By Drawing Patents (Class 505/930)
  • Patent number: 7674751
    Abstract: A method of making a laminated superconductor wire includes providing an assembly, where the assembly includes a substrate; a superconductor layer overlaying a surface of the substrate, the superconductor layer having a defined pattern; and a cap layer; and slitting the assembly in accordance with the defined pattern of the superconductor layer to form a sealed wire. Slitting the assembly in accordance with the defined pattern may form multiple sealed wires, and the substrate may be substantially wider than the sealed wires.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: March 9, 2010
    Assignee: American Superconductor Corporation
    Inventors: Alexis P. Malozemoff, Martin W. Rupich, Douglas C. Folts
  • Patent number: 7216418
    Abstract: A method for decreasing the effective magnetic filament sizes for high current internal tin Nb3Sn superconductors. During processing composite rods preferably comprised of copper clad Ta rods of approximately the same dimensions as the hexes in the designed filament billet stack are used as dividers in the subelement. Along with the Ta rods, Ta strips are strategically situated against the Nb or Nb alloy barrier tube which surrounds the subelement. The use of Ta as a spacer instead of copper prevents any reasonable likelihood of bridging of the superconducting phases formed after final reaction.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: May 15, 2007
    Assignee: Oxford Superconducting Technology
    Inventors: Seung Hong, Jeff Parrell, Youzhu Zhang, Michael Field
  • Patent number: 6981309
    Abstract: An improvement is disclosed in the method for producing a multifilament (Nb, Ti)3Sn superconducting wire by the steps of preparing a plurality of Nb or Nb alloy rods where Nb or Nb alloy monofilaments are encased in copper or copper alloy sheaths; packing the Nb or Nb alloy rods within a copper containing matrix to form a packed subelement for the superconducting wire; providing sources of Sn, and sources of Ti within said subelement; assembling the subelements within a further copper containing matrix; and diffusing the Sn and Ti into the Nb or Nb alloy rods to form (Nb, Ti)3Sn. The method is improved by diffusing the Ti into the Nb from a minor number of Ti dopant source rods which are distributed among the Nb or Nb alloy rods.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: January 3, 2006
    Assignee: Oxford Superconducting Technology
    Inventors: Seung Hong, Jeff Parrell, Michael Field
  • Patent number: 6836955
    Abstract: A niobium-based superconductor is manufactured by establishing multiple niobium components in a billet of a ductile metal, working the composite billet through a series of reduction steps to form the niobium components into elongated elements, each niobium element having a thickness on the order of 1 to 25 microns, surrounding the billet prior to the last reduction step with a porous confining layer of an acid resistant metal, immersing the confined billet in an acid or a high temperature liquid metal to remove the ductile metal from between the niobium elements while the niobium elements remain confined by said porous layer, exposing the confined mass of niobium elements to a material capable of reacting with Nb to form a superconductor.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: January 4, 2005
    Assignee: Composite Materials Technology, Inc.
    Inventor: James Wong
  • Publication number: 20040206544
    Abstract: To improve the performance of superconducting cables, a composition method for obtaining a bar-like semifinished product by exclusively cold plastic deformation operations has been devised, and which includes the steps of: forming round-section, mono- or multifilament, superconducting copper bars of relatively long length; assembling the bars about a cylindrical copper core of substantially the same length, using assembly templates which open book-fashion and are fitted to and slide along an assembly bench, the templates having through holes arranged in a circle to support the bars, and a central through seat for supporting the core; tying the bars onto an outer lateral surface of the core; sliding onto one end of the assembly so formed a number of metal supporting rings resting on the assembly bench, while sliding the templates off the opposite end of the assembly; sliding a copper tube onto the assembly so formed, while at the same time cutting the ties in axial sequence and sliding off the supporting rings
    Type: Application
    Filed: October 17, 2003
    Publication date: October 21, 2004
    Inventor: Sergio Rossi
  • Patent number: 6199266
    Abstract: A superconductor cable with high interstrand resistance is produced from superconductor wire strands which has been electroplated with nickel. The wire strands have filaments of a superconductor alloy in a normally conducting metal matrix and are electroplated before they are formed into an elongated bundle of generally circular cross section. This bundle is then deformed and compacted into a superconductor cable of generally polygonal cross section which is usually trapezoidal. The superconductor wire is preferably comprised of a multiplicity of filaments of niobium/titanium superconductor alloy disposed within a matrix of copper.
    Type: Grant
    Filed: April 11, 1994
    Date of Patent: March 13, 2001
    Assignee: New England Electric Wire Corporation
    Inventor: Robert F. Meserve
  • Patent number: 5873158
    Abstract: The invention concerns a method of making a superconductor so that it includes, in cross-section: a central area, made up of a plurality of superconductor filaments of the NbTi, NbTiTa type or of any other alloy or substance based on Nb; a concentric, two part, outer ring surrounding the central area; and a concentric resistive barrier. In accordance with the invention, the concentric resistive barrier is integrated into the concentric outer ring.
    Type: Grant
    Filed: July 12, 1996
    Date of Patent: February 23, 1999
    Assignee: Gec Alsthom Electromecanique SA
    Inventors: Philippe Sulten, Christian Eric Bruzek, Giaky Hoang
  • Patent number: 5744427
    Abstract: In a method of preparing a thallium oxide superconductor having components of Tl-Bi-Ca-Sr-Cu-O or Tl-Bi-Pb-Ca-Sr-Cu-O from raw material powder, the raw material powder is subjected to first heat treatment, then exposed to a compressive load, and thereafter subjected to second heat treatment. Thus, a thallium oxide superconductor having a high critical current density can be obtained.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: April 28, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Yasuko Torii
  • Patent number: 5369873
    Abstract: A component 10 for making A15 Nb.sub.3 Sn superconducting wire is of plane-filling cross-section after removing temporary additions 6, 7. It consists of a central pillar 1 of aluminium (later replaced by tin) surrounded by a two-deep array of polygonal copper columns 2/2a containing niobium rods. Many (e.g. 61) components 10 are voidlessly stacked together and extruded. The niobium rods adopt and retain a uniform distribution with minimum intervening material. This "sixty-one" member retains its shape during the extrusion and is itself of plane-filling cross-section. Several of them are voidlessly stacked together and on heat-treatment of the whole, the tin diffuses over a relatively short path and hence consistently into the rods, whereby there is formed a kilofilament Nb.sub.3 Sn wire.
    Type: Grant
    Filed: January 5, 1993
    Date of Patent: December 6, 1994
    Assignee: British Technology Group Ltd.
    Inventors: Colin R. Walters, Jan E. Evetts, Francis J. V. Farmer, Thomas J. Hawksley
  • Patent number: 5288699
    Abstract: In a method of manufacturing an oxide superconducting wire including steps of performing heat treatment and deformation processing in a state of filling up a metal sheath with powder of an oxide superconductor or raw material therefor, fine particles or gas adsorbed by the powder can be desorbed by heating the powder at least once preferably under decompression in a stage before final sintering of the powder. It is possible to further withdraw the adsorbed fine particles or gas by heating the powder under decompression at least once before the same is covered with the sheath, covering the powder with the sheath, deforming the sheath and again heating the same under decompression, for example. Thus, it is possible to prevent gas generation from the powder during heat treatment for further growing superconductive particles, thereby preventing the superconducting wire from inflation etc. caused by such gas generation.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: February 22, 1994
    Assignee: Sumitomo Electric Industries, Inc.
    Inventors: Kenichi Sato, Takeshi Hikata
  • Patent number: 5204316
    Abstract: A silver tube with one open end is packed with a particulate mixture of reactants comprised of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8.+-.x, Ca.sub.2 CuO.sub.3, cupric oxide and lead oxide, the open end of the packed tube is plugged with silver, the resulting closed tube is swaged to increase the density of the packed mixture, the swaged tube is wire-drawn, uniaxial pressure is applied to the wire orienting the Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8.+-.x crystals with their c-axis parallel to each other forming an initial tape, the initial tape is fired to convert part of the Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8.+-.x crystals to Bi.sub.2-y Pb.sub.y Ca.sub.2 Sr.sub.2 Cu.sub.3 O.sub.10.+-.z crystals producing an intermediate tape containing dilated product, uniaxial pressure is applied to the resulting intermediate tape to remove the dilation in the product, and the pressed intermediate tape is fired to produce a tape comprised of silver enveloping a sintered body of Bi.sub.2-y Pb.sub.y Ca.sub.2 Sr.sub.2 Cu.sub.3 O.
    Type: Grant
    Filed: April 2, 1990
    Date of Patent: April 20, 1993
    Assignee: General Electric Company
    Inventors: Ronald H. Arendt, Mary F. Garbauskas
  • Patent number: 5088183
    Abstract: A process for producing a superconductor wire made up of a large number of round monofilament rods is provided for, comprising assembling a multiplicity of round monofilaments inside each of a multiplicity of thin wall hexagonal tubes and then assembling a number of said thin wall hexagonal tubes within an extrusion can and subsequently consolidating, extruding and drawing the entire assembly down to the desired wire size.
    Type: Grant
    Filed: May 1, 1990
    Date of Patent: February 18, 1992
    Inventor: Hem C. Kanithi