Shaping Or Consolidating (e.g., Pelletizing, Compacting, Etc.) Patents (Class 505/490)
  • Patent number: 5660774
    Abstract: A process for producing a sintered body from untra-fine superconductive particles. In the first step of this process, a ceramic precursor material containing yttrium, barium and copper cations, a nitrogen-containing material, a solvent, and an anion capable of participating in an anionic oxidation-reduction reaction with the nitrogen-containing material, is provided; the nitrogen-containing material contains at least three nitrogen atoms, at least one oxygen atom, and at least one carbon atom. In the second step of the process, droplets of such ceramic precursor material are formed. In the third step of the process, the droplets are dried until particles which contain less than about 15 weight percent of solvent are produced. In the fourth step of this process, such particles are ignited in an atmosphere which contains substantially less than about 60 weight percent of the solvent's saturation value in such atmosphere.
    Type: Grant
    Filed: June 27, 1995
    Date of Patent: August 26, 1997
    Assignee: Alfred University
    Inventors: Gregory C. Stangle, Koththavasal R. Venkatachari, Steven P. Ostrander, Walter A. Schulze, John D. Pietras
  • Patent number: 5652199
    Abstract: A method of manufacturing an oxide superconductor, including the steps of mixing oxide materials of the metals contained in an oxide superconductor represented by HgBa.sub.2 Ca.sub.2 Cu.sub.3 O.sub.8+y to prepare a powder mixture of the composition noted above, molding the powder mixture to prepare a molded body of a desired shape, and applying a heat treatment to the molded body within a hermetic container at a temperature sufficient for bringing about a solid phase reaction of the oxide materials for at least 20 hours.
    Type: Grant
    Filed: December 21, 1994
    Date of Patent: July 29, 1997
    Assignees: International Superconductivity Technology Center, Tohoku Electric Power Company, Inc., Sumitomo Electric Industries, Ltd.
    Inventors: Kazuyuki Isawa, Ayako Yamamoto, Seiji Adachi, Makoto Itoh, Hisao Yamauchi
  • Patent number: 5627140
    Abstract: Enhanced flux pinning in superconductors is achieved by embedding carbon nanotubes into a superconducting matrix. The carbon nanotubes simulate the structure, size and shape of heavy ion induced columnar defects in a superconductor such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8+x. The nanotubes survive at treatment temperatures of up to approximately 800.degree. C. both in oxygen containing and in inert atmospheres. The superconducting matrix with nanotubes is heat treated at a lower temperature than the temperature used to treat the best case pure superconductor material.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: May 6, 1997
    Assignees: NEC Research Institute, Inc., Florida State University
    Inventors: Kristian Fossheim, Thomas W. Ebbesen
  • Patent number: 5583096
    Abstract: A process of manufacturing a superconducting compound including mixing stoichiometric amounts of a metallic oxide, copper oxide and a metallic carbonate wherein the metal of the metallic oxide is one other than yttrium and is selected and identified by its intrinsic massivity which is close in value to the intrinsic massivity of yttrium and wherein the interplanar distance on the C axis between Cu--O planes that exchange electrons through the electron-hopping mechanism in the ceramic perovskite is within the range of 1.97 .ANG. and 1.01 .ANG.. The mixture is subjected to pressure to form pellets and the pellets are then heated in forming the compound. The compound produced by the process and ceramic compositions having the formulas Mn Sr.sub.2 Cu.sub.3 O.sub.7-x and Mn.sub.2 Sr.sub.2 Cu.sub.3 O.sub.7-x.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: December 10, 1996
    Inventor: Ramon G. Cavazos
  • Patent number: 5556831
    Abstract: A method of treating a part made of a superconductive ceramic of the (Ln).sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-.delta. type, where Ln is chosen from the rare earth elements other than cerium and terbium, the method being designed to reduce the value of .delta., in which method said part is heat treated in an oxidizing atmosphere, said method being wherein, during said treatment, an electric current with a density lying in the range 0.1 A/cm.sup.2 to 2 A/cm.sup.2 is caused to flow through said part, said treatment atmosphere having a partial pressure of oxygen lying in the range 0.1 atmospheres to 1 atmosphere, the treatment temperature lying in the range 200.degree. C. to 500.degree. C., and the duration of said treatment lying in the range 1 hour to 200 hours.
    Type: Grant
    Filed: June 21, 1994
    Date of Patent: September 17, 1996
    Assignee: Alactel Alsthom Compagnie Generale d'Electricite
    Inventors: Alain Wicker, Jean-Pierre Bonnet, Mariano Sanz, Patrice Dordor, Christophe Magro
  • Patent number: 5534490
    Abstract: Provided is an Hg-Ba-Ca-Cu-O oxide superconductor having a high superconductivity transition temperature Tc and a method which can prepare the same in excellent reproducibility. This oxide superconductor consists essentially of Hg, Ba, Ca, Cu and O, and is expressed in a chemical formula (Hg.sub.1-X Cu.sub.X)Ba.sub.2 Ca.sub.2 Cu.sub.3 O.sub.Y, wherein X=0.05 to 0.7 and Y=8 to 8.75. A method of preparing the oxide superconductor comprises a step of mixing raw materials of Hg, Ba, Ca and Cu with each other so that (Hg+Ba):Ca:Cu=b:1:C and Hg:Ba=(1-a):a, wherein 0.625.ltoreq.a.ltoreq.0.714, 1.ltoreq.b.ltoreq.3 and 1.667.ltoreq.c.ltoreq.3.444, in mole ratio, and compression-molding the mixture, and a step of heat treating a compact obtained by the compression molding. This oxide superconductor has a superconductivity transition temperature Tc of 134 K., which is the highest at present.
    Type: Grant
    Filed: June 23, 1994
    Date of Patent: July 9, 1996
    Assignees: Sumitomo Electric Industries, Ltd., Tohoku Electric Power Co., Inc., Matsushita Electric Industrial Co., Ltd., International Superconductivity Technology Center
    Inventors: Makoto Itoh, Ayako Yamamoto, Kazuyuki Isawa, Seiji Adachi, Hisao Yamauchi, Shoji Tanaka
  • Patent number: 5525585
    Abstract: The present invention provides a process for the preparation of YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor which comprises surrounding a sintered material in which the molar ratio of Y:Ba:Cu is 2:1:1 with liquid-forming powder and subjecting the powder compact to isothermal heat-treatment at a temperature below the peritectic temperature of YBa.sub.2 Cu.sub.3 O.sub.7-x. The YBa.sub.2 Cu.sub.3 O.sub.7-x superconductors prepared according to the present invention have aligned grain structure in one direction and thus exhibit a high critical current density.
    Type: Grant
    Filed: June 16, 1994
    Date of Patent: June 11, 1996
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeong-Hun Suh, Young A. Jee, Suk-Joong L. Kang, Duk Y. Yoon
  • Patent number: 5525586
    Abstract: A ceramic superconductor is produced by close control of oxygen partial pressure during sintering of the material. The resulting microstructure of YBa.sub.2 Cu.sub.3 O.sub.x indicates that sintering kinetics are enhanced at reduced p(O.sub.2). The density of specimens sintered at 910.degree. C. increased from 79 to 94% theoretical when p(O.sub.2) was decreased from 0.1 to 0.0001 MPa. The increase in density with decrease in p(O.sub.2) derives from enhanced sintering kinetics, due to increased defect concentration and decreased activation energy of the rate-controlling species undergoing diffusion. Sintering at 910.degree. C. resulted in a fine-grain microstructure, with an average grain size of approximately 4 .mu.m. Such a microstructure results in reduced microcracking, strengths as high as 191 MPa and high critical current density capacity.
    Type: Grant
    Filed: September 15, 1994
    Date of Patent: June 11, 1996
    Assignee: The University of Chicago
    Inventors: Jitendra P. Singh, Rob A. Guttschow, Joseph T. Dusek, Roger B. Poeppel
  • Patent number: 5508257
    Abstract: Superconducting composite comprising a matrix made of superconducting sintered mass composed of perovskite type or quasi-perovskite type oxide and metal phase dispersed in the superconducting mass with a proportion of from 10 to 70 volume % with respect to said composite. The metal phase may consist of at least one of Cu, Ag, Au, Pt, Ni and Zn or their alloys. The superconducting sintered mass may be Ba-Y-Cu-O type compound oxide.
    Type: Grant
    Filed: February 17, 1994
    Date of Patent: April 16, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kenichiro Sibata, Takeshi Yamaguchi, Shuji Yazu, Tetsuji Jodai
  • Patent number: 5478801
    Abstract: The invention relates to a process for producing cylindrical or round parts of high-T.sub.c superconductor material comprising bismuth, strontium, calcium, copper and oxygen. In this process, a pre-prepared finely-divided oxide mixture with organic additives is first introduced at room temperature into a casting mold. The shaped mixture is then converted into the superconducting shaped part by subsequent thermal treatment.
    Type: Grant
    Filed: June 21, 1994
    Date of Patent: December 26, 1995
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Christoph Lang, Iris Kullmer, Joachim Bock
  • Patent number: 5464813
    Abstract: A process for the production of a YBa.sub.2 Cu.sub.3 O.sub.7-x or YBa.sub.2 Cu.sub.3 O.sub.7-x -AgO superconductor includes: providing the appropriate powder or mix of powders, pressing the powder to form the desired specimen, sintering the specimen to achieve fusion of the powder, heat treating the sintered specimen, and subjecting the specimen to an oxygenation process. The material exhibits bifurcation in its critical current density versus temperature curve.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: November 7, 1995
    Assignee: Florida State University
    Inventors: Yusuf S. Hascicek, Louis R. Testardi
  • Patent number: 5462917
    Abstract: A superconductor material having a current density, J, of from about 30,000 to about 85,000 amps/cm.sup.2 at zero magnetic field and 77.degree. K is disclosed. The 123 superconductor, of the formula L.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. wherein L is preferably yttrium, is capable of entrapping sufficiently high magnetic fields and exhibits a low microwave surface resistance. The process of preparing the superconductor comprises compacting the bulk product, L.sub.1 Ba.sub.2 Cu.sub.3 O, and then sintering the reaction product at a temperature between about 40.degree. C. to about 90.degree. C. below its melting point, i.e., for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. at a temperature of approximately 940.degree. C. The composition is then heated in a preheated chamber maintained at approximately 1090.degree. C. to about 1,200.degree. C. (approximately 1,100.degree. C. for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta.
    Type: Grant
    Filed: February 14, 1994
    Date of Patent: October 31, 1995
    Assignee: University of Houston-University Park
    Inventors: Kamel Salama, Venkatakrishnan Selvamanickam
  • Patent number: 5457086
    Abstract: A composite includes granules of Type II superconducting material and granules of rare-earth permanent magnets that are distributed in a binder. The composite is a two-phase structure that combines the properties of the superconductor and magnets with the flexibility and toughness of a polymeric material. A bearing made from this composite has the load capacity and stiffness of a permanent magnet bearing with added stability from a Type II superconducting material.
    Type: Grant
    Filed: July 22, 1993
    Date of Patent: October 10, 1995
    Assignee: Allied-Signal, Inc.
    Inventor: Thomas K. Rigney, II
  • Patent number: 5455225
    Abstract: A method of producing a high-performance connection between a metal and a solid superconductive ceramic member is effected by introducing into a mold, in juxtaposition, grains or powder of the ceramic or of its precursors and a volume of silver or gold powder, and ceramic grains or powder at the level of an incorporated silver, gold or copper porous body of the foam, straw or lattice type prior to compression of the ceramic powder and sintering of the same. The electrical connection so formed exhibits a low electrical resistance capable of carrying high currents at rated temperature without interfering with the zero resistance state of the superconductive ceramic, with the metal connection free of cracking and having a contact resistance that is substantially constant throughout the range of superconductive material operating conditions.
    Type: Grant
    Filed: September 22, 1993
    Date of Patent: October 3, 1995
    Assignee: GEC Alsthom SA
    Inventors: Ferard Duperray, Simon Lempereur
  • Patent number: 5444039
    Abstract: The oxide superconductor according to the present invention is represented by (Hg.sub.1-x Pb.sub.x)Ba.sub.2 Ca.sub.2 Cu.sub.3 O.sub..delta. (0.08.ltoreq.x.ltoreq.0.41, 7.625.ltoreq..delta..ltoreq.9.15), and has a crystal structure in which a lamination unit of (Hg, Pb)O.sub.z -BaO-CuO.sub.2 -Ca-CuO.sub.2 -Ca-CuO.sub.2 -BaO is laminated in a c-axial direction of the crystal structure (0.625.ltoreq.z.ltoreq.2.15). Further, the method of manufacturing an oxide superconductor, according to the present invention, includes the steps of: mixing material powders of HgO, PbO, BaO, CaO and CuO at a mole ratio of (Hg.sub.1-x Pb.sub.x):Ba:Ca:Cu=a:2:b:c (1.ltoreq.a.ltoreq.2.5, 2.ltoreq.b.ltoreq.3, 2.5.ltoreq.c.ltoreq.4) and compression-molding the mixture powder into a compact; and subjecting the compact to a thermal treatment at 600.degree.-750.degree. C.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: August 22, 1995
    Assignees: Tohoku Electric Power Copany, Incorporated, Sumitomo Electric Industries, Ltd., Matsushita Electric Industrial Co., Ltd., International Superconductivity Technology Center
    Inventors: Kazuyuki Isawa, Ayako Yamamoto, Makoto Itoh, Seiji Adachi, Hisao Yamauchi
  • Patent number: 5439880
    Abstract: A method of preparing a superconducting oxide by combining the metallic elements of the oxide to form an alloy, followed by oxidation of the alloy to form the oxide. Superconducting oxide-metal composites are prepared in which a noble metal phase intimately mixed with the oxide phase results in improved mechanical properties. The superconducting oxides and oxide-metal composites are provided in a variety of useful forms.
    Type: Grant
    Filed: May 3, 1993
    Date of Patent: August 8, 1995
    Assignee: Massachusetts Institute of Technology
    Inventors: Gregory J. Yurek, John B. Vander Sande
  • Patent number: 5439878
    Abstract: A process for preparing a copper oxide superconductor of (Ba,Sr)-Cu-C-O containing carbonate radicals is disclosed, which comprises the steps of: mixing alkaline earth metal compounds and a copper compound with a molar ratio of 1.1 to 2.25 to obtain a mixture; pressing said mixture to form a pellet; and sintering said pellet in an oxygen atmosphere, wherein the alkaline earth metal compounds including a barium compound selected from the group consisting of barium carbonate and barium oxalate, and a strontium compound selected from the group consisting of strontium carbonate and strontium oxalate and the copper compound selected from the group consisting of copper carbonate, copper nitrate, copper oxalate and copper oxide.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: August 8, 1995
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Kyoichi Kinoshita, Tomoaki Yamada
  • Patent number: 5432143
    Abstract: A method of producing a microcrystalline RBa.sub.2 Cu.sub.3 O.sub.y structure where R denotes a lanthanide chosen from Y, La, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb and Lu and where y has a value between 6.9 and 7 starts with a powder of composition [x(123) ; (1-x) (7BaO--18CuO] where (123) denotes the 123 phase of RBaB.sub.2 Cu.sub.3 O.sub.y and where the value of x is between 0.01 and 1. The powder is compressed and sintered at a temperature below 920.degree. C. (the BaCuO.sub.2 and CuO binary eutectic temperature) to form a sample. The sample is placed on an oxide of the lanthanide R. The sample and its support undergo heat treatment enabling chemical reaction between the liquid part of the sample and its support whereby substantially all of the liquid part is consumed and highly regular 123 monocrystals are obtained. Cooling is applied. At least one annealing is carried out in pure oxygen at a temperature between 350.degree. C. and 500.degree. C. to obtain the orthorhombic form characteristic of RBa.sub.2 Cu.
    Type: Grant
    Filed: January 11, 1994
    Date of Patent: July 11, 1995
    Assignee: Alcatel Alsthom Compagnie Generale D'Electricite
    Inventors: Nadia Pellerin, Philippe Odier
  • Patent number: 5430010
    Abstract: The present invention relates to a process for preparing an oxide superconductor having a high critical current density, a uniform structure and an excellent mechanical property and thermal stability, which comprises heating raw material powders of a REBaCuO system at 1050.degree. C. or higher, cooling the material for solidification, pulverizing and mixing the solidified material to homogeneously disperse the structure of the solidified material, molding the material, optionally mixed with silver oxide or silver, into a predetermined shape, and reheating the molding to 1050.degree. C. or higher to grow a superconducting phase.
    Type: Grant
    Filed: June 8, 1993
    Date of Patent: July 4, 1995
    Assignees: International Superconductivity Technology Center, Nippon Steel Corporation
    Inventors: Masato Murakami, Terutsugu Oyama, Hiroyuki Fujimoto, Naoki Koshizuka, Yu Shiohara, Shoji Tanaka
  • Patent number: 5409887
    Abstract: A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.
    Type: Grant
    Filed: February 25, 1993
    Date of Patent: April 25, 1995
    Assignee: The University of Chicago
    Inventor: Uthamalingam Balachandran
  • Patent number: 5409891
    Abstract: A rotationally symmetrical molded part of a high-temperature superconductor achieves a critical current density of j.sub.c .gtoreq.800 A/cm.sup.2 at a temperature of 77K, by using a powder mixture (8) having the stoichiometric composition of Bi.sub.2+x EA.sub.3 Cu.sub.2 O.sub.y, where -0.15<x<0.4; EA=an alkaline earth metal or a mixture of alkaline earth metals, in particular a mixture of Sr and Ca in the ratio of Sr:Ca=(2+z):(1-z), where 0<x<0.2; 8.ltoreq.y.ltoreq.8.3. With the aid of a conveying chute (9), the powder mixture (8) is brought uniformly at room temperature with a grain size of <50 .mu.m into a silver mold (5) which is arranged inside a rotating fusion mold (4), open at one side, in a furnace (3). Subsequently, the fusion mold (4) is accelerated, heated to 500.degree. C. and held for approximately 30 min at 500.degree. C. After subsequent partial melting at a temperature of T.sub.m K to T.sub.m +6K, where T.sub.
    Type: Grant
    Filed: September 22, 1993
    Date of Patent: April 25, 1995
    Assignee: Asea Brown Boveri Ltd.
    Inventors: Thomas Baumann, Peter Unternahrer
  • Patent number: 5382405
    Abstract: A method of manufacturing a shaped article from a powdered precursor, wherein the components of the powdered precursor are subjected to a self-propagating high-temperature synthesis (SHS) reaction and are consolidated essentially simultaneously. The shaped article requires essentially no machining after manufacture.
    Type: Grant
    Filed: September 3, 1993
    Date of Patent: January 17, 1995
    Assignee: Inland Steel Company
    Inventors: Kenneth F. Lowrance, II, Eric C. Knorr, William M. Goldberger, Daniel Boss, Doreen Edwards
  • Patent number: 5378682
    Abstract: A description is given of a solid oxide-ceramic superconductor containing copper in the crystal lattice which is composed of crystals which are arranged essentially in parallel and intergrown with one another and which also contains, per 100 g of copper in the superconductor, 0.04 to 0.5 mol of CuF.sub.2 or KF, and of a sinter process for producing it. The copper-containing superconductor may be made up, for example, of bismuth, strontium, calcium or of bismuth, strontium, calcium, lead and also copper and oxygen.
    Type: Grant
    Filed: July 15, 1993
    Date of Patent: January 3, 1995
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Martin Schwarz, Iris Kullmer, Joachim Bock
  • Patent number: 5356869
    Abstract: Powder of a ceramic superconducting material is synthesized such that each particle of the powder is a single crystal having a flake-like, nonsymmetric morphology such that the c-axis is aligned parallel to the short dimension of the flake. Nonflake powder is synthesized by the normal methods and is pressed into pellets or other shapes and fired for excessive times to produce a coarse grained structure. The fired products are then crushed and ground producing the flake-like powder particles which exhibit superconducting characteristics when aligned with the crystal lattice.
    Type: Grant
    Filed: December 17, 1990
    Date of Patent: October 18, 1994
    Assignee: Arch Development Corporation
    Inventors: Donald W. Capone, Joseph Dusek
  • Patent number: 5344816
    Abstract: High temperature superconducting oxide materials can be taken to a higher, but stable, state of oxidation by removing H-impurities, such as OH.sup.-, using I.sub.2 /O.sub.2 mixtures in a reactive atmosphere process. A higher T.sub.c and a narrower .DELTA.T-transition result.
    Type: Grant
    Filed: February 24, 1993
    Date of Patent: September 6, 1994
    Assignee: Hughes Aircraft Company
    Inventors: Ricardo C. Pastor, Antonio C. Pastor, deceased, Luisa E. Gorre, deceased, Keith C. Fuller
  • Patent number: 5334578
    Abstract: According to this method of manufacturing a superconductor, powder materials of Y.sub.2 O.sub.3, BaCO.sub.3 and CuO are first prepared as raw materials and blended and mixed to the composition Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.x. The mixed powder thus obtained is compression-molded and thereafter sintered. A sintered body thus obtained shows the Meissner effect under the temperature of liquid nitrogen. This sintered body is pulverized into fine particles. A magnetic field is applied to the fine particles at the temperature of liquid nitrogen, thereby to select only superconductive particles. The selected superconductive particles are compression-molded during application of a magnetic field and then sintered, thereby to obtain a superconductor having high critical current density.
    Type: Grant
    Filed: July 19, 1988
    Date of Patent: August 2, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Maumi Kawashima
  • Patent number: 5306696
    Abstract: A method of producing a superconductor of metal oxides having the following composition:(M.sub.1-x Ca.sub.x)(Ba.sub.1-y Sr.sub.y).sub.2 Cu.sub.4 O.sub.8wherein M stands for a rare earth element, x is 0 or a positive number of less than 1 and y is 0 or a positive number of less than 1, is disclosed, which includes hydrdolyzing an organic solvent solution or dispersion containing (a) alkoxide or fine particulate of a hydroxide of the rare earth element M, (b) alkoxides orfine particulate of hydroxides of Ca, Ba and Sr and (c) alkoxide, nitrate or fine particulate of hydroxide of copper in presence of water and nitrate ions. The alkoxides or hydroxides of Ca and Sr are present only when x and y are not zero, respectively. The hydrolyzed product is then dried, shaped and pyrolyzed to obtain the superconductor.
    Type: Grant
    Filed: December 10, 1990
    Date of Patent: April 26, 1994
    Assignees: Kabushiki-Gaisha Arubakku Kohporehiosentah, Nippon Mining Co., Ltd., Ishikawajima-Harima Jukogyo Kabushiki Kaisha, International Superconductivity Technology Center
    Inventors: Hirohiko Murakami, Junya Nishino, Seiji Yaegashi, Yu Shiohara, Shoji Tanaka
  • Patent number: 5306697
    Abstract: A superconductor material having a current density, J, of from about 30,000 to about 85,000 amps/cm.sup.2 at zero magnetic field and 77.degree. K. is disclosed. The 123 superconductor, of the formula L.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. wherein L is preferably yttrium, is capable of entrapping sufficiently high magnetic fields and exhibits a low microwave surface resistance. The process of preparing the superconductor comprises compacting the bulk product, L.sub.1 Ba.sub.2 Cu.sub.3 O, and then sintering the reaction product at a temperature between about 40.degree. C. to about 90.degree. C. below its melting point, i.e., for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta. at a temperature of approximately 940.degree. C. The composition is then heated in a preheated chamber maintained at approximately 1090.degree. C. to about 1,200.degree. C. (approximately 1,100.degree. C. for Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.6 +.delta.
    Type: Grant
    Filed: August 23, 1991
    Date of Patent: April 26, 1994
    Assignee: University of Houston - University Park
    Inventors: Kamel Salama, Venkatakrishnan Selvamanickam
  • Patent number: 5306700
    Abstract: A method is disclosed for fabricating bulk superconducting materials into shaped articles, including ones of relatively large sizes and complex shapes, which have high densities, high integrity, high magnetization and critical current densities. A mixture of superconducting material is completely or substantially melted and the molten material is then cooled to room temperature and ground to a powder. The ground powder is next mixed with a second phase made up of either precursor superconducting powder or a mixture of metallic silver and copper. The resulting mixture is then shaped into an article by conventional ceramic article forming techniques: pressing, extruding, molding or the like. The resulting shaped article is heated to a temperature at which a substantial amount of its content of second phase material is melted, thus facilitating densification of the entire shaped article. The resulting dense specimen is annealed in an appropriate environment while it is being cooled to room temperature.
    Type: Grant
    Filed: September 1, 1992
    Date of Patent: April 26, 1994
    Assignee: The Catholic University of America
    Inventor: Hamid Hojaji
  • Patent number: 5300483
    Abstract: A method is provided for preparing a precursor of a superconductor containing atoms of oxygen, atoms of copper and atoms of at least two other metals and sufficient atoms of oxygen so that up to, but no more than, one atom of copper is in the trivalent state, in which method there are blended together, in finely divided particulate state, components containing atoms of the metals in the desired proportion with at least one of the components containing oxygen in an amount above that which would put more than one atom of copper into the trivalent state and thereafter milling the components together in a high energy system to a maximum particle size of about 5 microns for at least 99 weight percent of the blend.
    Type: Grant
    Filed: January 16, 1992
    Date of Patent: April 5, 1994
    Inventor: Shome N. Sinha