Electrical Transmission Or Interconnection System: (class 307) Patents (Class 505/856)
  • Patent number: 8739396
    Abstract: Several embodiments of a novel technique for limiting transmission of fault current are disclosed. Current power distribution systems typically have an impedance, or reactor, on the output of the network equipment to limit current in the case of a fault condition. A low resistance switch, which changes its resistance in the presence of high current, is connected in parallel with this reactor. Thus, in normal operation, the current from the power generator bypasses the reactor, thereby minimizing power loss. However, in the presence of a fault, the resistance of the switch increases, forcing the current to pass through the reactor, thereby limiting the fault current.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: June 3, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventor: Paul J. Murphy
  • Patent number: 8532725
    Abstract: A method of controlling fault currents within a utility power grid is provided. The method may include coupling a superconducting electrical path between a first and a second node within the utility power grid and coupling a non-superconducting electrical path between the first and second nodes within the utility power grid. The superconducting electrical path and the non-superconducting electrical path may be electrically connected in parallel. The superconducting electrical path may have a lower series impedance, when operated below a critical current level, than the non-superconducting electrical path. The superconducting electrical path may have a higher series impedance, when operated at or above the critical current level, than the non-superconductor electrical path.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: September 10, 2013
    Assignee: American Superconductor Corporation
    Inventors: Douglas C. Folts, James Maguire, Jie Yuan, Alexis P. Malozemoff
  • Patent number: 7307045
    Abstract: A signal switching device is disclosed that is capable of transmitting signals with less signal loss while securing a good isolation characteristic. The signal switching device includes a first section formed from a superconducting material connected to a first transmission path. The first section has a smaller cross section at the input end than at the output end or, the signal switching device may include a first section formed from a superconducting material connected to a first transmission path in series, and a second section formed from a superconducting material connected to a second transmission path in parallel. The cross section of the second section is smaller than that of the second transmission path. The length of the second transmission path is determined in such a way that an input impedance of the second transmission path is sufficiently large when the second section is in a superconducting state.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: December 11, 2007
    Assignee: NTT DoCoMo, Inc.
    Inventors: Kunihiro Kawai, Daisuke Koizumi, Kei Satoh, Shoichi Narahashi, Tetsuo Hirota
  • Publication number: 20040097379
    Abstract: A signal switching device is disclosed that is capable of transmitting signals with less signal loss while securing a good isolation characteristic. The signal switching device includes a first section formed from a superconducting material connected to a first transmission path. The first section has a smaller cross section at the input end than at the output end or, the signal switching device may include a first section formed from a superconducting material connected to a first transmission path in series, and a second section formed from a superconducting material connected to a second transmission path in parallel. The cross section of the second section is smaller than that of the second transmission path. The length of the second transmission path is determined in such a way that an input impedance of the second transmission path is sufficiently large when the second section is in a superconducting state.
    Type: Application
    Filed: November 7, 2003
    Publication date: May 20, 2004
    Applicant: NTT DoCoMo, Inc.
    Inventors: Kunihiro Kawai, Daisuke Koizumi, Kei Satoh, Shoichi Narahashi, Tetsuo Hirota
  • Patent number: 6297200
    Abstract: A lanthanum aluminate (LaAlO3) substrate on which thin films of layered perovskite copper oxide superconductors are formed. Lanthanum aluminate, with a pseudo-cubic perovskite crystal structure, has a crystal structure and lattice constant that closely match the crystal structures and lattice constants of the layered perovskite superconductors. Therefore, it promotes epitaxial film growth of the superconductors, with the crystals being oriented in the proper direction for good superconductive electrical properties, such as a high critical current density. In addition, LaAlO3 has good high frequency properties, such as a low loss tangent and low dielectric constant at superconductive temperatures. Finally, lanthanum aluminate does not significantly interact with the superconductors. Lanthanum aluminate can also used to form thin insulating films between the superconductor layers, which allows for the fabrication of a wide variety of superconductor circuit elements.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: October 2, 2001
    Assignee: TRW Inc.
    Inventors: Randy Wayne Simon, Christine Elizabeth Platt, Alfred Euinam Lee, Gregory Steven Lee
  • Patent number: 5859386
    Abstract: An electrical transmission line for conveying and limiting current by using a plurality of tubular portions made from a superconductive material. The tubular portions have a high critical temperature and are connected end-to-end by flexible, electrically conductive metal or alloy joints. A cryogenic fluid flows inside a first tube within the tubular portions. A vacuum is maintained inside a second tube around the tubular portions.
    Type: Grant
    Filed: April 30, 1997
    Date of Patent: January 12, 1999
    Assignee: Alcatel Alsthom Compagnie Generale d'Electricite
    Inventors: Peter Friedrich Herrmann, Pierre Mirebeau, Thierry Verhaege
  • Patent number: 5773875
    Abstract: A superconductive electrical device is operable simultaneously at relatively higher temperatures, i.e., 60-90K, and at relatively lower temperatures, i.e., less than 12K. The device comprises a non-superconductive substrate with two regions, a first relatively high temperature region and a second relatively low temperature region. A high temperature superconductor is on the first region and a portion of the second region. A dielectric layer is on the high temperature superconductor. A low temperature superconductor is on the second region of the substrate and on a portion of the dielectric layer. Integrated circuit chips can be secured to both superconductors, thereby yielding a superconductive multi-chip module operable at two different temperatures, such as in a cryo-cooler with two temperature stages.
    Type: Grant
    Filed: February 23, 1996
    Date of Patent: June 30, 1998
    Assignee: TRW Inc.
    Inventor: Hugo Wai-Kung Chan
  • Patent number: 5760463
    Abstract: A superconductor device which includes a first wiring part and a second wiring part which together form a superconductive wiring. The first wiring part is arranged onto a substrate and is made of a superconductor material. The second wiring part is made of a non-oxide semiconductor material. The second wiring part is adjacent to the first wiring part and jointly forms a superconductive wiring with the first wiring part by becoming at least partly superconductive due to proximity effect with the first wiring part. The second wiring part has a smaller penetration length of magnetic field than that for the first wiring part. This structure enhances the propagation velocity of a signal within the superconductive wiring.
    Type: Grant
    Filed: February 14, 1996
    Date of Patent: June 2, 1998
    Assignee: Fujitsu Limited
    Inventor: Tsunehiro Hato
  • Patent number: 5183965
    Abstract: An electrical conductor particularly suited for use as a downlead to low temperature devices includes a ceramic honeycomb body having longitudinal channels wherein films of substantially single crystals of a ceramic superconductor are grown. The maximum current carrying capacity of the ceramic superconductor may be oriented parallel to the channels. Square channels arranged in alternating rows of oppositely directed current provide desirable magnetic field cancellations and permit high current flows. A method for making the electrical conductor and a method of extruding the ceramic honeycomb body are also disclosed.
    Type: Grant
    Filed: August 3, 1990
    Date of Patent: February 2, 1993
    Inventor: William N. Lawless
  • Patent number: 5132487
    Abstract: An improved transmission system for electrical energy comprising a plurality of ball members interspersed by mating members enclosed within at least one protective outer wrapping, with the ball members and the mating members being in contact with adjacent members and being formed of material which is electrically conductive at superconductor temperatures and each having an axial opening extending therethrough to permits passage of a suitable coolant fluid, such as liquid helium.
    Type: Grant
    Filed: January 2, 1991
    Date of Patent: July 21, 1992
    Inventor: Robert C. Hoersch
  • Patent number: 5083188
    Abstract: An integrated circuit having a superconductive wiring comprises a semiconductor substrate, an integrated circuit device formed on the semiconductor substrate and a wiring connected to the integrated circuit device. The wiring is formed of a superconductive material and has a wide portion for heat radiation. The manufacturing method of the same comprises the steps of preparing a semiconductor substrate, forming an integrated circuit device on the semiconductor substrate, and connecting a wiring having a wide portion for heat radiation and formed of a superconductive material to the integrated circuit device on the semiconductor substrate.
    Type: Grant
    Filed: November 27, 1990
    Date of Patent: January 21, 1992
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Tadato Yamagata
  • Patent number: 4969032
    Abstract: A monolithic microwave integrated circuit having multiple, vetically stacked components wherein at least three metal layers isolated from each other by layers of non-conducting material are formed on a semi-insulating substrate, generally comprised of gallium arsenide. Vertically stacked capacitors, inductors and various combinations thereof may be fabricated using the present invention. Further, the vetrically stacked components may be formed on active devices such as FETs and diodies.
    Type: Grant
    Filed: July 18, 1988
    Date of Patent: November 6, 1990
    Assignee: Motorola Inc.
    Inventors: Douglas G. Scheitlin, Charles E. Weitzel
  • Patent number: 4915818
    Abstract: Disclosed is a method of removing mercury from contaminated liquid hydrocarbons (natural gas condensate) by contacting them with a dilute aqueous solution of alkali metal sulfide salt and recovering the treated liquid hydrocarbon. The addition of alkali metal hydroxide enhances the phase separation of hydrocarbon and aqueous solution.
    Type: Grant
    Filed: February 25, 1988
    Date of Patent: April 10, 1990
    Assignee: Mobil Oil Corporation
    Inventor: Tsoung Y. Yan