Oxygen Is Attached Directly Or Indirectly To Carbon By Nonionic Bonding Patents (Class 507/244)
  • Publication number: 20130252857
    Abstract: An aqueous well completion/workover fluid, including a surfactant, at least one salt and an alkaline material, wherein the surfactant comprises a mixture of a phosphate ester and a non ionic ethoxylated alcohol, wherein the fluid has a pH between 6 and 8, and wherein the fluid generates an interfacial tension with crude oil of less than or equal to 1 dyne/cm. The fluid is not harmful to a formation if it penetrates the formation, and further exhibits an excellent detergency which can be beneficial as well.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: INTEVEP, S.A.
    Inventors: Jose Miguel Gonzalez Poche, Franklin Quintero Godoy, Rosa Linda Marquez Silva, Sergio Rosales, Maria Luisa Ventresca Di Filippo
  • Patent number: 8522872
    Abstract: Methods and systems relating to in situ decomposition of carbonyls at high temperature for fixing incomplete and failed well seals, are described. According to one embodiment, a method, comprises injecting a sealing agent into a subterranean well having sealing channels or voids in well casings. An alkaline-earth carbonate precipitate is formed from the decomposition of a carbonyl compound. The sealing agent includes the carbonyl compound and an alkaline-earth halide salt.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: September 3, 2013
    Assignee: University of Utah Research Foundation
    Inventors: Daniel L. Bour, Peter E. Rose
  • Publication number: 20130220621
    Abstract: Polyboronic compounds useful as delayed crosslinking agents may be produced by using a polyamine as base scaffold and incorporating boron via reaction with intermediate borates which may be formed in the condensation reaction between boric acid and a diol. A di-aldehyde, such as glyoxal, may be introduced following caustic treatment of the reaction mixture of polyaminoboronate to form the polyboronic compound.
    Type: Application
    Filed: January 8, 2013
    Publication date: August 29, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Baker Hughes Incorporated
  • Publication number: 20130210686
    Abstract: A treatment fluid comprises: water; a formate; and a corrosion inhibitor, wherein the corrosion inhibitor is capable of providing: (A) a pH of at least 10; and (B) a corrosion rate equal to or less than 4 mils per year wherein carbon dioxide accounts for at least 100 psi (0.7 MPa) of the total pressure, for a test fluid consisting essentially of: the water; the formate; and the corrosion inhibitor, and in the same proportions as in the treatment fluid, whereas a substantially identical test fluid without the corrosion inhibitor has a pH of less than 10 and a corrosion rate of greater than 4 mils per year under the testing conditions. The treatment fluid further comprises a scale inhibitor. A method of treating a portion of a well comprises: forming the treatment fluid; and introducing the treatment fluid into the well.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventor: John Jerald AUGSBURGER
  • Patent number: 8505626
    Abstract: Novel aminoacid alkylphosphonic acid compounds are disclosed. These compounds can be used in multiple applications, in particular in a scale inhibitor functionality in aqueous systems, including in marine oil recovery.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: August 13, 2013
    Assignee: Dequest AG
    Inventors: Patrick Notte, Albert Devaux
  • Publication number: 20130190215
    Abstract: Breaker nanoparticles may be added to gelled aqueous fluids where the gelled aqueous fluid may include an aqueous base fluid, e.g. a drilling fluid, gelled with at least one viscoelastic surfactant (VES) in an amount to increase the viscosity of the aqueous base fluid. The addition of the breaker nanoparticles may reduce the viscosity, or break the gel, of the gelled aqueous fluid by the direct or indirect action of the breaker nanoparticles. The breaker nanoparticles may be or include, but are not limited to inorganic semiconductor particles, organic semiconductor particles, and combinations thereof.
    Type: Application
    Filed: January 24, 2012
    Publication date: July 25, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Tianping Huang
  • Patent number: 8490698
    Abstract: A composition and method are disclosed. The composition includes a carrier fluid and a solids mixture combined to form a slurry, wherein the solids mixture comprises a plurality of volume-averaged particle size distribution (PSD) modes, wherein a first PSD mode comprises solids having a volume-average median size at least three times larger than the volume-average median size of a second PSD mode such that a packed volume fraction of the solids mixture exceeds 0.75, and wherein the solids mixture comprises a degradable material and includes a reactive solid. The method includes circulating the slurry through a wellbore to form a pack in a fracture and/or a screen-wellbore annulus; degrading the degradable material to increase porosity and permeability of the pack; and producing a reservoir fluid through the permeable pack.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 23, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Mohan K. R. Panga, Peter J. Photos, Bruno Drochon, John W. Still, Balkrishna Gadiyar, Ryan Hartman, Bryan Stamm
  • Publication number: 20130178400
    Abstract: Emulsified acids have been used to increase production rates of oil and gas in carbonate reservoirs through acid fracturing and matrix acidizing operations. An emulsifier is used to emulsify the aqueous acid with an oil, usually diesel. Very small particles, such as colloidal clay particles and/or nanoparticles increase the stability of the emulsified acids over an elevated temperature range.
    Type: Application
    Filed: February 28, 2013
    Publication date: July 11, 2013
    Applicant: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews, John R. Willingham, Richard A. Mitchell, Kushal Seth
  • Publication number: 20130172218
    Abstract: Compounds of biodegradable surfactants useful for optimizing the separation of impurities typical of hydrocarbons, and designed to intervene and stabilize the molecular structure of crude oil, with no significant alterations of the crude's intrinsec composition are disclosed. The biodegradable surfactants compounds coexist with a non-ionic surfactant and an organic mix in emulsion form with the purpose of isolating crude from the pipeline, reduce friction to improve crude flow and to enter the crude macromolecule to modify the hydrocarbon chain to reduce its density and thus its viscosity; including compounds of biodegradable surfactants that comprise sodium hydroxide 1N, potasium chloride, sulphonic acid, dodecanoic acid, nonylphenol, terpene-1 and water, preferably hard water.
    Type: Application
    Filed: May 18, 2012
    Publication date: July 4, 2013
    Applicant: ENVIROMENTAL DEVELOPMENT PRODUCTS (ENDEVPRO), LIMITED
    Inventors: Osmerio Enrique Labarca Finol, Rixio Egardo Reyes Lopéz
  • Publication number: 20130130948
    Abstract: A method for breaking the viscosity of an aqueous fluid gelled with a water soluble polymer or a VES is disclosed. The method includes providing an aqueous fluid. The method also includes adding to the aqueous fluid, in any order: a water soluble polymer in an amount sufficient to form a gelled aqueous fluid having a viscosity, a water soluble oxidizing agent configured to generate free radicals and a plurality of metallic particles to produce a mixture comprising dispersed metallic particles dispersed within the gelled aqueous fluid, the metallic particles configured to dissolve in the gelled aqueous fluid and provide a reducing agent to accelerate the generation of free radicals. The method further includes dissolving the metallic particles in the gelled aqueous fluid to provide a source of at least one transition metal ion in an amount effective accelerate the generation of free radicals and reduce the viscosity.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 23, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: James B. Crews
  • Patent number: 8445414
    Abstract: Alkaline earth metal compounds may be fluid loss control (FLC) agents for viscoelastic surfactant (VES) fluids used for fluid loss control pills, lost circulation material pills and kill pills in hydrocarbon recovery operations. The FLC agents may include, but not be limited to oxides and hydroxides of alkaline earth metal, and in one case magnesium oxide where the particle size of the magnesium oxide is between 1 nanometer to 0.4 millimeter. The FLC agent may alternatively be transition metal oxides and/or transition metal hydroxides. The FLC agent appears to associate with the VES micelles and together form a novel pseudo-filter cake quasi-crosslinked viscous fluid layer that limits further VES fluid flow into the porous media. The FLC agent solid particles may be added along with VES fluids. The pills may also contain internal breakers to reduce the viscosity thereof so that the components of the pill may be recovered.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: May 21, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: James B. Crews, Tianping Huang
  • Publication number: 20130123150
    Abstract: A method for affecting the viscosity of an aqueous fluid gelled with a VES includes providing an aqueous fluid and adding to the aqueous fluid, in any order: at least one VES comprising a non-ionic surfactant, cationic surfactant, amphoteric surfactant or zwitterionic surfactant, or a combination thereof, in an amount sufficient to form a gelled aqueous fluid comprising a plurality of elongated micelles, a glyceride oil comprising a fatty acid, and a plurality of metallic particles to produce a mixture comprising dispersed metallic particles. The method also includes dissolving at least a portion of the metallic particles in the aqueous fluid to provide a compound comprising a metallic base and forming in situ a soap reaction product of the fatty acid with the compound, wherein the soap reaction product is present in an amount effective to increase, decrease, or increase and then decrease a viscosity of the gelled aqueous fluid.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 16, 2013
    Applicant: Baker Hughes Incorporated
    Inventor: James B. Crews
  • Publication number: 20130123151
    Abstract: A method for breaking the viscosity of an aqueous fluid gelled with a viscoelastic surfactant (VES) is disclosed. The method includes providing an aqueous fluid and adding to the aqueous fluid, in any order: at least one VES comprising a non-ionic surfactant, cationic surfactant, amphoteric surfactant or zwitterionic surfactant, or a combination thereof, in an amount sufficient to form a gelled aqueous fluid comprising a plurality of elongated micelles and having a viscosity, and a plurality of metallic particles to produce a mixture comprising dispersed metallic particles dispersed within the gelled aqueous fluid. The method also includes dissolving the metallic particles in the gelled aqueous fluid to provide a source of at least one transition metal ion in an amount effective to reduce the viscosity.
    Type: Application
    Filed: November 14, 2011
    Publication date: May 16, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: James B. Crews
  • Publication number: 20130116342
    Abstract: The invention relates to methods of modulating the stability of emulsions, especially the stability of emulsions to flocculation and coalescence. The use of peptide emulsifiers comprising at least one side chain carboxylate group in preparing emulsions that are stable to flocculation or coalescence in the presence of salt is also described.
    Type: Application
    Filed: March 22, 2011
    Publication date: May 9, 2013
    Applicant: PEPFACTANTS PTY LTD
    Inventor: Annette Faith Dexter
  • Publication number: 20130112416
    Abstract: Guard bed compositions for protecting metal surfaces in a wellbore from corrosion may comprise a variety of constituent components. Exemplary guard bed compositions may include: one or more surfactants selected from the group comprising amine surfactants; one or more co-surfactants selected from the group comprising C3 to C15 alcohols; and one or more non-surfactant amines. Other exemplary guard bed compositions may comprise: a hydrocarbon fluid and an overbased detergent. Still other exemplary guard bed compositions may comprise: a hydrocarbon fluid; one or more surfactants; one or more co-surfactants; and one or more non-surfactant amines. The one or more surfactants may be selected from the group comprising alkyl alkoxylated surfactants. Still further, exemplary guard bed compositions may comprise: a hydrocarbon fluid and one or more associating surface active polymers selected from the group comprising amphiphilic polymers.
    Type: Application
    Filed: May 9, 2011
    Publication date: May 9, 2013
    Inventors: Ramesh Varadaraj, Sabine C. Zeilinger, Catalin Dragos Ivan
  • Publication number: 20130112429
    Abstract: A method for degrading a downhole article includes exposing the downhole article to a composition comprising a corrosive agent selected from a reducing sugar, ester, aminocarboxylic acid, or a combination thereof. The method also includes contacting the downhole article with the corrosive agent to degrade the downhole article. Additionally, a composition for degrading a downhole article includes water, salt, and a corrosive agent selected from a reducing sugar, ester, aminocarboxylic acid, or a combination thereof.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 9, 2013
    Applicant: Baker Hughes Incorporated
    Inventor: James B. Crews
  • Publication number: 20130105167
    Abstract: The present invention relates to compositions and methods for enhancing fracture conductivity. One embodiment of the present invention provides a method of providing a fracturing fluid and a flowable propping composition having a hardenable external phase and an internal phase where the internal phase is immiscible with the external phase; introducing the fracturing fluid into a subterranean formation; introducing the flowable propping composition into a fracture in the subterranean formation; allowing the hardenable external phase to form a hardened external phase in the fracture in the subterranean formation; and allowing the presence of the internal phase to be reduced from the hardened external phase thereby leaving a void volume in the hardened external phase.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 2, 2013
    Inventor: Lewis R. Norman
  • Publication number: 20130098613
    Abstract: A method of selectively blocking fractures in a subterranean formation by injecting a diversion agent into the well is disclosed. According to one embodiment, the method comprises injecting a diversion agent into a subterranean formation to form an alkaline-earth carbonate precipitate from decomposition of a carbonyl compound, wherein the diversion agent includes the carbonyl compound and an alkaline-earth halide salt.
    Type: Application
    Filed: December 13, 2012
    Publication date: April 25, 2013
    Applicant: University of Utah Research Foundation
    Inventor: University of Utah Research Foundation
  • Publication number: 20130095562
    Abstract: Chemical compounds that are N-acyl amino acids or derivatives thereof having long chain N-acyl groups were found to have oil-releasing activity. Solutions containing these compounds may be introduced into oil reservoirs or onto oil-contaminated surface sites to release oil from oil-coated surfaces. The released oil may be recovered for further processing or waste disposal.
    Type: Application
    Filed: March 29, 2012
    Publication date: April 18, 2013
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Michael P. Perry, Christina S. Stauffer
  • Publication number: 20130090270
    Abstract: Aqueous treating fluids may include a viscoelastic surfactant (VES) and an aqueous base fluid, e.g. a drilling fluid, whereby the VES may increase and/or maintain the viscosity of the aqueous treating fluid. Metal ions may be present within the aqueous treating fluid that break, reduce, and/or digest the VES within the aqueous treating fluid. An effective amount of complexation particles may be added to the aqueous treating fluid for complexing at least a portion of these metal ions and thereby disallowing the metal ions from breaking, reducing, and/or altering the VES within the aqueous treating fluid.
    Type: Application
    Filed: October 10, 2011
    Publication date: April 11, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: James B. Crews, Tianping Huang
  • Patent number: 8415278
    Abstract: A composition for treating a portion of a wellbore or a portion of a subterranean formation is provided, the composition comprising: (a) water; (b) a source of hydrogen peroxide, and (c) an activator for the source of hydrogen peroxide; wherein the pH of the composition is adjusted to be within an appropriate range for the type of activator. A method for treating a portion of a wellbore or a portion of a subterranean formation, the method comprising the steps of: forming or providing a composition comprising: (a) water; (b) a source of hydrogen peroxide, and (c) an activator for the source of hydrogen peroxide; wherein the pH of the composition is adjusted within an appropriate range for the type of activator; and introducing the composition through a wellbore to treat a portion of a wellbore or a portion of a subterranean formation. The activator can be a water-soluble alkanoyl-donor compound or a chelated transition metal. Preferably, the composition further comprises an iron chelating agent.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: April 9, 2013
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Michael W. Sanders, Jeffrey L. Mundy, Fong Fong Foo, Rajesh K. Saini
  • Patent number: 8415279
    Abstract: Nanoemulsions, miniemulsions, microemulsion systems with excess oil or water or both (Winsor III) or single phase microemulsions (Winsor IV) may be pre-formed and used as one or more fluid pills during hydrocarbon recovery operations after drilling with OBM or SBM. The nanoemulsions, miniemulsions, microemulsion systems with excess oil or water or both or single phase microemulsions remove oil and solids from the well and wellbore surfaces. In one non-limiting embodiment, a single phase microemulsion (SPME) or other pre-formed fluid may be created from a polar phase, a nonpolar phase, an optional viscosifier, and at least one surfactant.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 9, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Lirio Quintero, Chad F. Christian, Alexander McKellar, Cristina Torres, David E. Clark, Thomas A. Jones
  • Publication number: 20130085087
    Abstract: A downhole fluid comprises a base fluid, for example a hydrocarbon base fluid, and a pyromellitamide gelling agent. The pyromellitamide gelling agent may have the general formula of: with R1, R2, R3, R4, R5, R6, R7, and R8 each being a hydrogen or an organic group. A method comprises introducing the downhole fluid into a downhole formation. A method of making a downhole fluid, the method comprising: combining a base fluid and a pyromellitamide gelling agent. A composition for gelling a downhole fluid, the composition comprising a pyromellitamide gelling agent and a wetting agent.
    Type: Application
    Filed: September 24, 2012
    Publication date: April 4, 2013
    Applicant: SYNOIL FLUIDS HOLDINGS INC.
    Inventor: SYNOIL FLUIDS HOLDINGS INC.
  • Publication number: 20130048281
    Abstract: A method of servicing a wellbore comprising placing a composition comprising a microemulsion surfactant and a completion fluid into a wellbore, wherein the composition is substantially free of an organic solvent. A method of servicing a wellbore having a permeable zone comprising introducing a composition comprising a brine and a microemulsion surfactant to the wellbore proximate to the permeable zone wherein at least a portion of the composition enters the permeable zone and wherein the composition excludes an organic solvent. A wellbore servicing fluid comprising a microemulsion surfactant and a completion fluid.
    Type: Application
    Filed: August 25, 2011
    Publication date: February 28, 2013
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Ryan VAN ZANTEN, Per-Bjarte TANCHE-LARSEN
  • Patent number: 8383557
    Abstract: Incorporating water-based polymer breakers, such as oxidizers, enzymes and/or acids, into a mixture of an oil and oil-soluble surfactants creates an emulsion that can then perform as a dual-functional breaker for reducing the viscosity of hybrid fluids gelled with both a viscoelastic surfactant (VES) and a polymer. The outer phase of the dual-functional breaker emulsion is oil, e.g. a mineral oil, containing an oil-soluble surfactant that will, over time and with heat, break the VES portion of the gel. As it does so, the polymer breaker in the internal aqueous phase will be released to then break the polymer portion of the gel. The polymer breaker will not start to break the polymer gel before the oil-soluble surfactant starts to break the VES gel. The overall breaking using the emulsion is slower as compared to introducing the polymer breaker and the oil-soluble surfactant in a non-emulsified form.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: February 26, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: Tianping Huang, James B. Crews
  • Patent number: 8381811
    Abstract: The instant disclosure is directed to a method of enhancing adsorption of a salt inhibitor onto a wellbore region, wherein the method comprises preconditioning the wellbore region, emplacing the salt inhibitor into the wellbore region, and shutting in the wellbore region for a period of time to at least initiate adsorption of the salt inhibitor onto the wellbore region. The salt inhibitor comprises an at least partially water soluble compound comprising a Group 3 to Group 15 metal and/or an at least partially water soluble compound having any one of the formulae: wherein X is O or S; and R1, R2, R3, R4, and when present, R5 and/or R6 each independently comprise an organic or an inorganic functional group.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: February 26, 2013
    Assignees: M-I SWACO Norge AS, Oilfield Mineral Solutions Limited
    Inventors: Richard Keatch, Hua Guan
  • Publication number: 20130035266
    Abstract: The invention relates to methods of controlling the stability of emulsions to coalescence and phase separation. Use of chaotropic counterions to promote coalescence and/or phase separation of emulsions stabilized by ionic surfactants is described.
    Type: Application
    Filed: March 22, 2011
    Publication date: February 7, 2013
    Applicant: PEPFACTANTS PTY LTD
    Inventor: Annette Faith Dexter
  • Patent number: 8357640
    Abstract: An acid treatment composition is provided including an alkyl sarcosinate as corrosion inhibitor and an optional corrosion inhibitor intensifier in an acidic solution. Methods for treating wells with these acid treatment compositions are also provided that help control corrosion of the alloy surfaces used in the wells during the acid treatment.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: January 22, 2013
    Assignee: Baker Hughes Incorporated
    Inventors: D V Satyanarayana Gupta, Joel Lynn Boles
  • Patent number: 8353345
    Abstract: A method of selectively blocking fractures in a subterranean formation by injecting a diversion agent into the well is disclosed. According to one embodiment, the method comprises injecting a diversion agent into a subterranean formation to form an alkaline-earth carbonate precipitate from decomposition of a carbonyl compound, wherein the diversion agent includes the carbonyl compound and an alkaline-earth halide salt.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: January 15, 2013
    Assignee: University of Utah Research Foundation
    Inventors: Peter E. Rose, Daniel L. Bour
  • Patent number: 8349772
    Abstract: A method of secondary oil recovery is disclosed wherein from 0.1 to 100 000 ppm of a medium soluble aminoalkylene phosphonic acid amine salt are used wherein both the aminoalkylene phosphonic acid moiety and the amine moiety are selected from a specifically defined class of compounds. The substantially medium soluble aminoalkylene amine phosphonates exhibit a significantly improved compatibility with the recovery medium and thus can propagate fairly freely into the medium and consequently cover a largely extended rock surface before being subject to precipitation in the form of a medium insoluble scale inhibitor. The amine compound is represented by combinations of structurally different compounds.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: January 8, 2013
    Assignee: Dequest AG
    Inventors: Patrick Notté, Albert Devaux
  • Publication number: 20120322694
    Abstract: A base fluid may contain nanoparticles where the base fluid may include a non-aqueous fluid, an aqueous fluid, and combinations thereof. The fluid may have a resistivity range of from about 0.02 ohm-m to about 1,000,000 ohm-m. The non-aqueous fluid may be a brine-in-oil emulsion, or a water-in-oil emulsion; and the aqueous fluid may be an oil-in-water emulsion, or an oil-in-brine emulsion; and combinations thereof. The addition of nanoparticles to the base fluid may improve or increase the electrical conductivity and other electrical properties of the fluid. The fluid may be a drilling fluid, a completion fluid, a production fluid, and/or a stimulation fluid.
    Type: Application
    Filed: July 10, 2012
    Publication date: December 20, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Othon Rego Monteiro, Jonathan J. Brege, Lirio Quintero, Soma Chakroborty, Ashley D. Leonard, Chad F. Christian
  • Patent number: 8334240
    Abstract: One or more compositions and methods for inhibiting the formation of hydrate agglomerates in a fluid that contain a specified generic formula are disclosed. The fluid can be contained in an oil or gas pipeline or refinery.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: December 18, 2012
    Assignee: Nalco Company
    Inventor: Erick J. Acosta
  • Patent number: 8329620
    Abstract: One or more compositions and methods for inhibiting the formation of hydrate agglomerates in an aqueous medium that contain a specified generic formula are disclosed. The aqueous medium can be contained in an oil or gas pipeline or refinery.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: December 11, 2012
    Assignee: Nalco Company
    Inventor: Erick J. Acosta
  • Publication number: 20120295823
    Abstract: Chemical compounds that are N-lauroyl amino acids or derivatives thereof were found to have oil-releasing activity. Solutions containing these compounds may be introduced into oil reservoirs or onto oil-contaminated surface sites to release oil from oil-coated surfaces. The released oil may be recovered for further processing or waste disposal.
    Type: Application
    Filed: November 17, 2011
    Publication date: November 22, 2012
    Applicant: E.I DU PONT DE NEMOURS AND COMPANY
    Inventors: Eric R. Choban, Berardino D'Achille, Rachel L. Hardie, Michael P. Perry, Christina S. Stauffer, Bogdan Szostek
  • Patent number: 8298996
    Abstract: A low toxicity composition and method of reducing the swelling of clay in well comprising circulating in the well a water-based fluid comprising a functionally effective concentration of the additive formed from the following reaction of a tertiary amine of the following general formula: wherein R1 and R2 are alkyl or hydroxyalkyl groups with one to three carbon atoms or combinations thereof, and R3 is a hydroxyalkyl group with one to three carbon atoms, with an alkylating agent of the following general formula: R-A wherein R is an alkyl radical with one to three carbon atoms, and A is an organic or inorganic anion selected from the group consisting of sulfate, phosphate, carbonate, and combinations thereof.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: October 30, 2012
    Assignee: M-I L.L.C.
    Inventor: Arvind D. Patel
  • Patent number: 8293687
    Abstract: The present invention is directed to novel additives packages, to fluid compositions including the additives, to methods of using the fluid compositions and the additives package, to methods of recovering hydrocarbons, and to petroleum products made from hydrocarbons derived from these methods. The novel additives packages may be used in a fluid composition for fracturing a subterranean. The additives package of the present invention include one or more gelling agents; one or more cross-linking agent; and one or more high temperature stabilizers; wherein the additives package further comprises one or more ingredients selected from the group consisting of a clay stabilizer, a metallic base, a cross-link retarder, and a gel breaker, and any combination thereof; and wherein the additives package optionally includes a diluent.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: October 23, 2012
    Assignee: Titan Global Oil Services Inc.
    Inventor: Wade J. Giffin
  • Publication number: 20120261129
    Abstract: A method involving exposing a substance to a promoter, the promoter being made from a liquid carrier and a metal salt component, the metal salt component, having at least (i) a magnetic susceptability above 1000 or (ii) an ionization potential below about 500 volts, or (iii) both (i) and (ii), and applying electromagnetic wave energy to the substance while the substance is in the presence of the promoter, for a period of time and at a frequency and amplification sufficient to promote the modification of at least one physical property of the substance. A related method of treating a well in a subterranean formation, a tank or a pipeline, and the well treatment promoter composition, are also described.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 18, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Harold L. Becker
  • Publication number: 20120252705
    Abstract: Non-settable spacer fluids for use in subterranean operations comprising: a base liquid; vitrified shale; a chelating agent; a clay weighting agent; and a viscosifying agent. The chelating agent includes one or more of nitrilotriacetic acid, ethylene diamine tetracetic acid (EDTA), ethylene glycol tetraacetic acid (EGTA), tartaric acid, a polycarboxylic acid, a lignosulphonate, hydroxyethylidene diphoshponic acid (HEDP), diethylene triamine penta (methylene phosphonic) acid (DETMP), amino-tri-methylene phosphonic acid (ATMP), ethylene diamine tetra (methylene phosphonic) acid (EDTMP), or salts thereof. The clay weighting agent is present in the range of about 0.01% to about 85% by weight of the spacer fluid. The viscosifying agent is present in the range of about 1% to about 10% by weight of the spacer fluid.
    Type: Application
    Filed: June 12, 2012
    Publication date: October 4, 2012
    Applicant: Halliburton Energy Services, Inc.
    Inventors: Girish Dinkar Sarap, Christopher L. Gordon, Manoj Sivanandon, Trissa Joseph
  • Publication number: 20120245058
    Abstract: A base fluid may contain graphene nanoparticles where the base fluid may include an oil-based fluid, a water-based fluid, and combinations thereof. The oil-based fluid may be a brine-in-oil emulsion, or a water-in-oil emulsion, and the water-based fluid may be an oil-in-water emulsion, or an oil-in-brine emulsion; and combinations thereof. The addition of graphene nanoparticles to the base fluid may improve one or more properties of the fluid, which may include the flow assurance properties of the fluid, the fluid loss control properties of the fluid, the rheological properties of the fluid, the stability of the fluid, the lubricity of the fluid, the electrical properties of the fluid, the viscosity of the fluid, the thermal properties of the fluid, and combinations thereof. The fluid may be a drilling fluid, a completion fluid, a production fluid, and/or a servicing fluid.
    Type: Application
    Filed: March 20, 2012
    Publication date: September 27, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Othon Monteiro, Lirio Quintero
  • Patent number: 8273693
    Abstract: Coacervate gels having excellent shear viscosities and other properties are made with anionic or cationic polymers, a smaller amount of a surfactant having a charge opposite that of the polymer, and a hydrophobic alcohol and an effective amount of a phosphorus-containing compound sufficient to increase the viscosity of coacervate gels up to 3 times as compared to the gels in the absence of the phosphorus-containing compound. The Zeta Potential of the gel is maintained at an absolute value of at least 20. Optional gel promoting additives include betaines and amine oxides. A preferred gel comprises poly diallyl dimethyl ammonium chloride, a lesser amount of sodium lauryl sulfonate, and lauryl alcohol. The gels are particularly useful in well drilling fluids and well fracturing fluids.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: September 25, 2012
    Assignee: Clearwater International LLC
    Inventor: Kevin M. Schwartz
  • Patent number: 8273691
    Abstract: The present invention relates to a process for binding non-consolidated oxidic inorganic materials with curable formulations which comprise etherified amino resins, and to cured compositions obtainable by the process. A preferred embodiment of the invention comprises a process for stabilizing underground formations composed of oxidic inorganic materials, wherein the curable composition is injected into the underground formation and cured at the temperatures which exist in the formation.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: September 25, 2012
    Assignee: BASF SE
    Inventors: Christian Nitschke, Christian Spindler
  • Publication number: 20120231977
    Abstract: Aqueous and substantially anhydrous fluids having particularly low thermal conductivities and variable densities are disclosed. The fluids include: one or more organic and/or inorganic salts and at least one aprotic polar organic solvent, a mixture of aprotic and erotic polar organic solvents, and/or a polar organic solvent having both prone and aprotic polar functional group linkages. The fluids optionally include one or more viscosifying agents and are free of cross-linking agents. Methods for formulating and using the fluids are also disclosed.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 13, 2012
    Applicant: TETRA Technologies, Inc.
    Inventors: Jeffrey McKennis, Marshall Chiasson, Mohammad Hossaini, Nam-Sook Bae
  • Patent number: 8252730
    Abstract: A water-based wellbore treatment fluid contains: one or more viscoelastic-gelling carboxylic acids and/or alkali metal salts thereof; and one or more solubilizing alkylolamines. The carboxylic acids and/or alkali metal salts and the alkylolamines are present in the fluid in respective amounts such that, at 25° C., the alkylolamines solubilize a sufficient portion of the carboxylic acids and/or alkali metal salts to render the fluid viscoelastic. A remaining portion of the carboxylic acids and/or alkali metal salts forms a suspension of solid particulates in the fluid.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: August 28, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Robert Seth Hartshorne, Trevor Lloyd Hughes, Timothy Gareth John Jones, Gary John Tustin, James Francis Westwood
  • Patent number: 8247355
    Abstract: The invention discloses method of treating a subterranean formation of a well bore, the method comprising: providing a treatment fluid comprising: an aqueous base fluid; a viscosity enhancer; and a viscoelastic surfactant, wherein the enhancer is acid in the aqueous base fluid and co-operates with the viscoelastic surfactant to enhance viscosity compared to viscoelastic surfactant alone in the aqueous base fluid; and introducing the treatment fluid into the well bore.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: August 21, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Leiming Li, Lijun Lin, Mathew M. Samuel, Syed Ali, Paul R. Howard
  • Patent number: 8242060
    Abstract: A clear, stable, salt-free solution of a 1:1 molar complex of zirconium and N,N,N?,N?-tetrakis-(2-hydroxypropyl)ethylene diamine. The solution can be used in a cross-linking composition comprising a cross-linkable organic polymer for oil field applications such as fluid fracturing and plugging permeable zones in subterranean formations.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 14, 2012
    Assignee: Dorf Ketal Specialty Catalysts, LLC
    Inventor: Donald Edward Putzig
  • Patent number: 8240379
    Abstract: A well treatment composition is formed from a fluid mixture of a viscoelastic surfactant and a liquid carrier fluid. The fluid mixture has rheological properties wherein the mixture exhibits shear-thickening behavior when the shear rate is increased from a first shear rate to a second higher shear rate. The fluid mixture may further include a shear activation additive that interacts with the viscoelastic surfactant to facilitate the shear-thickening behavior. The method is accomplished by introducing the fluid mixture into a wellbore formed in a subterranean formation. In certain applications, the fluid mixture may be recycled by bringing the fluid mixture to the surface and reintroducing the fluid into the same or a different wellbore.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: August 14, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Yiyan Chen, Oscar Bustos, Philip F. Sullivan
  • Publication number: 20120202721
    Abstract: The invention is directed to a treatment fluid comprising electrolyzed water and an amine, and methods for producing and using same in the treatment of a gas or liquid containing a contaminant such as an acid gas or a sulphur compound.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 9, 2012
    Inventors: William Dale STOREY, Norman L. ARRISON, Dale R. SCHADECK
  • Patent number: 8236734
    Abstract: The present invention relates to a method of using threshold scale inhibitors of the formula: wherein n is 2 or 3 and M is hydrogen or an alkali metal cation, for preventing calcium carbonate, iron carbonate, and calcium sulfate scale formation in oilwell brines containing dissolved iron.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: August 7, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Dong Shen, Randall J. Perkins, Dwayne D. Schielke, David H. Shcolnik
  • Publication number: 20120160497
    Abstract: Fluids for use in hydrocarbon recovery operations include water and at least one organo-anionic surfactant. The fluids may be used in methods for conducting hydrocarbon recovery operations, such as drilling operations, completion operations, production operations, injection operations. The fluid may be adapted to remediate a NAF filter cake. Exemplary organo-anionic surfactants may include one or more of monoethanol ammonium alkyl aromatic sulfonic acid, monoethanol ammonium alkyl carboxylic acid, and mixtures thereof.
    Type: Application
    Filed: August 10, 2010
    Publication date: June 28, 2012
    Inventors: Ramesh Varadaraj, Sabine C. Zeilinger, Fred E. Dupriest
  • Publication number: 20120149608
    Abstract: A corrosion inhibitor composition and method of inhibiting corrosion on a surface in an oil or gas application is disclosed and claimed. The corrosion inhibitor includes at least one fatty acid; at least one alkanolamine; at least one alkylamine; and at least one organic sulfonic acid. The method of inhibiting corrosion includes on a surface in an oil or gas application comprises contacting an effective dosage of the corrosion inhibitor with the surface.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 14, 2012
    Inventors: G. Richard Meyer, Keith Allen Monk