Treatment Of Feed Or Recycle Stream Patents (Class 518/705)
  • Patent number: 6875794
    Abstract: A method of manufacturing methanol comprising producing a synthesis gas containing hydrogen, carbon monoxide and carbon dioxide, allowing reaction of the synthesis gas to take place over a catalyst to produce a crude methanol, separating the crude methanol into unreacted gas and liquid crude methanol, and distilling the liquid crude methanol to separate it into refined methanol and waste water. Carbon dioxide in combustion exhaust gas to be discharged from a reformer is recovered, and that in feeding the carbon dioxide to the upstream side and/or the downstream side of the reformer, part of the unreacted gas is utilized as a purge gas, a portion of which being utilized as a fuel for a combustion device of the reformer, while the balance of the purge gas being utilized as a fuel for other heating sources and/or as an agent for desulfurizating raw gas.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: April 5, 2005
    Assignees: Mitsubish Heavy Industries, Ltd., Mitsubishi Gas Chemical Company, Inc.
    Inventors: Yoshio Seiki, Tetsuya Imai, Kazuto Kobayashi, Hiroyuki Osora, Chie Kuwada, Kazuhiro Morita, Shuichi Miyamoto
  • Patent number: 6872753
    Abstract: The present invention provides a process for controlling the ratio of hydrogen to carbon monoxide in feed streams to reactors that convert syngas to hydrocarbon liquids. The process includes primary syngas production process for converting hydrocarbon gas to syngas comprising hydrogen and carbon monoxide. The process further includes introducing a hydrogen rich stream, a carbon monoxide rich stream, or both produced by an auxiliary source to a feed stream being passed to a reactor for converting the syngas to hydrocarbon liquid, thereby adjusting the H2/CO ratio in the feed stream. Examples of reactors that may be used to convert syngas to hydrocarbon liquids are FT reactors staged in series and oxygenate producing reactors staged in series.
    Type: Grant
    Filed: March 15, 2003
    Date of Patent: March 29, 2005
    Assignee: ConocoPhillips Company
    Inventors: Stephen R. Landis, Rafael L. Espinoza, Sergio R. Mohedas, Barbara A. Belt, Vincent H. Melquist, Ralph T. Goodwin, III
  • Patent number: 6855737
    Abstract: A process for the production of liquid hydrocarbon products from synthesis gas in a system comprising a reaction zone and a gas separation zone wherein the process comprises: a) in the reaction zone, contacting synthesis gas at elevated temperature and pressure with a suspension of a particulate Fischer-Tropsch catalyst in a liquid medium so as to convert at least a portion of the synthesis gas into liquid hydrocarbon products; b) discharging a product suspension comprising catalyst suspended in the liquid medium and the liquid hydrocarbon products from the reaction zone into the gas separation zone, the product suspension having unconverted synthesis gas dissolved and/or entrained therein; c) in the gas separation zone, separating a gaseous stream comprising unconverted synthesis gas from the product suspension; d) recycling at least a portion of the separated gaseous stream to the reaction zone; and e) recycling at least a portion of the degassed product suspension from the gas separation zone to the reacti
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: February 15, 2005
    Assignee: BP Exploration Operation Company Limited
    Inventor: David Newton
  • Patent number: 6852762
    Abstract: The invention relates to a process for producing liquid hydrocarbons from a hydrocarbonaceous feedstock involving: (i) catalylically reforming at least part of the hydrocarbonaceous feedstock at elevated temperature and pressure with steam in at least one reforming zone; (ii) heating the reforming zone(s) by means of a carbon dioxide containing heating gas containing a product obtained by partial oxidation of the reformer product obtained in step (i) and carbon dioxide depleted light product obtained in step (vi) with an oxygen-containing gas in an oxidation zone; (iii) separating carbon dioxide from cooled down heating gas obtained in step (ii); (iv) catalytically converting at least part of the carbon dioxide depleted gas steam obtained in step (iii) at elevated temperature and pressure into normally liquid hydrocarbons; (v) separating product stream obtained in step (iv) into a light product having mainly unconverted synthesis gas, inerts and light hydrocarbons and a heavy product; having mainly normally
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: February 8, 2005
    Assignee: Shell Oil Company
    Inventors: Winnifred De Graaf, Abdul Razak Mohamad Ali, Thian Hoey Tio
  • Patent number: 6833078
    Abstract: Methods and apparatus for separating liquid products and catalyst fines from a slurry used in a Fischer-Tropsch reactor. A settling system continuously or intermittently removes catalyst fines from the slurry and is coupled with catalyst-liquid separation system that separates liquid products from the slurry. The preferred separation system produces a sub-particle rich stream and a catalyst-lean stream that are removed from the system. The systems of the present invention act to reduce the concentration of catalyst fines in the reactor, thereby increasing the effectiveness of a catalyst-liquid separation system.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: December 21, 2004
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Sergio R. Mohedas, Seyi Odueyungbo, James Dale Ortego
  • Patent number: 6822007
    Abstract: Apparatus suitable for the conversion of synthesis gas to liquid hydrocarbon products, comprising a plurality of injector-mixing nozzles, a tank reactor, a gas recycle line having a first end and a second end and a slurry recycle line having a first end and a second end. The plurality of injector-mixing nozzles is arranged at or near the top of the tank reactor, each injector mixing nozzle having a first inlet for a suspension of a catalyst in a liquid medium, at least one second inlet for synthesis gas and an outlet positioned within the tank reactor for discharging a mixture of synthesis gas and the suspension from the injector-mixing nozzles in a downwards direction into the tank reactor. The tank reactor has a first outlet for discharging a product suspension at or near the bottom thereof and a second outlet for a gaseous recycle stream at or near the top thereof.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 23, 2004
    Assignee: BP Exploration Operating Company Limited
    Inventors: Graham Walter Ketley, Barry Nay, David Newton
  • Patent number: 6822006
    Abstract: Novel methods of controlling the temperature of an exothermic reaction are disclosed. Such methods are particularly applicable to a Fischer-Tropsch synthesis reaction, and comprise removing a vapor phase product from the Fischer-Tropsch reactor, condensing at least a portion of the vapor phase product to form a volatilizable liquid, and injecting at least a portion of the volatilizable liquid into the reactor, wherein the volatilizable liquid comprises hydrocarbons that are in the highest boiling point range of the vapor phase product that is removed from the reactor.
    Type: Grant
    Filed: July 2, 2003
    Date of Patent: November 23, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis J. O'Rear, Charles L. Kibby
  • Patent number: 6822005
    Abstract: A process for the conversion of synthesis gas to hydrocarbons by contacting the synthesis gas at an elevated temperature and pressure with a suspension comprising a solid particulate catalyst suspended in a liquid medium, which contacting takes place in a system comprising at least one high shear mixing zone and a reactor vessel wherein the volume of suspension present in the high shear mixing zone(s) is substantially less than the volume of suspension present in the reactor vessel, suspension is mixed with synthesis gas in the high shear mixing zone(s), the resulting mixture of suspension and synthesis gas is discharged from the high shear mixing zone(s) into the reactor vessel and wherein kinetic energy is dissipated to the suspension present in the high shear mixing zone(s) at a rate of at least 0.5 kW/m3 relative to the total volume of suspension present in the system.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: November 23, 2004
    Assignees: BP Exploration Operating Company Limited, Davy Process Technology Limited
    Inventors: Josephus Johannes Helena Maria Font Freide, John Richard Hensman, David Newton, Christopher Sharp, Geoffrey Benedict Smith
  • Patent number: 6806297
    Abstract: A process for producing normally liquid hydrocarbon products from a hydrocarbonaceous feedstock, especially from normally gaseous hydrocarbon feed, having the following steps: (a) partial oxidation of the normally gaseous hydrocarbon feed at elevated pressure using air or oxygen enriched air as oxidant, to obtain a syngas mixture having hydrogen, carbon monoxide and nitrogen; (b) converting hydrogen and carbon monoxide obtained in step (a) into a normally liquid hydrocarbon product and a normally gaseous hydrocarbon product; (c) separating from the reaction mixture obtained in step (b) an off-gas mixture having nitrogen, normally gaseous hydrocarbon product, and unconverted hydrogen, carbon monoxide and normally gaseous hydrocarbon feed, insofar as such unconverted components are present; (d) combusting at least a part of the off-gas mixture in a steam raising apparatus, producing steam of an elevated pressure; and (e) expanding the steam produced in step (d) for compressing the air or oxygen enriched air and
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: October 19, 2004
    Assignee: Shell Oil Company
    Inventors: Hans Michiel Huisman, Koen Willem De Leeuw
  • Patent number: 6805195
    Abstract: A hydrocarbon containing formation may be treated using an in situ thermal process. A mixture of hydrocarbons, H2, and/or other formation fluids may be produced from the formation. Heat may be applied to the formation to raise a temperature of a portion of the formation to a pyrolysis temperature. After pyrolysis, the portion may be heated to a synthesis gas production temperature. A synthesis gas producing fluid may be introduced into the portion to generate synthesis gas. Synthesis gas may be produced from the formation in a batch manner or in a substantially continuous manner.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: October 19, 2004
    Assignee: Shell Oil Company
    Inventors: Harold J. Vinegar, Scott Lee Wellington, John Michael Karanikas, Ilya Emil Berchenko, George Leo Stegemeier, Ajay Madhav Madgavkar, Robert Martijn Van Hardeveld
  • Patent number: 6800665
    Abstract: A method for producing dimethyl ether comprising: (a) reacting a raw material gas containing carbon monoxide and hydrogen in the presence of a catalyst to produce a reaction gas including dimethyl ether, carbon dioxide, carbon monoxide and hydrogen; (b) separating the reaction gas from step (a) into carbon monoxide and hydrogen, and into dimethyl ether carbon dioxide; (c) recycling to step (a) the carbon monoxide and the hydrogen which were separated from the reaction gas in step (b); (d) removing the carbon dioxide from the dimethyl ether and the carbon dioxide from step (b) to obtain the dimethyl ether; and the (e) recycling the dimethyl ether from step (d) to step (b).
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: October 5, 2004
    Assignee: JFE Holdings, Inc.
    Inventors: Tsutomu Shikada, Yotaro Ohno, Takashi Ogawa, Masatsugu Mizuguchi, Masami Ono, Kaoru Fujimoto
  • Patent number: 6794418
    Abstract: A method for increasing production in an existing processing plant for converting natural gas into a product, wherein the natural gas is first converted into a synthesis gas in a synthesis gas section, the synthesis gas is reacted in a reactor for synthesis of the product, where non-converted synthesis gas and product are separated into two streams, where a product-rich stream is taken out of the process, while a product-poor stream is recycled as feed to the reactor together with make-up synthesis gas, and where a portion of the recycle stream is taken out of the recycle loop as a purge gas, where the purge gas is separated into hydrogen-rich and hydrogen-poor streams, where hydrogen-rich streams are introduced into steps in the process where it is desirable to have a supplement of hydrogen, and where the residual thermal value of the hydrogen-poor stream is optionally used for heating before it is discharged. A modified processing plant for carrying out the method is also described.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: September 21, 2004
    Assignee: Statoil ASA
    Inventors: Jostein Sogge, Linda Bahr, Bjørn Jarle Veland, Ola Olsvik
  • Patent number: 6774148
    Abstract: The present invention relates to a process for the production of a blended syngas feed with a variable H2/CO ratio for use in a syngas conversion reactor. In this process a H2/CO ratio of from approximately 1.0 to 3.0 for the blended syngas feed is selected. A first syngas is formed with a H2/CO ratio of at least 2.0 by reacting methane with an oxygen source. A second syngas is formed with a H2/CO ratio of no more than 1.5 by reacting LPG with CO2. The first syngas and the second syngas are blended to form a blended syngas feed with the selected H2/CO ratio, and this blended syngas feed may be used in the syngas conversion reactor.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: August 10, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventor: Dennis J. O'Rear
  • Patent number: 6730221
    Abstract: Catalyst particles are separated from the wax in a reactor slurry reactor by feeding a portion of the slurry to a dynamic settler. Heavier catalyst particles settle and are removed as the slurry at the bottom of the settler is recycled back to the reactor. Clarified wax is removed at the top of the settler. A multi-channel baffle prevents turbulence, improving retention of the desired heavier catalyst particles.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: May 4, 2004
    Assignee: Rentech, Inc.
    Inventors: Mark S. Bohn, James E. Siebarth
  • Patent number: 6723756
    Abstract: Unreacted syngas containing CO2 from a Fischer-Tropsch synthesis reactor, a methanol synthesis reactor or a dual functional syngas conversion is scrubbed with an aqueous medium to adsorb at least some of the CO2. At least a portion of the unreacted CO2-depleted syngas is then recycled to the reactor. The aqueous medium containing absorbed CO2 is treated to desorb CO2. A CO2-enriched stream and a CO2-depleted stream are recovered. A portion of the CO2-enriched stream may be recycled to a syngas generator while another portion is dissolved in an aqueous phase and disposed in a marine environment and/or a terrestrial formation. The CO2-depleted stream preferably is used in the scrubber to absorb CO2 from the unreacted syngas. The process reduces the amount of CO2 released into the atmosphere while improving the over-all efficiency of the syngas conversion process.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: April 20, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Curtis L. Munson, Dennis J. O'Rear, Daniel Chinn
  • Patent number: 6716887
    Abstract: A process for the production of liquid hydrocarbon products by passing, at elevated temperature and pressure, synthesis gas and a fluidizing liquid through a fluidized catalytic bed within a reaction zone, characterized in that the fluidized catalytic bed is an aggregative fluidized catalytic bed comprising a particulate Fischer-Tropsch catalyst having a density of greater than 4,000 kg/m3.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: April 6, 2004
    Assignee: BP Exploration Operating Company Limited
    Inventors: David Newton, Barry Nay
  • Patent number: 6713657
    Abstract: Light olefins including LPG contained in unreacted tail gas from a Fischer-Tropsch process are catalytically condensed using an acidic oligomerization/aromatization catalyst to form higher molecular weight C5+ products. Thus, C3-C4 olefins are readily separated from the tail gas and upgraded to more valuable products. In one embodiment, the condensation is conducted on a mixed gas stream of fresh synthesis gas and tail gas from a Fischer-Tropsch process. In another embodiment, the condensation is conducted on a syngas feed to a Fischer-Tropsch reactor and removes a significant portion of catalytically poisonous nitrogen compounds.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: March 30, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Dennis J. O'Rear, Stephen J. Miller
  • Patent number: 6706770
    Abstract: Method for the production of methanol and hydrogen which comprises steam reforming a hydrocarbon-containing feed in a steam reforming zone to yield a synthesis gas comprising hydrogen, carbon monoxide, and carbon dioxide; introducing a first portion of the synthesis gas into a methanol synthesis zone to form methanol; reacting a second portion of the synthesis gas with steam to convert carbon monoxide to hydrogen and carbon dioxide to yield a shifted synthesis gas; cooling the shifted synthesis gas to yield a cooled shifted synthesis gas; separating the cooled shifted synthesis gas into a high-purity hydrogen product stream and a reject stream enriched in carbon dioxide; and introducing some or all of the reject stream into either or both of the steam reforming zone and the methanol synthesis zone.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: March 16, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Nitin Madhubhai Patel, Shoou-I Wang, Eugene S. Genkin
  • Patent number: 6696501
    Abstract: A method is described for conversion of natural gas or other fossil fuels to higher hydrocarbons, comprising the following steps: a) reaction of natural gas with steam and oxygenic gas in at least one reforming zone in order to produce a synthesis gas consisting primarily of hydrogen and CO, in addition to some carbon dioxide; b) passing said synthesis gas to a Fisher-Tropsch reactor in order to produce a crude synthesis stream consisting of lower hydrocarbons, water and non-converted synthesis gas; c) separation of said crude synthesis stream in a recovery zone, into a crude product stream mainly containing heavier hydrocarbons, a water stream and a tail gas stream mainly containing the remaining constituents; which is charaterized in that the method also comprises the following steps; d) stream reformation of at least part of the tail gas in a separate steam reformer; e) introduction of the reformed tail gas into the gas stream before this is led into the Fischer-Tropsch reactor.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: February 24, 2004
    Assignee: Statoil ASA
    Inventors: Dag Schanke, Roger Hansen, Jostein Sogge, Karina Heitnes Hofstad, Margrete H. Wesenberg, Erling Rytter
  • Patent number: 6682711
    Abstract: Methods for removing sulfur from syngas in a Fischer-Tropsch reactor, and reactors including means for removing sulfur from syngas are disclosed. Sulfur-reactive metals can be used in the Fischer-Tropsch unit to sequester the sulfur. For example, the Fischer-Tropsch unit can be run in stages, using a sacrificial catalyst in a first stage to adsorb the sulfur. The Fischer-Tropsch reactor can include internal baffles that separate the reactor into zones, with a sacrificial catalyst in one or more of the zones, that can be easily sequestered and regenerated or replaced. Sulfur adsorbents can be placed in the inlet gas manifold. A portion of the Fischer-Tropsch catalyst can be converted into larger size pellets that do not fluidize with the finer grain Fischer-Tropsch catalyst and remain near the gas inlet where they adsorb and sequester the sulfur. These embodiments can be combined in any suitable manner to lower the sulfur concentration in the syngas feed.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: January 27, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Robert J. Motal, Dennis J. O'Rear
  • Patent number: 6667348
    Abstract: A gas distribution grid for a slurry reactor includes a plurality of gas injectors horizontally arrayed across, and extending through, an otherwise gas and liquid impervious plate. The injectors have a throat open at both ends, with a gas pressure reducing bore at one end which is the entrance end and with the other end opening into an upward opening cone. Flow diverting means in the injectors prevents slurry solids from entering the throat and being attrited by the high velocity gas jet exiting the bore into the throat. It is preferred that the gas injectors not protrude above the top surface of the grid and flat space is eliminated by means such as angular fillers, to prevent solids accumulation top of the grid. A chamfer may be present at the junction of the bore and throat to prevent unrestricted expansion of the gas jet entering the throat. This is useful for injecting gas into a reactive hydrocarbon synthesis slurry in a slurry reactor, with reduced catalyst attrition and deactivation.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: December 23, 2003
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Min Chang, Constantine Anastasios Coulaloglou, Edward Ching-Sheng Hsu
  • Patent number: 6642280
    Abstract: A control scheme is set forth for conversion of variable composition synthesis gas to liquid fuels in a three-phase or slurry bubble column reactor (SBCR). The control scheme allows one to achieve constant or optimum liquid fuel production and constant or limited purge gas flow with highly variable synthesis gas feed condition. This is accomplished by adjusting one or more of the following independent variables: recycle ratio, water addition, and bypass flow.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: November 4, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: James Christian Sorensen, Douglas Edward Benedict, Tsun-Chiu Robert Tsao, Joseph Klosek
  • Publication number: 20030191199
    Abstract: Provided is a process for reducing CO2 emissions generated by a Fischer-Tropsch GTL facility. The process includes introducing a synthesis gas into a Fischer-Tropsch reactor and performing a Fischer-Tropsch process to produce a Fischer-Tropsch product and CO2. At least a portion of the CO2 from the Fischer-Tropsch reactor is fed into at least one of a feed stream being fed to a synthesis gas formation reactor, producing the synthesis gas, or the synthesis gas being fed into the Fischer-Tropsch reactor. In addition, naphtha is obtained from the Fischer-Tropsch product and is fed into a naphtha reformer. Naphtha reforming is conducted, generating hydrogen by-product and C6-C10 product. At least a portion of the hydrogen by-product, generated during naphtha reforming, is fed into the feed stream, converting at least a portion of the CO2 in the feed stream into additional CO. Finally, the additional CO is converted into hydrocarbons in the Fischer-Tropsch reactor.
    Type: Application
    Filed: April 9, 2002
    Publication date: October 9, 2003
    Inventor: Dennis J. O'Rear
  • Publication number: 20030191198
    Abstract: Light olefins including LPG contained in unreacted tail gas from a Fischer-Tropsch process are catalytically condensed using an acidic oligomerization/aromatization catalyst to form higher molecular weight C5+ products. Thus, C3-C4 olefins are readily separated from the tail gas and upgraded to more valuable products. In one embodiment, the condensation is conducted on a mixed gas stream of fresh synthesis gas and tail gas from a Fischer-Tropsch process. In another embodiment, the condensation is conducted on a syngas feed to a Fischer-Tropsch reactor and removes a significant portion of catalytically poisonous nitrogen compounds.
    Type: Application
    Filed: April 4, 2002
    Publication date: October 9, 2003
    Inventors: Dennis J. O'Rear, Stephen J. Miller
  • Publication number: 20030178195
    Abstract: A method and system for the recovery and conversion of subsurface gas hydrates is provided. This is accomplished by accessing a subsurface hydrate formation and treating the formation with a treating system so that gas is released from the hydrate formation. The released gas is then delivered and collected by means of a gas recovery system at a surface location. The gas is converted to liquid hydrocarbons in a conversion system utilizing a synthesis gas unit for producing synthesis gas from the hydrate gas, and a synthesis unit for converting the synthesis gas into liquid hydrocarbons. In at least one embodiment, the synthesis unit utilizes a Fischer-Tropsch reactor. Excess energy produced during the conversion of the hydrate gas can be utilized in the treating and recovery of the hydrate gas.
    Type: Application
    Filed: March 19, 2003
    Publication date: September 25, 2003
    Inventors: Mark A. Agee, Kenneth Ray Roberts
  • Patent number: 6608113
    Abstract: A process and a device are for the methanol synthesis from hydrogen, carbon monoxide and carbon dioxide under pressure, in particular for increasing the yield of processes already in use. Desulphurized natural gas is charged in a reformer and the synthesis gas is subsequently admitted to a methanol synthesis. There are the advantages that a favorable possibility for refitting existing plants is provided, and synthesis gas from external sources can be used. This is accomplished in the process in that after passing through the reformer, a side stream from the synthesis gas stream is supplied to a methanol pre-reactor. The methanol produced in the pre-reactor is supplied to the methanol stream exiting from the methanol synthesis of the main stream. A stream of synthesis gas non-reacted in the methanol pre-reactor is recycled into the main stream upstream of the methanol synthesis.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: August 19, 2003
    Assignee: Krupp Uhde GmbH
    Inventor: Hans-Joachim Bähnisch
  • Patent number: 6562306
    Abstract: An apparatus for producing dimethyl ether comprising: a slurry-bed reactor filled with a dimethyl ether synthesis catalyst and a medium oil therefor; a condenser for condensing a gasified medium oil discharged from the reactor; an adsorber for removing a catalyst-deactivation ingredient from the medium oil condensed in the condenser; and recycle means for recycling the medium oil to the slurry-bed reactor.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: May 13, 2003
    Assignee: NKK Corporation
    Inventors: Tsutomu Shikada, Takashi Ogawa, Masatsugu Mizuguchi, Masami Ono
  • Patent number: 6533945
    Abstract: The present invention is generally directed to handling the wastewater, or condensate, from a hydrocarbon synthesis reactor. More particularly, the present invention provides a process wherein the wastewater of a hydrocarbon synthesis reactor, such as a Fischer-Tropsch reactor, is sent to a gasifier and subsequently reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas. The wastewater may also be recycled back to a slurry preparation stage, where solid combustible organic materials are pulverized and mixed with process water and the wastewater to form a slurry, after which the slurry fed to a gasifier where it is reacted with steam and oxygen at high temperatures and pressures so as to produce synthesis gas.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: March 18, 2003
    Assignee: Texaco Inc.
    Inventor: Lalit S. Shah
  • Patent number: 6534552
    Abstract: Increased hydrocarbon yields from natural gas and reduced oxygen consumption improvements are obtained by recycling hydrogen to a Fischer-Tropsch reactor, which can have a catalyst exhibiting either a low water gas shift activity such as cobalt, or a high water gas shift activity such as iron. At least a portion of the remaining tail gas, either before or after the hydrogen has been removed, is recycled to the inlet of the synthesis gas production reactor.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: March 18, 2003
    Assignee: Rentech, Inc.
    Inventors: Charles B. Benham, Mark S. Bohn, Dennis L. Yakobson
  • Patent number: 6512017
    Abstract: This invention relates to methods of minimizing catalyst degradation during the handling of a catalyst used in a slurry phase reactor. The methods include catalyst handling steps such as catalyst loading into a slurry phase reactor, slurry phase reactor start-up, slurry phase reactor shut-down, and slurry phase reactor unloading when catalyst reloading is envisaged. In the method of loading the slurry phase reactor, a slurry of wax and catalyst is formed in a loading vessel. Clean molten wax is formed in the reactor, syngas is pumped through the clean molten wax in the reactor, and the slurry from the loading vessel is transferred to the reactor.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: January 28, 2003
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Andre Peter Steynberg, Antonie Christoffel Vosloo, Peter Van Berge
  • Patent number: 6486217
    Abstract: A gas distribution grid for a slurry reactor includes a plurality of gas injectors horizontally arrayed across, and extending through, an otherwise gas and liquid impervious plate. The injectors have a throat open at both ends, with a gas pressure reducing bore at one end which is the entrance end and with the other end opening into an upward opening cone. Flow diverting means in the injectors prevents slurry solids from entering the throat and being attrited by the high velocity gas jet exiting the bore into the throat. It is preferred that the gas injectors not protrude above the top surface of the grid and flat space is eliminated by means such as angular fillers, to prevent solids accumulation top of the grid. A chamber may be present at the junction of the bore and throat to prevent unrestricted expansion of the gas jet entering the throat. This is useful for injecting gas into a reactive hydrocarbon synthesis slurry in a slurry reactor, with reduced catalyst attrition and deactivation.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: November 26, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Min Chang, Constantine Anastasios Coulaloglou, Edward Ching-Sheng Hsu
  • Publication number: 20020170846
    Abstract: An integrated gas conversion and bitumen production process utilizes steam and light hydrocarbons produced from a natural gas fed gas conversion process, to stimulate the bitumen production and dilute it for transportation by pipeline. Hydrogen for hydroconversion of the bitumen and hydroisomerization of gas conversion hydrocarbons may be produced from part of the synthesis gas generated from the natural gas. The bitumen diluent is preferably naphtha produced by the gas conversion and the diluted bitumen is pipelined to a bitumen upgrading facility.
    Type: Application
    Filed: March 27, 2001
    Publication date: November 21, 2002
    Inventors: Stephen Mark Davis, Michael Gerard Matturro
  • Publication number: 20020143074
    Abstract: A process for rejuvenating reversibly deactivated catalyst particles in a three-phase slurry body of gas bubbles and catalyst particles in a slurry liquid, includes passing slurry from the top down to the bottom of the body through a slurry catalyst rejuvenating means. The slurry is sequentially passed through a first gas bubble reducing zone, a catalyst rejuvenating gas contacting zone, a second gas bubble reducing zone and then a downcomer transfer zone. The gas bubble reducing, contacting and at least a portion of transfer occur in slurry body. At least part of the means is in the slurry body.
    Type: Application
    Filed: March 27, 2001
    Publication date: October 3, 2002
    Inventor: Claude Clarence Culross
  • Patent number: 6458857
    Abstract: A hydrocarbon synthesis (HCS) process wherein a Fischer-Tropsch reactor is operated to maximize the selectivity to 371° C.+ boiling fraction while minimizing the production of less valuable products such as light gases (C1-C4), naphtha and diesel fractions. Inventive modes of operation to offset the effects of catalyst deactivation and maximize selectivity to 371° C.+ boiling fraction are utilized including (a) reducing gas inlet velocity to maintain an optimal CO conversion level, (b) introducing additional active catalyst until a maximum loading is reached, and (c) increasing reactor temperature until productivity reaches a predetermined cut-off level.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: October 1, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Robert Jay Wittenbrink, Louis Francis Burns, Gregg Johnston Howsmon, Geoffrey Rhys Say
  • Publication number: 20020120018
    Abstract: An integrated process for improved hydrocarbon recovery from a natural gas resource is disclosed. A methane-rich stream, an LPG stream and optionally a C5+ stream are isolated from a natural gas source in a first separation zone and desulfurized. The methane-rich stream is converted to syngas and subjected to hydrocarbon synthesis, for example, Fischer-Tropsch synthesis. The products from the hydrocarbon synthesis typically include a C4− fraction, a C5-C20 fraction, and a C20+ wax fraction. These fractions are isolated in a second separation zone. The C4− fraction is recycled through the first separation zone to provide methane for conversion to synthesis gas and an additional LPG fraction. The C4− fraction can be treated, for example, with hydrotreating or hydroisomerization catalysts and conditions before or after the separation.
    Type: Application
    Filed: February 20, 2001
    Publication date: August 29, 2002
    Inventors: Richard O. Moore, Roger D. Van Gelder, Grant C. Hilton, Clive Jones, Randall B. Pruet
  • Publication number: 20020115732
    Abstract: An integrated process for producing desulfurized hydroprocessed products from Fischer-Tropsch synthesis is disclosed. The process involves isolating and desulfurizing a methane-rich stream from a natural gas source in a first separation zone and a desulfurization zone. The methane-rich stream is converted to syngas and subjected to a hydrocarbon synthesis step, for example, a Fischer-Tropsch synthesis step. The products from the hydrocarbon synthesis step typically include a C4− fraction, a C5-20 fraction, and a C20+ wax fraction. These fractions are isolated in a second separation zone, typically via fractional distillation. The C4− fraction can be recycled through the first separation zone to provide a second methane-rich fraction for conversion to synthesis gas. The C4− fraction can optionally be treated, for example, with hydrotreatment or hydroisomerization catalysts and conditions before or after passage through the first separation zone.
    Type: Application
    Filed: February 20, 2001
    Publication date: August 22, 2002
    Inventors: Richard O. Moore, Roger D. Van Gelder, Grant C. Hilton, Clive Jones
  • Patent number: 6428686
    Abstract: A process where the need to circulate hydrogen through the catalyst is eliminated. This is accomplished by mixing and/or flashing the hydrogen and the oil to be treated in the presence of a solvent or diluent in which the hydrogen solubility is “high” relative to the oil feed. The type and amount of diluent added, as well as the reactor conditions, can be set so that all of the hydrogen required in the hydroprocessing reactions is available in solution. The oil/diluent/hydrogen solution can then be fed to a plug flow reactor packed with catalyst where the oil and hydrogen react. No additional hydrogen is required, therefore, hydrogen recirculation is avoided and trickle bed operation of the reactors is avoided. Therefore, the large trickle bed reactors can be replaced by much smaller tubular reactor.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: August 6, 2002
    Assignee: Process Dynamics, Inc.
    Inventors: Michael D. Ackerson, Michael S. Byars
  • Patent number: 6313361
    Abstract: A process is provided for treating a liquid effluent from a gas to liquid conversion reactor. A synthesis gas is initially converted to a liquid hydrocarbon phase in the gas to liquid conversion reactor. The liquid hydrocarbon phase includes a heavier liquid paraffinic wax compound and a lighter liquid paraffinic compound. The liquid hydrocarbon phase is discharged from the gas to liquid conversion reactor in a reactor effluent and an abrasive solid particle medium is entrained in the reactor effluent to form a fluidizable mixture. The reactor effluent is conveyed past a heat transfer surface which is cooler than the reactor effluent. The fluidizable mixture is contacted with the heat transfer surface and the liquid hydrocarbon phase is cooled to a temperature below the melting point of the heavier liquid paraffinic wax compound. Consequently, the heavier liquid paraffinic wax compound is converted to a plurality of unconsolidated solid wax particles.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: November 6, 2001
    Assignee: Marathon Oil Company
    Inventor: John J. Waycuilis
  • Publication number: 20010018462
    Abstract: A gas distribution grid for a slurry reactor includes a plurality of gas injectors horizontally arrayed across, and extending through, an otherwise gas and liquid impervious plate. The injectors have a throat open at both ends, with a gas pressure reducing bore at one end which is the entrance end and with the other end opening into an upward opening cone. Flow diverting means in the injectors prevents slurry solids from entering the throat and being attrited by the high velocity gas jet exiting the bore into the throat. It is preferred that the gas injectors not protrude above the top surface of the grid and flat space is eliminated by means such as angular fillers, to prevent solids accumulation top of the grid. A chamfer may be present at the junction of the bore and throat to prevent unrestricted expansion of the gas jet entering the throat. This is useful for injecting gas into a reactive hydrocarbon synthesis slurry in a slurry reactor, with reduced catalyst attrition and deactivation.
    Type: Application
    Filed: December 15, 2000
    Publication date: August 30, 2001
    Inventors: Min Chang, Constantine Anastasios Coulaloglou, Edward Ching-Sheng Hsu
  • Patent number: 6277338
    Abstract: A system for converting light hydrocarbons to heavier hydrocarbons having a synthesis gas production unit and a hydrocarbon synthesis unit. For one application the synthesis gas production unit includes a turbine unit with a compression section, an autothermal reformer fluidly coupled to the compression section for producing synthesis gas and combusting at least a portion the gas therein, and an expansion section of the turbine unit fluidly coupled to the autothermal reformer for developing energy from the output of the autothermal reformer. A water separation unit is preferably fluidly coupled to the synthesis gas production unit for removing water from the synthesis gas. The water is directed to an oxygen/hydrogen separator to produce oxygen and hydrogen. Another water separation unit may also be coupled to the output from the hydrocarbon synthesis unit for removing water from the heavier hydrocarbons and directing the water to the oxygen/hydrogen separator.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: August 21, 2001
    Assignee: Syntroleum Corporation
    Inventors: Mark A. Agee, Larry J. Weick
  • Patent number: 6265453
    Abstract: A Fischer-Tropsch-based hydrocarbon conversion process involves compressing air in a compressor section of a gas turbine, delivering a portion of the compressed air to a combustor of the gas turbine, delivering a portion of the compressed air to a Fischer-Tropsch hydrocarbon conversion unit, extracting thermal energy from the combustor and delivering it to the Fischer-Tropsch hydrocarbon conversion unit, converting light hydrocarbons into heavier hydrocarbons in the Fischer-Tropsch hydrocarbon conversion unit, and delivering combustion gases from the combustor to an expansion section of the gas turbine. A heat recovery steam generator (HRSG) may also be used to harness waste heat from the expansion section. A conversion system for converting light hydrocarbons into heavier hydrocarbons includes a turbine from which heat energy is removed and used to assist in converting hydrocarbons and whereby greater throughput of the turbine is possible.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: July 24, 2001
    Assignee: Syntroleum Corporation
    Inventor: Paul E. Kennedy
  • Patent number: 6258860
    Abstract: The invention provides a process for the production of methanol from synthesis gas derived from a carbonaceous feedstock which comprises the following steps: (1) part of the unreacted gas stream from a first methanol synthesis zone is recycled to the first methanol zone; (2) another part of the unreacted gas stream from the first methanol synthesis zone is supplied to a second methanol synthesis zone; (3) part of the unreacted gas stream from the second methanol synthesis zone is recycled to the second methanol synthesis zone; (4) hydrogen is recovered from another part of the unreacted gas from the second methanol synthesis zone to give a hydrogen enriched gas stream and a hydrogen depleted gas stream; and (5) recycling the hydrogen depleted gas stream to the second methanol synthesis zone.
    Type: Grant
    Filed: January 14, 1998
    Date of Patent: July 10, 2001
    Inventors: Geoffrey Gerald Weedon, James Bernard Duhan
  • Patent number: 6191174
    Abstract: The present invention relates to a process for the production of methanol from a hydrocarbon feedstock comprising: contacting a vaporous mixture comprising the feedstock and steam in a steam reforming zone with a catalyst effective for catalysis of at least one reforming reaction; recovering from the reforming zone a synthesis gas mixture comprising carbon oxides, hydrogen and methane; supplying material of the synthesis gas mixture to a methanol synthesis zone charged with a methanol synthesis catalyst and maintained under methanol synthesis conditions; recovering from the methanol synthesis zone a product gas mixture comprising methanol and unreacted material of the synthesis gas mixture; supplying material of the product gas mixture to a methanol recovery zone maintained under methanol recovery conditions; recovering from the methanol recovery zone a crude methanol product stream and a vaporous steam comprising unreacted material of the synthesis gas mixture; separating material of the synthesis gas mixtur
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: February 20, 2001
    Assignee: Kvaerner Process Technology Limited
    Inventors: Simon Robert Early, Timothy Douglas Gamlin, Mark Andrew Linthwaite
  • Patent number: 6191175
    Abstract: An improved process for the production of a methanol and dimethyl ether mixture rich in DME from essentially stoichiometrically balanced synthesis gas by a novel combination of synthesis steps.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: February 20, 2001
    Assignee: Haldor Topsoe A/S
    Inventors: Jesper Haugaard, Bodil Voss
  • Patent number: 6180684
    Abstract: The present invention relates to a process and an integrated plant to be used in the process for the preparation of synthetic fuel (synfuel) and production of electrical energy. A part of the energy produced is used for the operation of the energy requiring steps of the process, whereas the residual part is exported for other purposes. The warm exhaust gas from the part of the plant producing electrical energy is fed to a preheating step for natural gas being used as a starting material for the preparation of synfuel.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: January 30, 2001
    Assignee: Den Norske Stats Oljeselskap A.S.
    Inventors: Terje M. Halmo, Alf S. Martinsen, Roger Hansen, Dag Schanke
  • Patent number: 6174927
    Abstract: An exothermic catalytic process, particularly methanol synthesis, wherein reactants are passed through a fixed bed of a catalyst and heat evolved by the reaction is transferred to at least part of the reactants fed to the catalyst bed by heat exchange means to which said part of the reactants are fed, characterized by operation of the process under conditions whereby increasing the temperature at which said reactants are fed to the catalyst bed has the effect of increasing the temperature to which said reactants are heated in said heat exchange means, and vice versa, and controlling said process by monitoring the temperature of said reactants leaving said heat exchange means and/or entering said bed, decreasing the temperature at which the reactants are fed to said heat exchange means in response to any increase in said monitored temperature from a desired level, and increasing the temperature at which the reactants are fed to said heat exchange means in response to any decrease in said monitored temperature
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: January 16, 2001
    Inventor: Peter Edward James Abbott
  • Patent number: 6172124
    Abstract: A process for converting a hydrocarbon gas (e.g. natural gas) to syngas which, in turn, is converted into a liquid hydrocarbon product wherein a substantial amount of the heat generated in the process is recovered for use in generating steam needed in the process or for conversion into mechanical energy. Further, tail gas produced by the process is used to fuel the gas turbine which, in turn, is used power the compressors needed for compressing the air used in the process. By using tail gas to fuel the gas turbine, less of the compressed combustion-air is needed to cool the combustion gases in the turbine and, instead, can be used to provide a portion of the process-air required in the process; thereby possibly saving up to 20 to 30 percent of the horsepower otherwise needed to compress the required volume of process-air.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: January 9, 2001
    Assignee: Sybtroleum Corporation
    Inventors: John R. Wolflick, Gary L. Beer, Richard L. Payne
  • Patent number: 6160026
    Abstract: The invention is a process for producing hydrocarbons from hydrogen and carbon monoxide by reacting hydrogen and carbon monoxide in the presence of a particulate solid catalyst and a substantially inert liquid medium. This reaction takes place in a reactor vessel adapted for the reaction of gases in the presence of a substantially inert liquid medium and a bed of solid particulate catalyst. The hydrogen gas and carbon monoxide gas are introduced at a plurality of locations within the reactor vessel. Bubbles of gas flow upward through the bed of solid catalyst particles and substantially inert liquid medium at sufficient velocity to expand the bed to a volume greater than its static volume. This velocity creates a turbulent reaction zone wherein liquid, gas, and solid catalyst are present and are in a state of motion.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: December 12, 2000
    Assignee: Texaco Inc.
    Inventors: Pei-Sing Dai, deceased, Jeffrey B. Harrison, Govanon Nongbri, Lalit Shah, Kamlesh B. Vakil
  • Patent number: 6156809
    Abstract: A Fischer-Tropsch process is provided for synthesizing hydrocarbons, involving multiple Fischer-Tropsch reactor stages (110) arranged in series, and characterized by very low carbon monoxide conversion per Fischer-Tropsch reactor stage (110) and intermediate removal of water between reactor stages (110). In one embodiment, the system utilizes an iron-based catalyst and balances the molar H.sub.2 /CO feed ratio in the synthesis gas (108) with the overall H.sub.2 /CO consumption ratio across all of the Fischer-Tropsch reactor stages (110). In a preferred embodiment, carbon dioxide is recycled from the last in series of the Fischer-Tropsch reactor stages (110) to the synthesis gas generator (106). The system may advantageously utilize a gaseous hydrocarbon feed (102), such as obtained from natural gas, as feed for producing the synthesis gas (108).
    Type: Grant
    Filed: April 21, 1999
    Date of Patent: December 5, 2000
    Assignee: Reema International Corp.
    Inventors: Glen L. Clark, David G. Walker
  • Patent number: RE37046
    Abstract: This invention relates to a process of recycling condensate from a hydrocarbon or alcohol synthesis, wherein the condensate comprises water and contaminants such as lower molecular weight hydrocarbons, alcohols, and other oxygenates. A hot gaseous mixture comprising CH4 and steam contacts the condensate so as to strip the contaminants from the condensate. The stripped contaminants, CH4, and steam are separately recovered as a gaseous stream from the remaining purified water. The recovered CH4-containing gaseous stream may be used in synthesis gas (CO/H2) generation processes with the generated synthesis gas then being used in a hydrocarbon synthesis process to produce heavy hydrocarbons.
    Type: Grant
    Filed: August 13, 1998
    Date of Patent: February 6, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Henry W. Hildinger, Edwin D. Carlson