Process Of Making Wire, Tape, Cable, Coil, Or Fiber Patents (Class 505/430)
  • Patent number: 6493925
    Abstract: Powder including at least a superconducting phase is degassed (step S1). After the powder is filled in a silver pipe (step S2), the silver pipe is degassed at a high temperature (step S3). After a plurality of single-core wires are inserted into another silver pipe to attain a multi-core structure, the silver pipe is degassed at a high temperature (step S5). The silver pipe is sealed under a reduced pressure (step S6). Therefore, even when a multi-core superconducting wire is manufactured, a manufacturing method of a superconducting wire capable of preventing swelling of the wire caused by a residual gaseous component can be obtained.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: December 17, 2002
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuyuki Kaneko, Munetsugu Ueyama, Akira Mikumo, Naoki Ayai, Shin-ichi Kobayashi
  • Patent number: 6481091
    Abstract: The present invention provides a method to prepare a (Bi,Pb)SrCaCuO-2223 superconducting wire with improved critical current density at reduced cost. In general, the basic method according to the present invention comprises the steps of: (a) preparing a starting precursor powder with the oxygen content adjusted to the value of the final 2223 phase; (b) filling the starting powder into a metal sheath; (c) performing deformation processing on the metal sheath to form a composite wire and develop texture in the 2212 superconducting phases; (d) sealing said metal sheath so that a fixed oxygen content is maintained; (e) performing sintering to obtain the (Bi,Pb)SrCaCuO-2223 phase. The method uses metals other than a silver-based material in the sheath material, thus significantly reducing the materials cost of the (Bi,Pb)SrCaCuO-2223 superconducting wire.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: November 19, 2002
    Inventor: Hengning Wu
  • Publication number: 20020095765
    Abstract: High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods for making such high-Tc superconducting products. Completely sealed high-Tc superconducting ceramic oxide provides are made by a macroscopic process including the steps of pressing a superconducting ceramic oxide powder into a hollow body of a material inert to oxygen; heat treating the superconducting ceramic oxide powder packed body under conditions sufficient to sinter the ceramic oxide powder; and then sealing any openings of the body. Optionally, a waveform or multiple pulses of alternate magnetic filed can be applied during the heat treatment.
    Type: Application
    Filed: October 29, 2001
    Publication date: July 25, 2002
    Inventor: Dawei Zhou
  • Patent number: 6381832
    Abstract: A superconducting wire having a stacked structure comprising (a) a substrate composed of an electrically conductive material, (b) an oxide superconductor material, and (c) an electrically conductive material which is substantially not reactive with said oxide superconductor material (b), wherein said electrically conductive material (c) is impregnated in said oxide superconductor material (b) by way of heat fusion such that gaps among crystal grains contained in said oxide superconductor material (b) are filled with said electrically conductive material (c). And a process for the production of said superconducting wire.
    Type: Grant
    Filed: May 13, 1996
    Date of Patent: May 7, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventor: Norio Kaneko
  • Publication number: 20020049143
    Abstract: An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.
    Type: Application
    Filed: September 18, 2001
    Publication date: April 25, 2002
    Inventors: Peter R. Roberts, William Michels, John F. Bingert
  • Patent number: 6365554
    Abstract: An oxide superconductor wire is prepared by preparing a length of precursor wire for processing into an oxide superconductor wire and coating the precursor wire with an isolating layer. The coated wire is wound onto a reel in a spiraling manner, such that each turn of the spiral is in substantial alignment with the preceding turn of the spiral along an axis perpendicular to the axis of winding. The wound precursor wire is then heated to form the oxide superconductor. The removable isolating layer is prepared by coating the wire with a solution including a metal compound and a porosity-inducing component, and heating the coated wire so as to induce porosity and control grain size of the metal compound so as to render the coating removable. The coating functions to isolate the overlapping turns of the wound wire from neighboring wires, so that no diffusion bonding or adherence between the turns occurs. The coating preferably comprises a material that can be reduced or decomposed to form a solderable metal.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: April 2, 2002
    Assignee: American Superconductor Corporation
    Inventors: Elliott D. Thompson, Jesse Marquardt, Derek P. Daly
  • Patent number: 6357105
    Abstract: An oxide superconducting wire of an anisotropic oxide superconductor comprises a core part of the wire and a superconducting layer enclosing the core part so that specific crystal axes of the oxide superconductor are oriented toward the core part. A method of producing a wire of an anisotropic oxide superconductor comprises the steps of arranging a metal sheath around a metal rod for forming a core part of the wire and charging powder of the oxide superconductor in a clearance between the metal sheath and the metal rod for preparing a composite material, and plastically working the composite material so that the metal sheath is larger in reduction of area than the metal rod.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: March 19, 2002
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takeshi Hikata, Hidehito Mukai, Kenichi Sato
  • Publication number: 20020023772
    Abstract: A superconducting wire having a fine line made of an oxide superconductor which has metal material dispersed therein, the outer periphery of which being coated with a conductive material; and a manufacturing method for the superconducting wire, comprising a process for drawing a metal pipe; filled with an oxide superconductor so as to product the fine line and a process for heating the fine line at a temperature which is higher than the melting point of the metal material constituting the metal pipe.
    Type: Application
    Filed: September 14, 1995
    Publication date: February 28, 2002
    Inventor: NORIO KANEKO
  • Patent number: 6344167
    Abstract: Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.
    Type: Grant
    Filed: February 18, 1994
    Date of Patent: February 5, 2002
    Assignee: BASF Corporation
    Inventors: Olli P. Tuominen, Matthew B. Hoyt, David F. Mitchell, Carol W. Morgan, Clyde Gordon Roberts, Robert A. Tyler
  • Patent number: 6300285
    Abstract: An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: October 9, 2001
    Assignee: The Regents of the University of California
    Inventors: Peter R. Roberts, William Michels, John F. Bingert
  • Publication number: 20010027166
    Abstract: A cabled conductor comprises a plurality of transposed strands each comprising one or more preferably twisted filaments preferably surrounded or supported by a matrix material and comprising textured anisotropic superconducting compounds which have crystallographic grain alignment that is substantially unidirectional and independent of the rotational orientation of the strands and filaments in the cabled conductor. The cabled conductor is made by forming a plurality of suitable composite strands, forming a cabled intermediate from the strands by transposing them about the longitudinal axis of the conductor at a preselected strand lay pitch, and, texturing the strands in one or more steps including at least one step involving application of a texturing process with a primary component directed orthogonal to the widest longitudinal cross-section of the cabled intermediate, at least one such orthogonal texturing step occurring subsequent to said strand transposition step.
    Type: Application
    Filed: January 25, 2001
    Publication date: October 4, 2001
    Applicant: American Superconductor Corporation Delaware Corporation
    Inventors: Gregory L. Snitchler, Jeffrey M. Seuntjens, William L. Barnes, Gilbert N. Riley
  • Patent number: 6272730
    Abstract: A process for producing a multifilamentary conductive tape of the type including a plurality of layers of a high-temperature superconducting material, incorporated in a mutually spaced relationship within a metal matrix, includes the steps of: a) submitting to plastic deformation individual metal tubes including a precursor of a superconducting material, so as to obtain a plurality of elementary tapes structurally independent from one another; b) coupling the tapes so obtained by means of a heat treatment at a temperature and for a time sufficient to establish a stable mutual connection between said tapes. The multifilamentary tape so obtained or possibly the independent tapes, are then subjected to at least one sintering step, which may be followed by one or more cycles of plastic deformation and sintering. Advantageously, the process of the invention allows to increase the fill factor of the tape, with a corresponding increase in the critical current in superconductivity conditions.
    Type: Grant
    Filed: May 24, 1996
    Date of Patent: August 14, 2001
    Assignee: Pirelli Cavi S.p.A.
    Inventors: Laura Gherardi, Paola Caracino
  • Patent number: 6272731
    Abstract: The invention relates a powder in tube type method of making an HTc superconductive multifilament strand having a silver-based matrix, in which: a first envelope is filled with powder reagents for an HTc superconductor; the resulting billet is drawn down into a monofilament strand; the monofilament strand is cut up into lengths and a secondary envelope is filled with the resulting lengths, thereby making a multifilament billet which is drawn down into a multifilament strand; the multifilament strand is cut up into lengths and a new envelope is filled with the resulting lengths, thereby making a new multifilament billet which is drawn down into a new multifilament strand; and it is shaped and subjected to heat treatment; according to the invention, at least one face of the monofilament strand is electrically insulated; and during the first multifilament step the secondary envelope is filled with the resulting insulated lengths.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: August 14, 2001
    Assignee: Alcatel
    Inventors: Albert Leriche, Erick Beghin, GĂ©rard Duperray, Denis Legat, Peter Friedrich Herrmann
  • Patent number: 6271473
    Abstract: A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % a copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amount of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to atomic %. The base material is filled with a Bi-containing oxide of Bi1PbuSrxCayCuzOw wherein u=0-0.3, X=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: August 7, 2001
    Assignees: Sumitomo Heavy Industries Ltd., National Research Institute for Metals
    Inventors: Yoshiaki Tanaka, Tomoyuki Yanagiya, Fumiaki Matsumoto, Masao Fukutomi, Toshihisa Asano, Kazunori Komori, Hiroshi Maeda
  • Publication number: 20010011066
    Abstract: The fabrication of superconducting wires and rods having desired and consistent electrical and mechanical properties, in particular those based on Yttrium Barium Copper Oxide (YBCO) and Bismuth Strontium Calcium Copper Oxide (BSCCO), is disclosed. The first fabrication step is to form an extrudable paste by mixing YBCO or BSCCO superconducting powder with a set of organic additives, which include binder, plasticizers lubricant, dispersant, and a solvent. The following additional steps are performed on both YBCO and BSCCO based wires or rods: (i) using a piston extruder to extrude the superconducting wire or rod; (ii) drying the wire or rod to remove the solvent; and (iii) subjecting the wire or rod to a binder burn-out treatment to remove the remaining organic additives. In addition, YBCO wires and rods also require a sintering step, while BSCCO wires and rods also require cold isostatic pressing and heat treatment steps.
    Type: Application
    Filed: January 19, 2001
    Publication date: August 2, 2001
    Applicant: UNIVERSITY OF HOUSTON
    Inventors: Krishnaswamy Ravi-Chandar, Devamanohar Ponnusamy, Kamel Salama
  • Patent number: 6265354
    Abstract: The present invention provides a method to prepare a (Bi,Pb)SrCaCuO-2223 superconductor, in particular a (Bi,Pb)SrCaCuO-2223 superconducting wire with improved critical current density at reduced cost. In the method of preparing a (Bi,Pb)SrCaCuO-2223 superconducting wire comprising the steps of filling precursor powder into a metal sheath, working the same into a wire by performing deformation processing in this state, and heat treating the wire, the precursor powder is prepared from a powder containing a fully doped 2212 phase and a powder containing an under-doped 2212 phase. This precursor powder provides the advantage of better texture formation, faster and more homogeneous reaction to form the 2223 phase, and improved connectivity between the 2223 grains during the heat treatment process, leading to improved critical current density.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: July 24, 2001
    Inventor: Hengning Wu
  • Patent number: 6256521
    Abstract: A multi-domained bulk REBa2Cu3Ox with low-angle domain boundaries which resembles a quasi-single domained material and a method for producing the same comprising arranging multiple seeds, which can be small single crystals, single domained melt-textured REBa2Cu3Ox pieces, textured substrates comprised of grains with low misorientation angles, or thick film REBa2Cu3Ox deposited on such textured substrate, such seeds being tailored for various REBa2Cu3Ox compounds, in specific pattern and relative seed orientations on a superconductor precursor material which may be placed in contact with a porous substrate so as to reduce the amount of liquid phase in the melt. Because seeds can be arranged in virtually any pattern, high quality REBa2Cu3Ox elements of virtually unlimited size and complex geometry can be fabricated.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: July 3, 2001
    Assignee: UT-Battelle, LLC
    Inventors: Dominic F. Lee, Donald M. Kroeger, Amit Goyal
  • Patent number: 6247225
    Abstract: A cabled conductor comprises a plurality of transposed strands each comprising one or more preferably twisted filaments preferably surrounded or supported by a matrix material and comprising textured anisotropic superconducting compounds which have crystallographic grain alignment that is substantially unidirectional and independent of the rotational orientation of the strands and filaments in the cabled conductor. The cabled conductor is made by forming a plurality of suitable composite strands, forming a cabled intermediate from the strands by transposing them about the longitudinal axis of the conductor at a preselected strand lay pitch, and, texturing the strands in one or more steps including at least one step involving application of a texturing process with a primary component directed orthogonal to the widest longitudinal cross-section of the cabled intermediate, at least one such orthogonal texturing step occurring subsequent to said strand transposition step.
    Type: Grant
    Filed: November 7, 1995
    Date of Patent: June 19, 2001
    Assignee: American Superconductor Corporation
    Inventors: Gregory L. Snitchler, Jeffrey M. Seuntjens, William L. Barnes, Gilbert N. Riley, Jr.
  • Patent number: 6248696
    Abstract: Fibers which contain potentially superconducting material are dry spun by the steps of preparing a suspension of potentially superconducting powder in a thickened solvent; preparing a solution of fiber-forming polymer; supplying the suspension and the solution to a spinning apparatus; in the spinning apparatus, arranging the solution and the suspension in a bicomponent arrangement; extruding the arranged solution and suspension from a spinneret as a bicomponent filament; and removing the solvent from the filament.
    Type: Grant
    Filed: July 15, 1994
    Date of Patent: June 19, 2001
    Assignee: BASF Corporation
    Inventors: Olli P. Tuominen, Carol W. Morgan, Dominick A. Burlone, Keith V. Blankenship
  • Patent number: 6246007
    Abstract: A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amount of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to atomic %. The base material is filled with a Bi-containing oxide of Bi1PbuSrxCayCuzOw wherein u=0-0.3, X=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: June 12, 2001
    Assignees: Sumitomo Heavy Industries, Ltd., National Research Institute for Metals
    Inventors: Yoshiaki Tanaka, Tomoyuki Yanagiya, Fumiaki Matsumoto, Masao Fukutomi, Toshihisa Asano, Kazunori Komori, Hiroshi Maeda
  • Patent number: 6243598
    Abstract: A method of preparing a rare earth-barium-cuprate superconductor in the form of metallic tapes or wires, using a thick film or powder-in-tube process by supporting on a metallic substrate a mixture of seed crystals or aligned platelets of rare earth-barium cuprate having a high melting point and rare earth-barium-cuprate powder having a lower melting point. The material supported on the substrate is then subjected to a heat treatment at a temperature below the melting point of the high melting rare earth-barium-cuprate seed crystals and the metallic substrate and above the melting point of the low melting powder. Subsequently, the heat treated supported material is cooled below the melting temperature of the material and annealed.
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: June 5, 2001
    Assignee: Haldor Topsoe A/S
    Inventor: Jens Christiansen
  • Patent number: 6205645
    Abstract: The combination of one or more high reduction drafts with controlled, low back tensions increases the range of deformation conditions over which dimensional tolerances and Je may be optimized. The method comprises the steps of: first, providing a precursor article comprising a metal matrix surrounding a plurality of filaments extending along the length of the article and comprising precursors to a desired superconducting ceramic; next, roll working the precursor article during a breakdown stage at a back tension less than the elastic to plastic transition threshold of the composite during at least one high reduction roll working draft, and, then, sintering the rolled article to obtain the desired superconducting ceramic. In a preferred embodiment, the rolling step further comprises rolling the article at a front tension less than the elastic to plastic transition threshold of the rolled, unsintered article.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: March 27, 2001
    Assignee: American Superconductor Corporation
    Inventors: Qi Li, Craig J. Christopherson, Gilbert N. Riley, Jr., William L. Carter, William J. Michels, Eric R. Podtburg, Lawrence J. Masur
  • Patent number: 6202287
    Abstract: Methods for producing biaxially aligned superconducting ceramics are disclosed. The methods include fabricating a composite precursor formed of substantially planar filaments of a superconductor precursor surrounded by a matrix, and thermomechanically processing the precursor to texture at least the interfacial layers with the matrix without converting appreciable amounts of the composite precursor to the superconducting oxide to form a preliminary filament material. The method also includes reaction texturing the preliminary filament material to form and texture a superconducting oxide. Reaction texture involves first heating at relatively low oxygen pressure, then heating at higher oxygen pressure.
    Type: Grant
    Filed: January 18, 1996
    Date of Patent: March 20, 2001
    Assignee: American Superconductor Corporation
    Inventor: Alexander Otto
  • Patent number: 6191074
    Abstract: The fabrication of superconducting wires and rods having desired and consistent electrical and mechanical properties, in particular those based on Yttrium Barium Copper Oxide (YBCO) and Bismuth Strontium Calcium Copper Oxide (BSCCO), is disclosed. The first fabrication step is to form an extrudable paste by mixing YBCO or BSCCO superconducting powder with a set of organic additives, which include binder, plasticizer, lubricant, dispersant, and a solvent. The following additional steps are performed on both YBCO and BSCCO based wires or rods: (i) using a piston extruder to extrude the superconducting wire or rod; (ii) drying the wire or rod to remove the solvent; and (iii) subjecting the wire or rod to a binder burn-out treatment to remove the remaining organic additives. In addition, YBCO wires and rods also require a sintering step, while BSCCO wires and rods also require cold isostatic pressing and heat treatment steps.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: February 20, 2001
    Assignee: University of Houston
    Inventors: Krishnaswamy Ravi-Chandar, Devamanohar Ponnusamy, Kamel Salama
  • Patent number: 6185810
    Abstract: A high temperature superconducting composite rod, wire or tape is formed by filling the open cells of a reticulated foam structure made of silver, silver alloy, gold or gold alloy with a superconducting ceramic oxide or precursor, compacting the filled structure and forming it into a rod, wire or tape and heating it to melt and/or texture the superconducting ceramic oxide. The resulting composite has continuous ligaments of metal throughout a continuous region of superconducting ceramic oxide.
    Type: Grant
    Filed: June 18, 1997
    Date of Patent: February 13, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Donald U. Gubser, M. Ashraf Imam
  • Patent number: 6122534
    Abstract: A process for increasing the resistivity of a HTS oxide composite sheath including heating a superconductive HTS oxide composite, the composite including a sheath including silver, in the presence of mercury at temperatures sufficient to form a silver--mercury alloy is provided together with a HTS oxide composite which includes a high temperature superconductor oxide core surrounded by a metallic sheath, the metallic sheath including silver and mercury.Also provided is a process for preparing a HTS oxide composite having an enhanced transport critical current density including placing the HTS oxide composite within a sealed, evacuated container, and, heating the HTS oxide composite for time and at temperatures sufficient for enhancement of transport critical current density in comparison to the transport critical current density of the HTS oxide composite prior to the heating.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: September 19, 2000
    Assignee: The Regents of the Univeristy of California
    Inventors: Gilbert N. Riley, Jr., James D. Cotton, Terry G. Holesinger
  • Patent number: 6110873
    Abstract: A powder in tube method of making an HTc superconductive multifilament strand having a silver-based matrix, in which method:prior to the monofilament step:a composite multilayer material is prepared comprising at least one silver-based sheet, and at least one layer of non-superconductive ceramic material that is permeable to oxygen; andduring the monofilament step, a thickness of composite multilayer material is interposed between first and second thicknesses of silver-based material, thereby forming said first silver-based envelope.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: August 29, 2000
    Assignee: Alcatel
    Inventors: Gerard Duperray, Fernard Grivon, Peter Friedrich Herrmann
  • Patent number: 6103669
    Abstract: This invention provides an oxide-type superconducting flat wire having a critical current density of at least 1,000 A/cm.sup.2, which comprises a Y--Ba--Cu oxide layer having a superconducting property and a silver layer surrounding the oxide layer and has so flat a cross section vertical to the longitudinal direction of the wire that the upper and lower lines between the oxide layer and the silver layers appearing on the cross section having a zone over they are parallel to each other, the thickness of the oxide layer being cold rolled in the range of 0.35 to 0.75 based on the whole thickness of the wire, the whole thickness being 0.2 mm or less, and the metal layer being deformable to follow the shrink deformation of the oxide layer when heat treated to be sintered, but rigid when used.
    Type: Grant
    Filed: May 23, 1995
    Date of Patent: August 15, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Akira Okayama, Michiya Okada, Tadaoki Morimoto, Toshimi Matsumoto, Yoshimi Yanai, Hiroshi Satoh, Toshiya Doi, Kazuhide Tanaka, Takahiko Kato
  • Patent number: 6080703
    Abstract: A method for producing a high temperature superconductor system having the composition TlBiBaCaCuO. The system exhibits a T.sub.c of at least 116 K. The method includes the steps of mixing compounds including Tl, Bi, Ba, Ca, Cu, and O to create a mixture. The mixture is heated. The mixture is then cooled.
    Type: Grant
    Filed: November 13, 1998
    Date of Patent: June 27, 2000
    Assignee: University Technology Corporation
    Inventors: Allen M. Hermann, Veeraraghavan Badri
  • Patent number: 6074991
    Abstract: Process for producing an elongated superconductor with a bismuth phase having a high transition temperature and a superconductor produced according to this process. An elongated superconductor with at least one conductor core made of high-T.sub.c Bi-containing superconductor material with the 2212 or 2223 phase is to be manufactured. For this purpose, the cross section of a structure made of Ag matrix material and a precursor of the superconductor material is reduced. Subsequently the raw conductor thus obtained is annealed in an oxygen-containing atmosphere. According to this invention, a temperature variation between a higher temperature (T1) and a lower temperature (T2) is provided for the annealing. The higher temperature (T1) is at most 7 K above the decomposition temperature (Tz), and the lower temperature (T2) is at most 9 K below the decomposition temperature (Tz).
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: June 13, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventors: Alexander Jenovelis, Manfred Wilhelm, Helmut Helldorfer, Bernhard Roas
  • Patent number: 6069116
    Abstract: A novel process of the production and processing of high quality, high T.sub.c BSCCO or (Bi,Pb)SCCO superconductors starts with fabrication of a forming a bundle including a plurality of billets, each billet containing at least one filament comprising a dominant amount of an tetragonal BSCCO phase with selected intermediate phases, and substantially surrounded by a constraining metal. The bundle is thermomechanically consolidated to form a multifilamentary precursor article by applying pressure and heat to the bundle under conditions cooperatively selected to cause interdiffusion of said constraining metal at the interfaces between said metal and said filaments and substantially complete elimination of voids in said bundle, and the consolidation step is completed before any high strain longitudinal deformation is performed on the bundle.
    Type: Grant
    Filed: September 10, 1997
    Date of Patent: May 30, 2000
    Assignee: American Superconductor Corp.
    Inventors: Qi Li, Gilbert N. Riley, Jr., Lawrence J. Masur, Eric R. Podtburg, Ronald D. Parrella, Martin W. Rupich, Donald R. Parker, William L. Carter, William J. Rosati, Mark D. Teplitsky
  • Patent number: 6055446
    Abstract: A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: April 25, 2000
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Donald M. Kroeger, Frederick A. List, III
  • Patent number: 6027826
    Abstract: The invention provides methods to manufacture dense, complex c-axis oriented ceramic oxide layers with thickness greater than 2.5 microns (.mu.m) on a metallic substrate (composites) without the use of an interfacial barrier, buffer, or surface layer using a metalorganic deposition process and thermomechanical reaction treatments is disclosed. A porous amorphous metal oxide ceramic deposit is formed directly on the substrate by spray pyrolyzing a mixed metalorganic precursor solution onto the metallic substrate. The metallic substrate has been previously heated to temperatures greater than the boiling point of the organic solvent and are high enough to initiate in situ decomposition of the metalorganic precursor salts. The process does not apply the precursor solution to the substrate as a liquid coating that is pyrolyzed in subsequent processing steps.
    Type: Grant
    Filed: October 2, 1995
    Date of Patent: February 22, 2000
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Pierre L. deRochemont, Daniel E. Ryder, Michael J. Suscavage, Mikhail Klugerman
  • Patent number: 6010983
    Abstract: A high temperature superconductor composite material, which is suitable for production of filaments, wires, coils and other shaped products, has a ceramic powder of a material selected from the group consisting of, for example, YBa.sub.2 Cu.sub.3 O.sub.7-x and Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10 ; a solution of a material selected from the group consisting of rubber silicone or lacquer silicone in a substance selected from the group consisting of toluene or acetone; and an ultra-fine silver powder dope, and is produced by using an emulsion mixture of the three major components with ultrasonic homogenization of the mixture, primer cladding of a glue-exterior layer on a silver core filament, high temperature superconductor coating of the silver core by chemical adhesion, and polymerization of the coating applied by low temperature heating, whereafter the composition is treated by magnetic treatment, gamma irradiation, and microwave supported fast heating.
    Type: Grant
    Filed: July 6, 1998
    Date of Patent: January 4, 2000
    Inventors: M. I. Topchiashvili, A. E. Rokhvarger
  • Patent number: 6001777
    Abstract: A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: December 14, 1999
    Assignee: American Superconductor Corp.
    Inventors: Kenneth L. DeMoranville, Qi Li, Peter D. Antaya, Craig J. Christopherson, Gilbert N. Riley, Jr., Jeffrey M. Seuntjens
  • Patent number: 5999833
    Abstract: A method for the production of a superconducting oxide tape having a Bi.sub.2 Sr.sub.2 Ca.sub.2 Cu.sub.3 O.sub.10 (Bi-2223) structure interposed between silver sheets, which method consists essentially of preparing a sandwich structure having interposed between silver sheets a molded layer of a superconducting oxide precursor powder consisting essentially of Bi, Pb, Sr, Ca, Cu, and O obtained from a raw material substance composed of, in atomic composition ratio, 1.00 of Bi, 0-0.2 of Pb, 0.9-1.1 of Sr, 0.9-1.1 of Ca and 1.3-1.7 of Cu, and O, heating the sandwich structure in an atmosphere consisting of oxygen and an inert gas, having an oxygen partial pressure in the range of 0-5%, and kept at a temperature in the range of 830-850.degree. C., thereby melting the molded layer, then causing the atmosphere to retain the heating temperature and meanwhile increasing the oxygen partial pressure, thereby inducing precipitation of crystal grains possessing a Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.
    Type: Grant
    Filed: January 6, 1998
    Date of Patent: December 7, 1999
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Ryoji Funahashi, Ichiro Matsubara, Kazuo Ueno, Hiroshi Ishikawa
  • Patent number: 5958842
    Abstract: Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.
    Type: Grant
    Filed: February 28, 1996
    Date of Patent: September 28, 1999
    Assignee: The Regents of the Uniersity of California
    Inventor: Terry G. Holesinger
  • Patent number: 5932524
    Abstract: A high Tc superconducting ceramic material is produced by a method in which a mixture of chemicals in suitable amounts is compacted into a desired form. The compacted mixture is then fired and, at the same time, an electric current is caused to pass through the compacted mixture in a predetermined direction. By virtue of the passage of the current through the material during firing, the orderliness of the molecular arrangement is enhanced and an elevated transition temperature Tc is obtained.
    Type: Grant
    Filed: September 27, 1990
    Date of Patent: August 3, 1999
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 5912210
    Abstract: There is disclosed herein an invention for increasing the current carrying capability of high-Tc superconductor materials. The inventive method includes irradiating such superconductors with light particles, such as neutrons, protons and thermal neutrons, having energy sufficient to cause fission of one or more elements in the superconductor material at a dose rate and for a time sufficient to create highly splayed (dispersed in orientation) extended columns of damaged material therein. These splayed tracks significantly enhance the pinning of magnetic vortices thereby effectively reducing the vortex creep at high temperatures resulting in increased current carrying capability.
    Type: Grant
    Filed: August 8, 1997
    Date of Patent: June 15, 1999
    Assignee: International Business Machines Corporation
    Inventors: Lia Krusin-Elbaum, Alan David Marwick, Paul William Lisowski, James Russell Thompson, Jr., James Francis Ziegler
  • Patent number: 5908812
    Abstract: A superconducting oxide composite structure including a superconducting oxide member, a metal layer surrounding the superconducting oxide member, and an insulating layer of a complex oxide formed in situ adjacent to the superconducting oxide member and the metal layer is provided together with a method of forming such a superconducting oxide composite structure including encapsulating a superconducting oxide member or precursor within a metal matrix layer from the group of: (i) a reactive metal sheath adjacent to the superconducting oxide member or precursor, the reactive metal sheath surrounded by a second metal layer or (ii) an alloy containing a reactive metal; to form an intermediate product, and, heating the intermediate product at temperatures and for time sufficient to form an insulating layer of a complex oxide in situ, the insulating layer to the superconducting oxide member or precursor and the metal matrix layer.
    Type: Grant
    Filed: February 5, 1996
    Date of Patent: June 1, 1999
    Assignee: The Regents of the University of California
    Inventors: James D. Cotton, Gilbert Neal Riley, Jr.
  • Patent number: 5883052
    Abstract: A method of preparing a superconducting oxide by combining the matalic elements of the oxide to form an alloy, folled by oxidation of the alloy to form the oxide. Superconducting oxide-metal composites are prepared in which a noble metal phase intimately mixed with the oxide phase results in improved mechanical properties. The superconducting oxides and oxide-metal composites are provided in a variety of useful forms.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: March 16, 1999
    Assignee: Massachusetts Institute of Technology
    Inventors: Gregory J. Yurek, John B. VanderSande
  • Patent number: 5874384
    Abstract: A superconducting tape or wire with a longitudinally extending outer layer of Ag or its alloys defining an inner region, an area of Ag or its alloys in said inner region extending longitudinally of said tape or wire separated from said outer layer of metal by freeze dried superconducting material. The inner Ag area may be a rod, a tube or a number of wires. The superconductor material is preferably B-2223.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: February 23, 1999
    Assignee: The University of Chicago
    Inventors: Uthamalingam Balachandran, Milan Lelovic, Nicholas G. Eror
  • Patent number: 5849671
    Abstract: A method for forming a conductor element comprising a Tl or Hg-based high temperature superconductor (HTSC) material, comprises providing at least one first precursor material within an outer sheath for the conductor element; providing at least one second precursor material within the conductor sheath and separated from the first precursor material(s) by a barrier layer formed from a Noble metal for example between the first and second precursor materials; and heating the conductor sheath containing the precursors to a temperature at which the barrier layer melts to allow the precursor materials to mix and react, or to a temperature at which one of the precursor material(s) diffuses through the barrier layer sufficiently allow the precursor materials to mix and react, to form the Tl or Hg-HTSC material within the outer conductor sheath.
    Type: Grant
    Filed: March 13, 1996
    Date of Patent: December 15, 1998
    Assignees: Industrial Research Limited, American Superconductor Corporation
    Inventors: Donald Mark Pooke, Robert George Buckley, Jeffery Lewis Tallon, Michael Staines, Alexander Otto
  • Patent number: 5846910
    Abstract: This invention concerns a method for the production of an oxide superconducting tape material having a composition of Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, which method consists essentially of forming a sandwich structure comprising a layer formed of a superconducting powder consisting essentially of Bi, Sr, Ca, Cu, and O and having an essential structure of Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8 and silver sheet layers, the superconducting powder layer being interposed between the silver sheet layers, heating the sandwich structure at a temperature in the range of 810.degree.-910.degree. C. in an atmosphere consisting of oxygen and an inert gas and having an oxygen partial pressure in the range of 0-90%, thereby melting the superconducting powder layer, and then elevating the oxygen partial pressure of the atmosphere while retaining the same heating temperature, thereby crystallizing the molten superconducting powder layer.
    Type: Grant
    Filed: June 11, 1997
    Date of Patent: December 8, 1998
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Ryoji Funahashi, Ichiro Matsubara, Kazuo Ueno, Hiroshi Ishikawa
  • Patent number: 5846911
    Abstract: A method of producing a superconductive coating (19) on an elongated substrate (12) is indicated, whereby the substrate (12) is drawn through a deposition chamber (1) in which it is also heated in a heating zone (2) and is coated with a superconducting material. To improve the current carrying capacity, the substrate (12) is coated with the superconducting material in a geometric form which differs from the use of the finished product in a way so that a compressive strain is created in the substrate plane of the superconductive coating (19) for the geometric form of the substrate (12) taking place when it is put to use.
    Type: Grant
    Filed: July 8, 1997
    Date of Patent: December 8, 1998
    Assignee: Alcatel Alsthom Compagnie Generale d'Electricite
    Inventors: Herbert C. Freyhardt, Alexander Usoskin, Francisco Garcia-Moreno
  • Patent number: 5830828
    Abstract: A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.
    Type: Grant
    Filed: July 22, 1996
    Date of Patent: November 3, 1998
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Donald M. Kroeger, Frederick A. List, III
  • Patent number: 5827801
    Abstract: A clad superconductive wire or tape of an oxide superconductive material and a silver-copper alloy base containing 0.05-90 atomic % copper or a silver alloy. The silver-copper alloy base contains one or more elements selected from the group of Zr, Hf, Al, V, Nb and Ta in amounts of from 0.01-3 atomic %, or contains Au in amount of 0.01-10 atomic %. The silver alloy contains one or more elements selected from the group of Ti, Zr, Hf, V, Nb, Ta, Mg, Ca, Sr and Ba in amounts of from 0.01 to 3 atomic %, or one or more elements selected from the group of Au, Al, Ga, In and Sn in amounts of 0.05 to atomic %. The base material is filled with a Bi-containing oxide of Bi.sub.1 Pb.sub.u Sr.sub.x Ca.sub.y Cu.sub.z O.sub.w wherein u=0-0.3, x=0.8-1.2, y=0.2-1.2, and z=0.8-2.0, and processed to obtain a superconductive wire or tape having enhanced mechanical strength, superconductivity and plastic workability.
    Type: Grant
    Filed: May 15, 1997
    Date of Patent: October 27, 1998
    Assignees: Sumitomo Heavy Industries, Ltd., National Research Institute for Metals
    Inventors: Yoshiaki Tanaka, Tomoyuki Yanagiya, Fumiaki Matsumoto, Masao Fukutomi, Toshihisa Asano, Kazunori Komori, Hiroshi Maeda
  • Patent number: 5827798
    Abstract: A method for the production of a superconducting polycrystalline wire rod having all the crystal (a, b, c) axes thereof aligned is disclosed, which consists of a step of arraying a plurality of superconducting whiskers of a composition of Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8 (Bi-2212 phase) in such a manner as to parallellize the fiber axes of the whiskers and then aligning all the crystal axes of the superconducting whiskers with parallellized fiber axes and a step of heat-treating the resultant whiskers.
    Type: Grant
    Filed: June 11, 1997
    Date of Patent: October 27, 1998
    Assignees: Agency of Industrial Science and Technology, Ministry of International Trade & Industry
    Inventors: Ichiro Matsubara, Ryoji Funahashi, Kazuo Ueno, Hiroshi Ishikawa
  • Patent number: 5827797
    Abstract: A process for producing fibers of refractory material. In one embodiment, a dispersion of particles of refractory material is prepared first. The dispersion then is mixed with a carrier solution of a salt of cellulose xanthate to form a spin mix. Using general wet spinning techniques, a filament of regenerated cellulose is formed from the spin mix. The filament has the particles dispersed therein. At this point, the filament can be utilized as a mixture of cellulose and refractory material, or it can be heat treated. If heated, the filament is raised to sufficient temperatures and over sufficient durations to remove substantially all of the regenerated cellulose and to sinter the particles of refractory material to form a filament.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: October 27, 1998
    Inventors: Richard B. Cass, Roland R. Loh, Thomas C. Allen
  • Patent number: 5814122
    Abstract: A hollow high temperature ceramic superconducting fiber (10, 100), a process for making the hollow fibers and an apparatus for carrying out the process are provided. The apparatus functions to simultaneously draw a molten superconducting material (16) and a molten glass material (18) into a hollow preform (25) which is heat treated to form a hollow superconducting fiber (10, 100) which is flexible and has a high electrical current carrying capacity. The glass cladding layer (14, 14') surrounds the hollow superconducting core (12).
    Type: Grant
    Filed: December 12, 1995
    Date of Patent: September 29, 1998
    Assignee: Owens-Corning Fiberglas Technology, Inc.
    Inventor: Jianzhong Huang