxially textured (RExA(1−x))2O2−(x/2) buffer layer over the substrate, wherein 0<x≦0.70 and RE is selected from the group consisting of La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. A is selected from the group consisting of Zr+4, Ce+4, Sn+4, and Hf+4. The (RExA(1−x))2O2−(x/2) buffer layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RExA(1−x))2O2−(x/2) buffer layer. A layer of CeO2 between the YBCO layer and the (RExA(1−x))2O2−(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO2 layer and the (RExA(1−x))2O2−(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: August 7, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Robert K. Williams, Mariappan Paranthaman, Thomas G. Chirayil, Dominic F. Lee, Amit Goyal, Roeland Feenstra
  • Patent number: 6256521
    Abstract: A multi-domained bulk REBa2Cu3Ox with low-angle domain boundaries which resembles a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa2Cu3Ox pieces, textured substrates comprised of grains with low misorientation angles, or thick film REBa2Cu3Ox deposited on such textured substrate, such seeds being tailored for various REBa2Cu3Ox compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa2Cu3Ox elements of virtually unlimited size and complex geometry can be fabricated.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: July 3, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Dominic F. Lee, Donald M. Kroeger, Amit Goyal
  • Patent number: 6251834
    Abstract: The invention provides an improved substrate for growing layers of oxide superconductor materials for use in high current engineering applications. The invention also provides superconducting laminates based on the inventive substrates, and processes for the manufacture thereof. The substrate includes an alloy layer that is formed of either a cube-textured FeNi alloy containing about 47% Ni to 58% Ni, or (b) a cube-texture Ni—Cu alloy in the composition range 41% Ni to 44% Ni. The substrate may further include an oxide buffer layer covering a surface of the alloy layer.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: June 26, 2001
    Assignee: Carpenter Technology (UK) Limited
    Inventors: Bartlomiej Andrzej Glowacki, Jan Edgar Evetts, Rodney Major
  • Patent number: 6246007
    Abstract: A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amount of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to atomic %. The base material is filled with a Bi-containing oxide of Bi1PbuSrxCayCuzOw wherein u=0-0.3, X=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: June 12, 2001
    Assignees: Sumitomo Heavy Industries, Ltd., National Research Institute for Metals
    Inventors: Yoshiaki Tanaka, Tomoyuki Yanagiya, Fumiaki Matsumoto, Masao Fukutomi, Toshihisa Asano, Kazunori Komori, Hiroshi Maeda
  • Patent number: 6240620
    Abstract: In a process in which a composite consisting of a metallic base and a superconductor mainly containing a Bi2Sr2CaCu2Ox superconducting phase is formed into a composite wire or wire, the composite is subjected to calcination and cold working before heat treatment for crystallization from a partial molten state.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: June 5, 2001
    Assignee: National Research Institute for Metals
    Inventors: Hitoshi Kitaguchi, Hanping Miao, Hiroaki Kumakura, Kazumasa Togano
  • Patent number: 6243598
    Abstract: A method of preparing a rare earth-barium-cuprate superconductor in the form of metallic tapes or wires, using a thick film or powder-in-tube process by supporting on a metallic substrate a mixture of seed crystals or aligned platelets of rare earth-barium cuprate having a high melting point and rare earth-barium-cuprate powder having a lower melting point. The material supported on the substrate is then subjected to a heat treatment at a temperature below the melting point of the high melting rare earth-barium-cuprate seed crystals and the metallic substrate and above the melting point of the low melting powder. Subsequently, the heat treated supported material is cooled below the melting temperature of the material and annealed.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: June 5, 2001
    Assignee: Haldor Topsoe A/S
    Inventor: Jens Christiansen
  • Patent number: 6239079
    Abstract: A high temperature superconductor composite material capable of working at liquid nitrogen and higher temperatures K>77 has a sintered compound of intermixed components including high temperature superconductor ceramics, a silver dope, and sintering products of interaction of the superconductor ceramics and the silver dope with silicone material.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: May 29, 2001
    Inventors: M. I. Topchiashvili, A. E. Rokhvarger
  • Patent number: 6238774
    Abstract: A high temperature oxide superconductor is efficiently protected from the affects of water and acids by forming a passivation layer of a fluoride. The fluoride layer comprises a fluoride composed of one or more elements composing the oxide superconductor and/or one or more elements that can compose an oxide superconductor by replacing at least in part one or more elements composing the oxide superconductor.
    Type: Grant
    Filed: June 14, 1994
    Date of Patent: May 29, 2001
    Assignee: Fujitsu Limited
    Inventors: Kyung-ho Park, Nagisa Ohsako
  • Patent number: 6226858
    Abstract: A method of manufacturing a superconductor wire which comprises: rolling a polycrystalline metallic substrate; heating the rolled polycrystalline metallic substrate at a temperature of 900° C. or more in a non-oxidizing atmosphere, whereby obtaining a rolled textured structure which is oriented such that the [100] plane thereof is parallel with a rolled plane and the <001> axis thereof is parallel with a rolled direction; heating the polycrystalline metallic substrate of the rolled textured structure at a temperature of 1,000° C. or more in an oxidizing atmosphere, whereby forming an oxide crystal layer consisting essentially of an oxide of the polycrystalline metal; and forming an oxide superconductor layer on the oxide crystal layer.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: May 8, 2001
    Assignees: The Furukawa Electric Co., Ltd., International Superconductivity Technology Center
    Inventors: Kaname Matsumoto, Naoki Koshizuka, Yasuzo Tanaka
  • Patent number: 6230033
    Abstract: A superconducting ceramic includes a laminate and a superconducting ceramic tape joined to the laminate. The laminate and superconductor tape are joined such that the tape is under a compressive stress. The compressive stress is of a greater amount than compressive stress which results from differences in thermal expansion of the tape and the laminate. The greater compressive stress can be achieved by putting the laminate under a greater tension than the superconducting ceramic tape during joining of the superconducting ceramic tape to the laminate.
    Type: Grant
    Filed: September 23, 1999
    Date of Patent: May 8, 2001
    Assignee: American Superconductor Corporation
    Inventors: John D. Scudiere, David M. Buczek, Gregory L. Snitchler, Paul J. Di Pietro
  • Patent number: 6223418
    Abstract: A method of preparing a metal tube for a length of superconducting wire Inserts superconducting base material into the tube and packs or coils the tube so that a portion of its outer surface would contact another surface. To prevent the portion of the outer surface from sticking to the other surface, the portion is coated with powder material particles suspended in an effectively liquid component before the packing or coiling so that the surfaces do not contact each other. The powder material has a melting point temperature higher than the melting point temperature of the tube and the liquid component evaporates or burns away completely at the temperature that forms the superconducting phase of the superconducting base material.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: May 1, 2001
    Assignee: Nordic Superconductor Technologies A/S
    Inventor: Zhenghe Han
  • Patent number: 6188921
    Abstract: A superconducting article having a high bulk sheath resistivity, and methods of manufacture of such an article. High-temperature superconductor filaments are disposed in a ductile matrix comprising a high silver content. The matrix is then coated with a solute and heated to a temperature high enough to allow the solute to diffuse into the matrix, but not high enough to allow substantive degradation or poisoning of the superconductor. After diffusion and cooling, the matrix comprises a silver alloy having a higher bulk resistivity than the pure silver.
    Type: Grant
    Filed: February 1, 1999
    Date of Patent: February 13, 2001
    Assignee: American Superconductor Corporation
    Inventors: Alexander Otto, Ralph P. Mason, Craig J. Christopherson, Peter R. Roberts
  • Patent number: 6185810
    Abstract: A high temperature superconducting composite rod, wire or tape is formed by filling the open cells of a reticulated foam structure made of silver, silver alloy, gold or gold alloy with a superconducting ceramic oxide or precursor, compacting the filled structure and forming it into a rod, wire or tape and heating it to melt and/or texture the superconducting ceramic oxide. The resulting composite has continuous ligaments of metal throughout a continuous region of superconducting ceramic oxide.
    Type: Grant
    Filed: June 18, 1997
    Date of Patent: February 13, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Donald U. Gubser, M. Ashraf Imam
  • Patent number: 6188920
    Abstract: The present invention provides a (Bi,Pb)SCCO-2223 oxide superconductor composite which exhibits improved critical current density and critical current density retention in the presence of magnetic fields. Retention of critical current density in 0.1 T fields (77 K, ⊥ ab plane) of greater than 35% is disclosed. Significant improvements in oxide superconductor wire current carrying capacity in a magnetic field are obtained by subjecting the oxide superconductor composite to a post-processing heat treatment which reduces the amount of lead in the (Bi,Pb)SCCO-2223 phase and forms a lead-rich non-superconducting phase. The heat treatment is carried out under conditions which localize the lead-rich phase at high energy sites in the composite.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: February 13, 2001
    Assignee: American Superconductor Corporation
    Inventors: Qi Li, William J. Michels, Ronald D. Parrella, Gilbert N. Riley, Jr., Mark D. Teplitsky, Steven Fleshler
  • Patent number: 6187718
    Abstract: Superconducting composites comprising a high thermal conductivity carbon substrate and a layer of ceramic-type superconductor. Particularly attractive for use as a superconducting flexible conductor are composites comprising a high thermal conductivity, low resistivity carbon fiber disposed within a non-adherent sleeve layer formed of the superconducting ceramic material.
    Type: Grant
    Filed: September 14, 1994
    Date of Patent: February 13, 2001
    Assignee: BP Amoco Corporation
    Inventor: David A. Schulz
  • Patent number: 6121205
    Abstract: A bulk superconductor including a plurality of units each composed of a substrate and a superconductive layer of R--Ba--Cu--O, where R is selected from La, Nd, Sm, Eu, Gd, Y, Dy, Ho, Er, Tm, Yb and mixtures thereof, formed on the substrate. The units are arranged in a row or in a matrix such that the superconductive layers of respective units are superconductively joined with each other.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: September 19, 2000
    Assignees: International Superconductivity Technology Center, Railway Technical Research Institute
    Inventors: Masato Murakami, Kazuhiko Sawada, Naomichi Sakai, Takamitsu Higuchi
  • Patent number: 6122534
    Abstract: A process for increasing the resistivity of a HTS oxide composite sheath including heating a superconductive HTS oxide composite, the composite including a sheath including silver, in the presence of mercury at temperatures sufficient to form a silver--mercury alloy is provided together with a HTS oxide composite which includes a high temperature superconductor oxide core surrounded by a metallic sheath, the metallic sheath including silver and mercury.Also provided is a process for preparing a HTS oxide composite having an enhanced transport critical current density including placing the HTS oxide composite within a sealed, evacuated container, and, heating the HTS oxide composite for time and at temperatures sufficient for enhancement of transport critical current density in comparison to the transport critical current density of the HTS oxide composite prior to the heating.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: September 19, 2000
    Assignee: The Regents of the Univeristy of California
    Inventors: Gilbert N. Riley, Jr., James D. Cotton, Terry G. Holesinger
  • Patent number: 6112399
    Abstract: A method of designing and manufacturing a magnetic separation apparatus. Past separators generally had poor power efficiency, poor throughput performance, and/or were bulky. Designing the magnetic separator of the present invention involves selecting a diameter and height for a separation container and superconducting coil by optimizing at least one parameter from a group of parameters. The magnetic separation apparatus includes a superconducting electromagnet and separation container having a diameter of about 60 inches, a height of about 40 inches, an inlet port, an outlet port, and removable matrix modules. The electromagnet generates a magnetic field strength within the separation container of greater than 3 Tesla. The optimized separation container volume, the high magnetic field strength, and the matrix modules allow the magnetic separation apparatus to have greatly increased slurry processing capacity.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: September 5, 2000
    Assignee: Outokumpu OYJ
    Inventors: Sibley C. Burnett, L. Cullen Andrews, Gregory S. Beck, R. Lewis Creedon, John R. Purcell
  • Patent number: 6110606
    Abstract: A high performance superconducting ceramic article for use in a liquid cryogen bath is provided. It includes a superconducting ceramic tape having at least one surface vulnerable to cryogenic infiltration is sealed on each vulnerable surface to a non-porous metallic laminate, which also provides the desired support structure, in substantially impervious relation by a non-porous metallic bonding agent. This results in greater protection of the superconducting ceramic tape from cryogen infiltration, and permits greater thermal cycling of the superconductor during use without causing degradation of the tape's critical current carrying capacity.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: August 29, 2000
    Assignee: American Superconductor Corporation
    Inventors: John D. Scudiere, David M. Buczek
  • Patent number: 6074991
    Abstract: Process for producing an elongated superconductor with a bismuth phase having a high transition temperature and a superconductor produced according to this process. An elongated superconductor with at least one conductor core made of high-T.sub.c Bi-containing superconductor material with the 2212 or 2223 phase is to be manufactured. For this purpose, the cross section of a structure made of Ag matrix material and a precursor of the superconductor material is reduced. Subsequently the raw conductor thus obtained is annealed in an oxygen-containing atmosphere. According to this invention, a temperature variation between a higher temperature (T1) and a lower temperature (T2) is provided for the annealing. The higher temperature (T1) is at most 7 K above the decomposition temperature (Tz), and the lower temperature (T2) is at most 9 K below the decomposition temperature (Tz).
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: June 13, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventors: Alexander Jenovelis, Manfred Wilhelm, Helmut Helldorfer, Bernhard Roas
  • Patent number: 6071338
    Abstract: A method for crystal growth of a multi-element oxide thin film containing bismuth as a constituent element has setting a growth environment to fall under conditions such that an oxide of bismuth alone will not be formed, but the desired multi-element oxide will be formed; and supplying bismuth in excess of other elements to the growth environment, to prevent the lack of bismuth and evaporate surplus bismuth from the thin film. This method suppresses the formation of different phases or the precipitation of impurities ascribed to the deviation of the proportion of bismuth element from the desired composition, enables a high quality thin film to be grown, and markedly broadens the ranges of the set conditions for the thin film growth temperature and oxidizing gas in comparison with conventional technologies.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: June 6, 2000
    Assignee: Agency of Industrial Science & Technology
    Inventors: Shigeki Sakai, Shinji Migita
  • Patent number: 6055446
    Abstract: A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: April 25, 2000
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Donald M. Kroeger, Frederick A. List, III
  • Patent number: 6038461
    Abstract: There are disclosed a high temperature superconductive material which can be plastically deformed, processed optionally into predetermined configurations and industrially mass produced and a method of manufacturing a formed body of the high temperature superconductive material. Mixed is a powder raw material which is mainly composed of: 10 to 50 mol % of at least one amide or nitride of alkali metal of Li, Na or K; 10 to 60 mol % of cyanide containing at least one metal selected from aluminum, copper, silver or gold; 5 to 50 mol % of at least one pure metal selected from aluminum, copper, silver or gold; and 10 mol % or less of at least one alkaline earth metal selected from Be, Mg, Ca, Sr or Ba. The powder raw material is pressed, and heated and sintered at the temperature of 673 K to 1553 K. In this manner, obtained is the plastically deformable high temperature superconductive material which can be optionally processed through forging, rolling and the like.
    Type: Grant
    Filed: April 24, 1998
    Date of Patent: March 14, 2000
    Inventors: Yoshifumi Sakai, Itsuko Sakai
  • Patent number: 6034588
    Abstract: A superconducting current lead is provided, in which a plurality of unit conductors serving as current paths and each formed from a tape-like oxide superconducting wire are disposed on a cylindrical support member 4 so that a tape surface of the superconducting wire material is made parallel with a circumferential direction in a cylindrical coordinate system, and magnetic members 3 are disposed between the plurality of unit conductors.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: March 7, 2000
    Assignees: Japan Atomic Energy Research Institute, Fuji Electric Co., Ltd.
    Inventors: Toshinari Ando, Hiroshi Tsuji, Takaaki Isono, Kazuya Hamada, Yukio Yasukawa, Masanobu Nozawa
  • Patent number: 6027826
    Abstract: The invention provides methods to manufacture dense, complex c-axis oriented ceramic oxide layers with thickness greater than 2.5 microns (.mu.m) on a metallic substrate (composites) without the use of an interfacial barrier, buffer, or surface layer using a metalorganic deposition process and thermomechanical reaction treatments is disclosed. A porous amorphous metal oxide ceramic deposit is formed directly on the substrate by spray pyrolyzing a mixed metalorganic precursor solution onto the metallic substrate. The metallic substrate has been previously heated to temperatures greater than the boiling point of the organic solvent and are high enough to initiate in situ decomposition of the metalorganic precursor salts. The process does not apply the precursor solution to the substrate as a liquid coating that is pyrolyzed in subsequent processing steps.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: February 22, 2000
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Pierre L. deRochemont, Daniel E. Ryder, Michael J. Suscavage, Mikhail Klugerman
  • Patent number: 6028036
    Abstract: A superconductive composite member comprises a core of oxide ceramic superconducting material that is disposed in a metal envelope comprising a silver alloy which is hardenable by an oxide dispersion. Preferably, the silver alloy is an alloy of Ag--Mg--Ni, Ag--Mn--Ni or Ag--Al alloy which may also include one or more precious metal elements selected from a group consisting of Ru, Rh, Pd, Os, Ir, Pd and Au. The composite member is formed by introducing the superconductive material into the silver alloy envelope, cross section-reducing the assembly of the envelope and core and, subsequently, thermal treatment for the recovery and setting of the oxygen concentration.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: February 22, 2000
    Assignee: Vacuumschmelze GmbH
    Inventors: Johannes Tenbrink, Klaus Heine, Paul Puniska, Christine Schmitt
  • Patent number: 6021338
    Abstract: A radiation curable coating composition for superconducting wires including at least one (meth)acrylate terminated urethane oligomer, at least one adhesion promoter, at least one (meth)acrylate functionalized diluent and at least one free radical photoinitiator. The coating composition is able to withstand repeated thermal cycling from the ambient temperature to the critical temperature of the superconducting wire and, because the composition is radiation cured, the superconducting wire is not heated, thus avoiding degrading the superconducting wire.
    Type: Grant
    Filed: December 30, 1996
    Date of Patent: February 1, 2000
    Assignee: DSM Desotech Inc.
    Inventors: Edward P. Zahora, Steven C. Lapin, David M. Szum, Steven R. Schmid
  • Patent number: 6010983
    Abstract: A high temperature superconductor composite material, which is suitable for production of filaments, wires, coils and other shaped products, has a ceramic powder of a material selected from the group consisting of, for example, YBa.sub.2 Cu.sub.3 O.sub.7-x and Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10 ; a solution of a material selected from the group consisting of rubber silicone or lacquer silicone in a substance selected from the group consisting of toluene or acetone; and an ultra-fine silver powder dope, and is produced by using an emulsion mixture of the three major components with ultrasonic homogenization of the mixture, primer cladding of a glue-exterior layer on a silver core filament, high temperature superconductor coating of the silver core by chemical adhesion, and polymerization of the coating applied by low temperature heating, whereafter the composition is treated by magnetic treatment, gamma irradiation, and microwave supported fast heating.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: January 4, 2000
    Inventors: M. I. Topchiashvili, A. E. Rokhvarger
  • Patent number: 5998050
    Abstract: A composite material is disclosed which includes a substrate, an oriented film provided on a surface of the substrate and formed of a crystal of a Y123 metal oxide of the formula LnBa.sub.2 Cu.sub.3 O.sub.y wherein Ln stands for Y or an element belonging to the lanthanoid and y is a number of 6-7, and a layer of a Y123 metal oxide of the formula LnBa.sub.2 Cu.sub.3 O.sub.y wherein Ln stands for Y or an element belonging to the lanthanoid and y is a number of 6-7 formed on the oriented film.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: December 7, 1999
    Assignees: International Superconductivity Technology Center, Hitachi Cable Ltd., Hokkaido Electric Power Co., Inc., Kyushu Electric Power Co., Inc., The Kansai Electric Power Co., Inc.,, Fujikura, Ltd.
    Inventors: Yasuji Yamada, Masaru Nakamura, Noriyuki Tatsumi, Jiro Tsujino, Kanshi Ohtsu, Yasuo Kanamori, Minoru Tagami, Atsushi Kume, Yuh Shiohara, Shoji Tanaka
  • Patent number: 5999833
    Abstract: A method for the production of a superconducting oxide tape having a Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10 (Bi-2223) structure interposed between silver sheets, which method consists essentially of preparing a sandwich structure having interposed between silver sheets a molded layer of a superconducting oxide precursor powder consisting essentially of Bi, Pb, Sr, Ca, Cu, and O obtained from a raw material substance composed of, in atomic composition ratio, 1.00 of Bi, 0-0.2 of Pb, 0.9-1.1 of Sr, 0.9-1.1 of Ca and 1.3-1.7 of Cu, and O, heating the sandwich structure in an atmosphere consisting of oxygen and an inert gas, having an oxygen partial pressure in the range of 0-5%, and kept at a temperature in the range of 830-850.degree. C., thereby melting the molded layer, then causing the atmosphere to retain the heating temperature and meanwhile increasing the oxygen partial pressure, thereby inducing precipitation of crystal grains possessing a Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.
    Type: Grant
    Filed: January 6, 1998
    Date of Patent: December 7, 1999
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Ryoji Funahashi, Ichiro Matsubara, Kazuo Ueno, Hiroshi Ishikawa
  • Patent number: 5987342
    Abstract: A superconducting ceramic includes a laminate and a superconducting ceramic tape joined to the laminate. The laminate and superconductor tape are joined such that the tape is under a compressive stress. The compressive stress is of a greater amount than the compressive stress which results from differences in thermal expansion of the tape and the laminate. The greater compressive stress can be achieved by putting the laminate under a greater tension than the superconducting ceramic tape during joining of the superconducting ceramic tape to the laminate.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: November 16, 1999
    Assignee: American Superconductor Corporation
    Inventors: John D. Scudiere, David M. Buczek, Gregory L. Snitchler, Paul J. Di Pietro
  • Patent number: 5974336
    Abstract: An oxide superconductor comprises a base material consisting of a single crystalline oxide, an oxide superconductor film consisting of a Y123 compound and formed on the single crystalline oxide base material, and a coating film consisting essentially of a Ba--Cu--O oxide and covering the surface of the oxide superconductor film, the coating film having a thermal expansion coefficient higher than that of the oxide superconductor film.
    Type: Grant
    Filed: October 15, 1997
    Date of Patent: October 26, 1999
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Yasuji Yamada, Tamaki Masegi, Junichi Kawashima, Yusuke Niiori, Izumi Hirabayashi
  • Patent number: 5949131
    Abstract: According to one aspect, provided is a junction between tape-type superconductors, which are formed of metal-coated oxide superconductors. The superconductors of the superconducting wires, which are oppositely joined to each other, are overlapped with each other. According to another aspect, provided is a method of joining tape-type superconducting wires formed of metal-coated oxide superconductors, which comprises a step of preparing tape-type superconducting wires having portions to be joined, a step of separating metal coatings from first sides of the superconductors in the portions to be joined for exposing the superconductors, a step of overlapping the exposed superconductors with each other, and a step of joining the overlapped superconductors to each other. In the junction obtained according to these aspects, it is possible to stably carry a uniform superconducting current.
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: September 7, 1999
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichi Sato, Takeshi Kato, Nobuhiro Shibuta, Hidehito Mukai
  • Patent number: 5935911
    Abstract: A starting material which is converted to a continuous body of an oxide superconductor by a heat treatment is filled in a tubular Ag sheath member. The diameter of the filled member is reduced by extrusion to form a wire. The wire is subjected to a heat treatment so that the starting material inside the sheath member is converted to a continuous body of an oxide superconductor. A superconducting wire constituted by the sheath member and the oxide superconductor filled inside the sheath member is obtained. A superconducting coil can be obtained by winding the superconducting wire.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: August 10, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yutaka Yamada, Satoru Murase, Hisashi Yoshino, Noburu Fukushima, Hiromi Niu, Shigeo Nakayama, Misao Koizumi
  • Patent number: 5932523
    Abstract: In order to provide a flexible oxide superconducting cable conductor which is reduced in ac loss, tape-shaped multifilamentary superconducting wires covered with a stabilizing metal are spirally wound on a flexible former. Each of the multifilamentary superconducting wires has a plurality of filaments. The filament contains an oxide superconductor. The superconducting wires are preferably wound on the former at a bending strain of not more than 0.3 %. In winding on the former, a prescribed number of tape-shaped multifilamentary superconducting wires are wound on a core member in a side-by-side manner, to form a first layer. Then, an insulating layer is provided on the first layer. This insulating layer can be formed by an insulating tape. A prescribed number of tape-shaped superconducting multifilamentary wires are wound on the insulating layer in a side-by-side manner, to form a second layer. The insulating layer is adapted to reduce ac loss of the conductors.
    Type: Grant
    Filed: October 19, 1994
    Date of Patent: August 3, 1999
    Assignees: Sumitomo Electric Industries, Ltd., The Tokyo Electric Power Company, Incorporated
    Inventors: Jun Fujikami, Nobuhiro Shibuta, Kenichi Sato, Tsukushi Hara, Hideo Ishii
  • Patent number: 5914297
    Abstract: An oxide superconductor composite having improved texture and durability. The oxide superconductor composite includes an oxide superconductor phase substantially surrounded with/by a noble metal matrix, the noble metal matrix comprising a metal oxide in an amount effective to form metal oxide domains that increase hardness of the composite. The composite is characterized by a degree of texture at least 10% greater than a comparable oxide superconductor composite lacking metal oxide domains. An oxide superconducting composite may be prepared by oxidizing the precursor composite under conditions effective to form solute metal oxide domains within the silver matrix and to form a precursor oxide in the precursor alloy phase; subjecting the oxidized composite to a softening anneal under conditions effective to relieve stress within the noble metal phase; and converting the oxide precursor into an oxide superconductor.
    Type: Grant
    Filed: April 5, 1996
    Date of Patent: June 22, 1999
    Assignee: American Superconductor Corp
    Inventor: Eric R. Podtburg
  • Patent number: 5912210
    Abstract: There is disclosed herein an invention for increasing the current carrying capability of high-Tc superconductor materials. The inventive method includes irradiating such superconductors with light particles, such as neutrons, protons and thermal neutrons, having energy sufficient to cause fission of one or more elements in the superconductor material at a dose rate and for a time sufficient to create highly splayed (dispersed in orientation) extended columns of damaged material therein. These splayed tracks significantly enhance the pinning of magnetic vortices thereby effectively reducing the vortex creep at high temperatures resulting in increased current carrying capability.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: June 15, 1999
    Assignee: International Business Machines Corporation
    Inventors: Lia Krusin-Elbaum, Alan David Marwick, Paul William Lisowski, James Russell Thompson, Jr., James Francis Ziegler
  • Patent number: 5908813
    Abstract: The present invention discloses an integrated circuit that is wired with a high-temperature superconductive material that is superconductive at temperatures of about 70.degree. K and above, and methods of making the integrated circuit. The front-end manufactured semiconductor structure is patterned with a preferred precursor metal or metal oxide and a complementary compound is superposed and reacted to form wiring lines of superconductor ceramics that complete integrated circuits within the front-end manufactured semiconductor structure. The front-end manufactured semiconductor structure is alternatively patterned first with the complementary compound and the precursor metal is thinly patterned by ion implantation. The front-end manufactured semiconductor structure is then treated to form wiring lines of superconductor ceramics that complete integrated circuits within structure.
    Type: Grant
    Filed: February 14, 1997
    Date of Patent: June 1, 1999
    Assignee: Micron Technology, Inc.
    Inventor: John H. Givens
  • Patent number: 5908812
    Abstract: A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.
    Type: Grant
    Filed: February 5, 1996
    Date of Patent: June 1, 1999
    Assignee: The Regents of the University of California
    Inventors: James D. Cotton, Gilbert Neal Riley, Jr.
  • Patent number: 5906964
    Abstract: Highly oriented HgBa.sub.2 Ca.sub.2 Cu.sub.3 O.sub.8+.delta. on Ni-tapes with a buffer layer of Cr/Ag or Cr/(Ag--Pd) have been described with a high transition temperature are described along with, one and two step methods of manufacture.
    Type: Grant
    Filed: January 15, 1997
    Date of Patent: May 25, 1999
    Assignee: University of Houston
    Inventors: Ching-Wu Chu, Ruling L. Meng, Yu-Yi Xue
  • Patent number: 5897945
    Abstract: Metal oxide nanorods and composite materials containing such nanorods. The metal oxide nanorods have diameters between 1 and 200 nm and aspect ratios between 5 and 2000.
    Type: Grant
    Filed: February 26, 1996
    Date of Patent: April 27, 1999
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Peidong Yang
  • Patent number: 5883051
    Abstract: A superconducting Josephson junction element including a first, a-axis oriented, superconductive metal oxide crystal grain having a first area of a {001} plane, and a second, c-axis oriented, superconductive metal oxide crystal grain having a second area of a {110} plane, wherein the first and second crystal grains are in contact with each other at the first and second areas to form a grain boundary therebetween.
    Type: Grant
    Filed: October 22, 1996
    Date of Patent: March 16, 1999
    Assignee: International Superconductivity Technology Center
    Inventors: Yoshihiro Ishimaru, Jian-Guo Wen, Kunihiko Hayashi, Youichi Enomoto, Naoki Koshizuka, Shoji Tanaka
  • Patent number: 5880068
    Abstract: The invention relates to a high-temperature superconductor lead element including a plurality of lengths of high-temperature superconductor electrically connected in a non-collinear configuration, for example, next to and parallel with each other, to increase the thermal length of the lead element. A proximal end of a first of the lengths is configured for thermal connection to a warm thermal element and a distal end of a last of the lengths is configured for thermal connection to a cold thermal element. Each length of high-temperature superconductor includes a high-temperature superconductor plate having an electrically insulative support and a plurality of high-temperature superconductor tapes mounted, in a linear array, on the support. A plurality of high-temperature superconductor plates are arranged with their longitudinal axis parallel to form a cylindrical lead with "bad" self-fields in each plate being substantially cancelled by self-fields in neighboring plates.
    Type: Grant
    Filed: October 18, 1996
    Date of Patent: March 9, 1999
    Assignee: American Superconductor, Inc.
    Inventors: Bruce B. Gamble, Anthony J. Rodenbush, Gregory L. Snitchler, Roman J. Jedras
  • Patent number: 5877124
    Abstract: A superconducting oxide ceramic pattern is described. The pattern is comprised of a high Tc superconducting region and a low Tc superconducting region which exhibits a resistivity at the liquid nitrogen temperature while the high Tc region is superconducitive at that temperature. The low Tc region is doped with impurity such as Si and then subjected to thermal treatment to oxidizing the impurity.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: March 2, 1999
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shumpei Yamazaki
  • Patent number: 5874384
    Abstract: A superconducting tape or wire with a longitudinally extending outer layer of Ag or its alloys defining an inner region, an area of Ag or its alloys in said inner region extending longitudinally of said tape or wire separated from said outer layer of metal by freeze dried superconducting material. The inner Ag area may be a rod, a tube or a number of wires. The superconductor material is preferably B-2223.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: February 23, 1999
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Milan Lelovic, Nicholas G. Eror