With Reactant Which Is An Aldehyde Or Aldehyde Derivative Patents (Class 521/181)
  • Publication number: 20100010111
    Abstract: A phenolic foam is made by foaming and curing a foamable phenolic resin composition that comprises a phenolic resin, a blowing agent, an acid catalyst and an inorganic filler. The blowing agent comprises an aliphatic hydrocarbon containing from 1 to 8 carbon atoms and the inorganic filler is at least one selected from a metal hydroxide, a metal oxide, a metal carbonate and a metal powder. The phenolic foam has a pH of 5 or more. The phenolic foam has a higher pH value compared with conventional phenolic foam and reduces corrosion risk when in contact with metallic materials. The phenolic foam maintains excellent long-term stable thermal insulation performance, low water uptake and fire resistance performance and by using a hydrocarbon blowing agent, does not harm the environment as an ozone depleting or global warming material.
    Type: Application
    Filed: September 8, 2006
    Publication date: January 14, 2010
    Applicant: KINGSPAN HOLDINGS (IRL) LIMITED
    Inventors: Vincent Coppock, Rudd Zeggelaar, Hiroo Takahashi, Toshiyuki Kato
  • Patent number: 7521485
    Abstract: Organic, small pore area materials (“SPMs”) are provided comprising open cell foams in unlimited sizes and shapes. These SPMs exhibit minimal shrinkage and cracking. Processes for preparing SPMs are also provided that do not require supercritical extraction. These processes comprise sol-gel polymerization of a hydroxylated aromatic in the presence of at least one suitable electrophilic linking agent and at least one suitable solvent capable of strengthening the sol-gel. Also disclosed are the carbonized derivatives of the organic SPMs.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: April 21, 2009
    Assignee: American Aerogel Corporaition
    Inventors: Donald F Albert, Greg R Andrews, Joseph W Bruno
  • Publication number: 20080293839
    Abstract: Prepare an extruded thermoplastic polymer foam having a thermoplastic polymer composition having defined therein multiple cells, the thermoplastic polymer foam containing at least one thermoplastic polymer, a brominated flame retardant, an epoxy containing organic compound and 180 weight parts or less of water extractable cations using a brominated flame retardant, an innocuous stabilizer and a blowing agent containing water.
    Type: Application
    Filed: February 19, 2008
    Publication date: November 27, 2008
    Inventor: William G. Stobby
  • Publication number: 20080287560
    Abstract: This invention relates to foam insulating products, particularly extruded polystyrene foam, containing nano-graphite as a process additive for improving the physical properties of foam products.
    Type: Application
    Filed: July 5, 2006
    Publication date: November 20, 2008
    Inventors: Roland R. Loh, Mark E. Polasky, Joseph P. Rynd, Yadollah Delaviz, Manoj K. Choudhary, Bharat Patel
  • Publication number: 20080182474
    Abstract: The present invention relates to a foamed phenol resin body, which is useful as an oil absorbent, which is an absorbent of oil and hydrophobic liquid and a production method thereof, and relates to a method of producing an oil-absorbable foamed body, which may be simply produced, may absorb large amounts of oil even when used in small amounts, and may be formed into various foam products, such as mats, foam or rolls, depending on the types of spilled oil, in order to facilitate the absorption of oil. The present invention further relates to a foamed body produced using the method, and to a foam product using the foamed body. Accordingly, the oil absorbent of the present invention may be easily produced, and has numerous pores formed therein to facilitate the absorption of oil.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 31, 2008
    Inventors: Kwang Soo Kim, Ik Soo Kim, Hwang Gyu Ryu, Sang Hyeon Park, Young Jin Cheon
  • Patent number: 7291653
    Abstract: Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: November 6, 2007
    Assignee: The Regents of the University of California
    Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Alexander E. Gash
  • Patent number: 7285575
    Abstract: Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.
    Type: Grant
    Filed: June 9, 2003
    Date of Patent: October 23, 2007
    Assignee: The Regents of the University of California
    Inventors: Joe H. Satcher, Jr., Theodore F. Baumann
  • Patent number: 7282466
    Abstract: The invention relates to sulfur-functionalized polymer gels and carbon gels, including aerogels, and such carbon gels containing platinum or metal nanoparticles. The platinum-containing gels may be useful as fuel-cell electrodes.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: October 16, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jeffrey W Long, Debra R Rolison, Wendy Baker
  • Patent number: 7211607
    Abstract: Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m2/g and 520 m2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: May 1, 2007
    Assignee: The Regents of the University of California
    Inventors: Alexander E. Gash, Joe Satcher, Thomas Tillotson, Lawrence Hrubesh, Randall Simpson
  • Patent number: 7005181
    Abstract: Organic, small pore area materials (“SPMs”) are provided comprising open cell foams in unlimited sizes and shapes. These SPMs exhibit minimal shrinkage and cracking. Processes for preparing SPMs are also provided that do not require supercritical extraction. These processes comprise sol-gel polymerization of a hydroxylated aromatic in the presence of at least one suitable electrophilic linking agent and at least one suitable solvent capable of strengthening the sol-gel. Also disclosed are the carbonized derivatives of the organic SPMs.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: February 28, 2006
    Assignee: American Aerogel Corporation
    Inventors: Donald F. Albert, Greg R. Andrews, Joseph W. Bruno
  • Patent number: 6924322
    Abstract: An organic aerogel or xerogel formed by a sol-gel reaction using starting materials that exhibit similar reactivity to the most commonly used resorcinol starting material. The new starting materials, including thio-, amine- and nitro-containing molecules and functionalized macrocyclic molecules will produce organic xerogels and aerogels that have improved performance in the areas of detection and sensor technology, as well as water stream remediation. Also, further functionalization of these new organic aerogels or xerogels will yield material that can be extracted with greater facility than current organic aerogels.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: August 2, 2005
    Assignee: The Regents of the University of California
    Inventors: Glenn A. Fox, Thomas M. Tillotson
  • Patent number: 6887915
    Abstract: The present invention relates to a molding material for the precision casting and dead-mold casting of metals or metal alloys comprising plastic and/or carbon aerogels, and a process for the preparation of such molding materials. The molding material comprises highly porous open-cell plastic and/or carbon aerogels, obtainable by the sol-gel polymerization of organic plastic materials, optionally followed by partial or complete pyrolysis of the plastic aerogel obtained.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: May 3, 2005
    Assignee: DLR Deutsches Zentrum fur Luft-und Raumfahrt E.V.
    Inventors: Lorenz Ratke, Jochen Fricke
  • Patent number: 6841584
    Abstract: Disclosed are compositions of short fiber reinforced phenolic foams, methods of making and using the same. The disclosed fiber-reinforced phenolic foams have a seven-fold increase in peel resistance over the unreinforced counterpart foam. The phenolic foam has enhanced fracture toughness without sacrificing the critical fire retardant properties.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: January 11, 2005
    Assignee: University of Southern California
    Inventors: Steven R. Nutt, Hongbin Shen
  • Patent number: 6806299
    Abstract: Synthetic methods for the preparation of hydrophobic organics aerogels. One method involves the sol-gel polymerization of 1,3-dimethoxybenzene or 1,3,5-trimethoxybenzene with formaldehyde in non-aqueous solvents. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be dried using either supercritical solvent extraction to generate the new organic aerogels or air dried to produce an xerogel. Other methods involve the sol-gel polymerization of 1,3,5 trihydroxy benzene (phloroglucinol) or 1,3 dihydroxy benzene (resorcinol) and various aldehydes in non-aqueous solvents. These methods use a procedure analogous to the one-step base and two-step base/acid catalyzed polycondensation of phloroglucinol and formaldehyde, but the base catalyst used is triethylamine. These methods can be applied to a variety of other sol-gel precursors and solvent systems.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: October 19, 2004
    Assignee: The Regents of the University of California
    Inventors: Theodore F. Baumann, Joe H. Satcher, Jr., Alexander E. Gash
  • Patent number: 6727293
    Abstract: Provided is a foamable composition adapted to form a cross-linked novolac-epoxy resin foam. The foamable composition is formulated from a composition comprising at least one novolac resin, at least one epoxy resin, and at least one blowing agent.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: April 27, 2004
    Assignee: American Foam Technologies, Inc.
    Inventor: Samuel L. Rader
  • Patent number: 6613809
    Abstract: Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: September 2, 2003
    Assignee: The Regents of the University of California
    Inventors: Joe H. Satcher, Jr., Theodore F. Baumann
  • Patent number: 6607817
    Abstract: A melamine resin foam endowed with excellent oil repellency and which is improved in fragility without deteriorating the superior properties inherently possessed by melamine resin foams. The melamine resin foam with excellent oil repellency is obtained by coating an oleophobic component on a base material produced by foaming a resin composition comprising, as the main components, a melamine-formaldehyde condensate and a foaming agent.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: August 19, 2003
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Yasuo Imashiro, Shun Hasegawa, Takahiko Matsumoto
  • Patent number: 6599953
    Abstract: The present invention relates to a molding material for the precision casting and dead-mold casting of metals or metal alloys comprising plastic and/or carbon aerogels, and a process for the preparation of such molding materials. The molding material comprises highly porous open-cell plastic and/or carbon aerogels, obtainable by the sol-gel polymerization of organic plastic materials, optionally followed by partial or complete pyrolysis of the plastic aerogel obtained.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: July 29, 2003
    Assignee: DLR Deutsches Zentrum fur Luft-und Raumfahrt e.V.
    Inventors: Lorenz Ratke, Jochen Fricke
  • Patent number: 6586484
    Abstract: To provide a type of phenol foam characterized by the fact that the phenol foam is formed by using a hydrocarbon as the foaming agent. The phenol foam has excellent heat-insulating performance, high compressive strength and other mechanical strengths, improved brittleness and is friendly to the environment of the earth.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: July 1, 2003
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: Yuuichi Arito, Kenji Takasa, Thumoru Kuwabara
  • Patent number: 6506808
    Abstract: Microcellular rigid foams with a matrix consisting of cross-linked duromers, especially of polytriazine resins, and with an apparent density of 20 to 95 percent of the density of the compact matrix material. The rigid foams are highly stable and highly temperature resistant and are suitable for use, e.g., as material for aircraft lining.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: January 14, 2003
    Assignee: Lonza AG
    Inventors: Ulrich Daum, Dietmar Rakutt
  • Patent number: 6503655
    Abstract: A thin, flat, and porous carbon gas diffusion electrode having a side in contact with a supply of gas and a side in contact with an electrolyte, comprises a pyrolysis product of a composite of an organic aerogel or xerogel and a reinforcing skeleton consisting at least in part of organic material. The porosity of the carbon gas diffusion electrode according to the invention can be regulated at will while the surface of the electrode is smooth.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: January 7, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventors: Raino Petricevic, Jochen Fricke, Rainer Leuschner, Matthias Lipinski
  • Patent number: 6500401
    Abstract: A method of making carbon foam is described which involves pyrolizing a mixture containing at least one pyrolizable substance and at least one unpyrolizable material and then removing the unpyrolizable material to obtain the carbon foam. Carbon foam made by this process is also described. Incorporating the carbon foam in a variety of end use applications including electrodes, thermal insulation material, polymers, and the like is also described.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: December 31, 2002
    Assignee: Cabot Corporation
    Inventors: Steven R. Reznek, Robert K. Massey
  • Patent number: 6492432
    Abstract: Provided is a foamable composition adapted to form a cross-linked novolac-epoxy resin foam. The foamable composition is formulated from a composition comprising at least one novolac resin, at least one epoxy resin, and at least one blowing agent.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: December 10, 2002
    Assignee: American Foam Technologies, Inc.
    Inventor: Samuel L. Rader
  • Patent number: 6476090
    Abstract: A phenolic foam having a density of from 10 kg/m3 to 100 kg/m3 and comprising a phenolic resin base part and a cellular part most of which is made up of a large number of fine cells, wherein the fine cells contain a hydrocarbon and have an average cell diameter of 5 &mgr;m to 200 &mgr;m, and the cell walls of at least most of the fine cells are formed of a smooth surface of the phenolic resin base. While the blowing agent is a hydrocarbon, the foam has a thermal conductivity comparable to that of a conventional foam made with a flon blowing agent, undergoes no change in thermal conductivity with time, exhibits excellent mechanical strength such as compressive strength, and has reduced brittleness.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: November 5, 2002
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Yuichi Arito, Kenji Takasa
  • Patent number: 6472444
    Abstract: A closed cell phenolic foam is formed from a phenolic resin, a blowing agent such as HCFC141b, a catalyst and less than 2.5% by weight relative to the resin of at least one hydrofluoroether or an azeotrope formulation thereof. 1-methoxy-nonafluorobutane and especially an azeotrope formulation thereof with trans-1,2-dichloroethylene are preferred hydrofluoroethers. The phenolic foam has a stable closed cell content of greater than 90% and a stable thermal conductivity.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: October 29, 2002
    Assignee: Kingspan Industrial Insulation Limited
    Inventors: Mark Stanley Harris, Graham Morgan Edgerley
  • Patent number: 6391934
    Abstract: The invention disclosed provides a method for inducing nucleation in a polymer by subjecting the polymer containing dissolved gas to an external stress generated, for example, by applying hydrostatic or mechanical pressure. The applied stress restricts the bubble growth so that the foamed materials have small cells and high cell density. Such microcellular foams can be produced over a wide low temperature range, i.e. from the temperature at which the polymer is conditioned with the blowing agent up to about the glass transition temperature of the polymer-blowing agent system. Stress induced nucleation can also be conducted at higher temperatures i.e. up to about the Tg of the neat polymer, leading to foams with larger cells. A variety of homogeneous and heterogeneous foams can be produced by this technique.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: May 21, 2002
    Assignee: National Research Council of Canada
    Inventors: Paul Handa, Zhiyi Zhang
  • Patent number: 6313185
    Abstract: Nanoporous materials are fabricated from polymers having backbones with reactive groups used in crosslinking. In one aspect of preferred methods and compositions, the reactive groups in the backbone comprise a diene and a dienophile. The diene may advantageously comprise a tetracyclone, and the dienophile may advantageously comprise an ethynyl. In another aspect of preferred methods and compositions, the reactive groups in the backbone are included in a conjugated system. Especially preferred polymeric strands comprise a poly(arylene ether) synthesized from a difluoroaromatic portion and an aromatic bisphenolic portion. It is still more preferred that the difluoroaromatic portions of the poly(arylene ether) are modified in such a way that some difluoroaromatic portions carry a thermolabile portion. In still other aspects crosslinking may advantageously occur without reliance on an exogenous crosslinker.
    Type: Grant
    Filed: September 24, 1998
    Date of Patent: November 6, 2001
    Assignee: Honeywell International Inc.
    Inventors: Kreisler Lau, Tian-An Chen, Roger Leung
  • Patent number: 6288132
    Abstract: Silylated organic gels can be prepared by the removing substantially all of the water from polyhydroxy benzene-formaldehyde gels, followed by silylation. These silylated organic gel compositions comprise from about 0.01% to about 25% by weight silicon.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: September 11, 2001
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Stephan Schwarz
  • Patent number: 6214964
    Abstract: A process for forming a phenol formaldehyde resin, the process comprising the steps of: (i) reacting phenol with an excess of a formaldehyde material in the presence of an acid or base catalyst until water separates from the reactants as an immiscible layer; (ii) adding a mixture comprising an excess of polyhydric alcohol and an aromatic dicarboxylic or tricarboxylic acid, salt or anhydride thereof to the phenol and formaldehyde reaction mixture followed by addition of an alpha hydroxy acid; (iii) adding a non-aqueous solvent, wherein at least some of said water is removed either before addition of the mixture preparated in step (ii) or after addition of the alpha hydroxy acid; (iv) preparing a solution comprising a Lewis acid, a polyhydric alcohol, an alpha hydroxy acid, a non-aqueous solvent, an aromatic sulphonic acid and sulphuric or hydrochloric acid; (v) adding the solution formed in step (iv) to the mixture formed in step (ii) and allowing the mixture to cure.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: April 10, 2001
    Inventor: Barry William Ryan
  • Patent number: 6172128
    Abstract: Nanoporous polymeric materials are fabricated in which polymeric strands are crosslinked via ring structures. Preferred ring structures are formed de novo during crosslinking, and at least some of the ring structures are preferably included in the backbones of the strands. At least one of the ring structures may advantageously comprise an aromatic structure, and may more advantageously comprise a benzyl moiety. Especially preferred polymers comprise a poly(arylene ether) synthesized from a difluoroaromatic portion and an aromatic bisphenolic portion. In another preferred aspect, the difluoroaromatic portions of the poly(arylene ether) carry at least two different crosslinking functionalities. In an even more preferred aspect, the crosslinking functionalities comprise an ethynyl and a tetracyclone. Nanoporosity is preferably introduced by thermolyzing one or more thermolabile portions in the crosslinked polymer. An especially preferred thermolabile portion comprises ethylene glycol-poly(caprolactone).
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: January 9, 2001
    Assignee: Honeywell International Inc.
    Inventors: Kreisler Lau, Tian-An Chen, Roger Leung
  • Patent number: 6156812
    Abstract: Compositions and methods are provided in which nanoporous polymeric materials are produced via stable, polymeric template strands having reactive groups that can be used for forming crosslinking functionalities and/or adding thermolabile groups, wherein at least some of the thermolabile groups are thermolyzed to produce voids. The template strands preferably comprise aromatic systems and vicinal keto groups, such as a polybenzil formed from fluorene bisphenol or 3,3'-dihydroxytolane with 4,4'-difluorobenzil. At least some of the reactive groups preferably react using an addition-elimination reaction. Especially preferred thermolabile groups comprise poly(propylene oxide), and especially preferred crosslinkers comprise ethynyl-moiety and tetracyclone moieties.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: December 5, 2000
    Assignee: Honeywell International Inc.
    Inventors: Kreisler Lau, Tian-An Chen, Boris Korolev
  • Patent number: 6146611
    Abstract: The present invention provides an inexpensive, open cell, mechanically robust and graphitizable foam preform. The graphitizable foam is produced via a modified standard flower foam formulation. The invention provides a modified formula for such flower foams wherein a mesophase material is incorporated along with a corresponding reduction in the resole component. The mesophase material replaces 30-70% by weight (a target of 50% by weight) of the resole component of the formulation. The formulation is heated to effect foaming of the mixture, and then carbonized to produce an open cell, graphitizable foam preform.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: November 14, 2000
    Assignee: AlliedSignal Inc.
    Inventors: Frank Dillon, Charles A. Parker, Richard R. McCormick, Jonathon K. Chatwood, Mark Rigali
  • Patent number: 6133332
    Abstract: This invention discloses a process for producing a phenolic resin foam, the process comprising the step of reacting a liquid phenolic resin with an acidic curing agent in the presence of a low-boiling organic compound-based blowing agent, the process being characterized in that the low-boiling organic compound-based blowing agent is a mixed blowing agent comprising 1,1,1,3,3-pentafluoropropane and at least one of a hydrocarbon having a boiling point in the range of 40 to 80.degree. C. and a hydrogen-containing fluorohydrocarbon having a boiling point in the range of 40 to 80.degree. C., the proportion of the mixed blowing agent being 5 to 20% by weight based on the liquid phenolic resin.The process is capable of giving high heat insulation property, flame retardancy and in situ applicability to the phenolic resin foam.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: October 17, 2000
    Assignee: Daikin Industries, Ltd.
    Inventors: Satoshi Ide, Takashi Shibanuma
  • Patent number: 6096179
    Abstract: A carbon-reinforced electrode is disclosed. The electrode is formed from a high surface area absorptive material ("HSAAM electrode") made from resorcinol, formaldehyde, a carbon reinforcing agent, a catalyst, and reaction products thereof, and is in a carbonized form. This electrode removes ions from a liquid when an electric current is applied. The liquid may be passed through a thickness of the electrode, or may be passed by the surface of the electrode. A method of making the HSAAM electrodes is also disclosed. The HSAAM electrodes are formed from setting a polymerized mixture of resorcinol, formaldehyde and a carbon reinforcing agent supplied in the form of carbon fibers, carbon felt or cellulose under controlled temperature and time constraints, and subsequently firing the resulting product so as to carbonize the electrode.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: August 1, 2000
    Assignee: Southeastern Trading, LLP
    Inventors: James R. Fajt, David A. Caple, Brian B. Elson
  • Patent number: 6090861
    Abstract: Disclosed is a process for the production of organic aerogels, whereby the organic solvent in which the gel is immersed is directly extracted supercritically without the need for exchange with a low temperature solvent (i.e., CO.sub.2) prior to extraction of the pore fluid.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: July 18, 2000
    Assignee: General Ideas, Inc.
    Inventors: Robert S. Mendenhall, Greg R. Andrews, Joseph W. Bruno, Donald F. Albert
  • Patent number: 6087407
    Abstract: A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: July 11, 2000
    Assignee: The Regents of the University of California
    Inventors: Paul R. Coronado, John F. Poco
  • Patent number: 6077876
    Abstract: Disclosed is a process for the production of organic aerogels, whereby the organic solvent in which the gel is immersed is directly extracted supercritically without the need for exchange with a low temperature solvent (i.e., CO.sub.2) prior to extraction of the pore fluid.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: June 20, 2000
    Assignee: General Ideas, Inc.
    Inventors: Robert S. Mendenhall, Greg R. Andrews, Joseph W. Bruno, Donald F. Albert
  • Patent number: 6013689
    Abstract: Provided is a foamable, phenolic resin composition adapted to form a closed-cell phenolic resin foam under substantially atmospheric pressure. The foamable, phenolic resin composition is formulated from a resol resin, a blowing agent, and a bond strength enhancing agent and/or a phenolic resin nucleating agent. The present invention also relates to a method of forming a closed-cell, phenolic resin foam and a closed-cell phenolic resin foam.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: January 11, 2000
    Assignee: Jiffy Foam, Inc.
    Inventor: Samuel L. Rader
  • Patent number: 6005012
    Abstract: A method for treating a dried monolithic aerogel containing non-dispersed particles, with an organometallic surface modifying agent to produce hydrophobic aerogels. The dried, porous hydrophobic aerogels contain a protective layer of alkyl groups, such as methyl groups, on the modified surfaces of the pores of the aerogel. The alkyl groups at the aerogel surface typically contain at least one carbon-metal bond per group.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: December 21, 1999
    Assignee: The Regents of the University of California
    Inventors: Lawrence W. Hrubesh, John F. Poco, Paul R. Coronado
  • Patent number: 5977015
    Abstract: An apparatus for deionization of a liquid is disclosed. The apparatus has a number of deionization cells, each cell having two different types of electrodes. The first type of electrode is formed from a high surface area absorptive material ("HSAAM electrode") made from resorcinol, formaldehyde, a carbon reinforcing agent, a catalyst, and reaction products thereof, and is in a carbonized form. This electrode removes ions when an electric current is applied. The second type of electrode, which does not remove ions, is formed from a non-HSAAM material. Each deionization cell has a single HSAAM electrode bordered on either side by a non-HSAAM electrode, and adjacent deionization cells do not share any electrodes of either type. The non-HSAAM electrodes are formed from carbon cloth or carbon felt fixed to one side of a plexiglass sheet, and two such sheets are needed to form a cell.
    Type: Grant
    Filed: April 6, 1999
    Date of Patent: November 2, 1999
    Assignee: Southeastern Trading LLP
    Inventors: James R. Fajt, David A. Caple, Brian B. Elson
  • Patent number: 5973018
    Abstract: This invention is a partially or semi-cured foam used to form the pipe insulation. The semi-cured foam is very flexible and can be formed around a pipe for a long period of time after production. The semi-cured phenolic foam board of this invention is a closed cell foam. The semi-cured foam is further cured in the formed shape. Upon curing the foam retains the shape of the preform. The semi-cured product is very flexible, once fully cured, the insulation becomes rigid.
    Type: Grant
    Filed: October 4, 1995
    Date of Patent: October 26, 1999
    Assignee: Owens-Corning Fiberglas Technology, Inc.
    Inventors: Vyacheslav S. Grinshpun, Byron Jeffrey Hulls, William H. Fausey
  • Patent number: 5945084
    Abstract: This pertains to the general field of gels, foams, and aerogels, particularly, to low density open cell organic foams and low density open cell carbon foams, and methods for preparing them. These low density open cell organic foams are derived from organic gels which may be prepared from hydroxylated benzenes (such as phenol, catechol, resorcinol, hydroquinone, and phloroglucinol) and aldehydes (such as formaldehyde and furfural) using lower than conventional catalyst concentrations (e.g, an R/C value of greater than about 1000, yielding an initial room temperature pH typically lower than about 6.0). These organic foams are characterized by relatively large particle and pore sizes, high porosity, and high surface area. Low density open cell carbon foams derived from such organic foams are also shown, as are methods for preparing same. These carbon foams are also characterized by relatively large particle and pore sizes, high porosity, high surface area, and high electrical capacitance.
    Type: Grant
    Filed: July 5, 1997
    Date of Patent: August 31, 1999
    Assignee: Ocellus, Inc.
    Inventor: Michael W. Droege
  • Patent number: 5916927
    Abstract: The non-flammable phenolic resin foam with plane surface and high fire resistance in this invention is produced by mixing 30 to 100 parts by weight of resol type phenolic resin, 0.3 to 10 parts by weight of foaming agent, 10 to 50 parts by weight of curing agent, 30 to 800 parts by weight of ceramic micro-hollow particles (compression strength of 600 kgf/cm.sup.2 or more, bulk density of 0.3 to 0.5 g/cm.sup.3 and melting point of 1500.degree. C. or more), 2 to 250 parts by weight of inorganic filling agent, 40 to 250 parts by weight of aluminum hydroxide with water, press molding and heating for curing.
    Type: Grant
    Filed: March 10, 1998
    Date of Patent: June 29, 1999
    Assignee: Revall Co., Ltd.
    Inventors: Mitsuo Minagawa, Osamu Minagawa
  • Patent number: 5908896
    Abstract: Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: June 1, 1999
    Assignee: The Regents of the University of California
    Inventors: Steven T. Mayer, Fung-Ming Kong, Richard W. Pekala, James L. Kaschmitter
  • Patent number: 5900320
    Abstract: The present invention aims to improve soundproof and heat insulating properties of a foamed plastic by reducing internal cells pressure inside foamed resins. A base polymer such as a polyester-based polyol and a volatile foaming agent having an conjugate unsaturated group (i.e., conjugate double carbon bonds and/or triple carbon bonds) such as chloroprene (bp. 51.degree. C.) and calcium stearate were blended and then mixed with a hardening agent such as hexamethylene diisocyanate. The volatile foaming agent existing in open cells of the foamed plastic sealed in the Al laminated film and between the film and the foamed plastic, i.e., gap, possesses an unsaturated group, such as isoprene. Thus polymerization may occur by irradiating with electron rays, and the inside of the foams and the gap region may be reduced in pressure while the bag of the laminated film retains its shape.
    Type: Grant
    Filed: May 26, 1993
    Date of Patent: May 4, 1999
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Kazufumi Ogawa
  • Patent number: 5852064
    Abstract: A phenolic foam having exceptional absorption capacities for pollutants such as hydrocarbons and other substances is described. The foam is hydrophobic and is capable of absorbing such substances in amounts up to 72 times its own weight. It is the reaction product of a resol and a cross-linking agent made of linear and/or cyclic, partially or completely sulphonated, phenolic oligomers, in the presence a surfactant and a swelling agent, and, optionally, of a coloring agent and stabilizers. A method for making the foam, an installation for implementing the method and a use of said foam are also described.
    Type: Grant
    Filed: November 14, 1997
    Date of Patent: December 22, 1998
    Assignee: Transdiffusia S.A.
    Inventors: Roger Lamartine, Philippe Choquard
  • Patent number: 5830987
    Abstract: An amino-acrylate polymer is prepared by the reaction of an aliphatic hydroxyl polyacrylate monomer, like pentaerythritol triacrylate, with a polyamine like a hexyldiamine to provide a rigid fast gelling and curing polymer, which polymer may be modified with resin modifiers. The amino-acrylate polymer may be used in the preparation of composite structures with fibers and filler materials.
    Type: Grant
    Filed: March 11, 1997
    Date of Patent: November 3, 1998
    Assignee: Hehr International Inc.
    Inventor: Stuart B. Smith
  • Patent number: 5817706
    Abstract: The invention relates to a process for producing non-CFC resol foams of low density using perfluorinated ethers along with a HCFC or CFC blowing agent, and to foams produced by such a process. The process generally comprises: (a) forming a mixture by combining a resol resin with a blowing-agent blend comprising (i) at least one blowing agent selected from the group consisting of hydrogenated chlorofluorocarbons and hydrogenated fluorocarbons and (ii) at least one perfluoroether additive selected from the group consisting of peiurinated ethers; (b) adding an acid catalyst to the mixture to initiate foaming and form a foam; and (c) curing the foam to form a cured foam that is essentially free of CFCs.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: October 6, 1998
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: Jennifer M. Willson, Vyacheslav S. Grinshpun, Ruben Santos
  • Patent number: 5789456
    Abstract: The invention relates to a process for producing non-CFC resol foams of low density using perfluorinated ethers along with a HCFC or CFC blowing agent, and to foams produced by such a process. The process generally comprises: (a) forming a mixture by combining a resol resin with a blowing-agent blend comprising (i) at least one blowing agent selected from the group consisting of hydrogenated chlorofluorocarbons and hydrogenated fluorocarbons and (ii) at least one perfluoroether additive selected from the group consisting of perfluorinated ethers; (b) adding an acid catalyst to the mixture to initiate foaming and form a foam; and (c) curing the foam to form a cured foam that is essentially free of CFCs.
    Type: Grant
    Filed: August 27, 1997
    Date of Patent: August 4, 1998
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: Jennifer M. Willson, Vyacheslav S. Grinshpun, Ruben Santos
  • Patent number: 5786398
    Abstract: This invention relates to insulating foams and to a process for producing the foams. Preferably, the foams are made from phenol formaldehyde resins. The blowing agents for making the foams include film forming coating material which coats the interior surfaces of the foam cells. The coated foams have better thermal conductivity.
    Type: Grant
    Filed: March 24, 1995
    Date of Patent: July 28, 1998
    Assignee: Owens-Corning Fiberglas Technology Inc.
    Inventors: Byron J. Hulls, Vyacheslav Grinshpun