Chemically Treated Solid Polymer Patents (Class 521/30)
  • Publication number: 20090118382
    Abstract: The invention relates to ion-exchange materials comprising a hydrophobic support resin having grafted side chains, wherein the side chains have a surfactant-type structure and comprise ion-exchange groups, and the ion-exchange material is obtainable by radical grafting of the side chains using a radical initiator containing at least one peroxide group. By means of the surfactant-type structure and the specific radical initiator, a regiospecific and particularly uniform arrangement of the side chains on the support resin is achieved which in addition enables outstanding and uniform hydration of the ion-exchange groups. This is expressed, in particular, in improved signal asymmetries for bromide and nitrate.
    Type: Application
    Filed: April 4, 2007
    Publication date: May 7, 2009
    Applicant: METROHM AG
    Inventors: Michael Raskop, Andreas Seubert, Andreas Grimm
  • Patent number: 7504036
    Abstract: The present invention relates, generally, to the art of impregnating metal complexes into anion exchange materials to provide improved anion exchange materials with a metal inside the materials such that the modified materials effectively and efficiently remove or recover various metals, including metal containing complexes, compounds, and contaminants, such as arsenic, from, for example, process solutions, effluents and aqueous solutions. Uses for the improved anion exchange materials are also described as are methods of making modified anion exchange materials, and methods of removing and recovering at least one metal or contaminant from a source.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 17, 2009
    Assignee: ResinTech Incorporated
    Inventors: Michael C. Gottlieb, Peter S. Meyers
  • Publication number: 20080272055
    Abstract: The present invention relates to the use of inorganic salts for increasing the adsorption of oxoanions and/or thioanalogues thereof to metal-doped ion exchangers, preferably to iron oxide/iron oxyhydroxide-containing ion exchangers, preferably from water or aqueous solutions, and also the conditioning of these metal-doped ion exchangers having increased adsorption behaviour toward oxoanions and/or thioanalogues thereof by using inorganic salts with the exception of amphoteric ion exchangers which have both acidic and basic groups as functional groups.
    Type: Application
    Filed: June 6, 2007
    Publication date: November 6, 2008
    Inventors: Reinhold Klipper, Michael Schelhaas, Stefan Neumann, Jens Stoll
  • Publication number: 20080264868
    Abstract: A molecularly imprinted polymer ion exchange resin for selectively removing one or more inorganic ions in a liquid medium is disclosed and described. The exchange resin can include a bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in a liquid medium. A process for preparing a molecularly imprinted polymer ion exchange resin can include (a) polymerizing a polmerizable mixture in the presence of an inorganic ion imprinting complex to form a bead, said inorganic ion imprinting complex including a ligand and an inorganic ion; and (b) removing the inorganic ions from the bead to form the molecularly imprinted polymer ion exchange resin, the bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in an liquid medium.
    Type: Application
    Filed: August 11, 2006
    Publication date: October 30, 2008
    Inventors: George M. Murray, Kelly A. Van Houten, Glen E. Southard
  • Patent number: 7435498
    Abstract: A method is provided for making a crosslinked polymer electrolyte, typically in the form of a membrane for use as a polymer electrolyte membrane in an electrolytic cell such as a fuel cell, by trimerization of nitrile groups contained on groups pendant from the polymer. The resulting polymer electrolyte membrane comprises a highly fluorinated polymer comprising: a perfluorinated backbone, first pendent groups which comprise sulfonic acid groups, and crosslinks comprising trivalent groups according to the formula: The first pendent groups are typically according to the formula: —R1—SO3H, where R1 is a branched or unbranched perfluoroalkyl or perfluoroether group comprising 1-15 carbon atoms and 0-4 oxygen atoms, most typically —O—CF2—CF2—CF2—CF2—SO3H or —O—CF2—CF(CF3)—O—CF2—CF2—SO3H.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: October 14, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Michael A. Yandrasits, Steven J. Hamrock, Werner M. Grootaert, Miguel A. Guerra, Naiyong Jing
  • Patent number: 7399792
    Abstract: An object of the present invention is to provide a novel solid reagent capable of solving the problems of conventional solid reagents based on resin beads. The present invention relates to a solid reagent comprising an organic polymer base in which a polymer side chain is introduced onto the backbone of the organic polymer base via graft polymerization and a reactive functional group is introduced onto the polymer side chain. The organic polymer base is preferably in the form of a fiber, a woven or nonwoven fabric consisting of an assembly of fibers, a porous membrane or a hollow fiber membrane. The graft polymerization is preferably a radiation-induced graft polymerization. Solid reagents according to the present invention can be used in various organic synthetic reactions.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: July 15, 2008
    Assignee: Ebara Corporation
    Inventors: Makoto Komatsu, Kazuyoshi Takeda
  • Patent number: 7390853
    Abstract: An object of the present invention is to provide a novel solid reagent capable of solving the problems of conventional solid reagents based on resin beads. The present invention relates to a solid reagent comprising an organic polymer base in which a polymer side chain is introduced onto the backbone of the organic polymer base via graft polymerization and a reactive functional group is introduced onto the polymer side chain. The organic polymer base is preferably in the form of a fiber, a woven or nonwoven fabric consisting of an assembly of fibers, a porous membrane or a hollow fiber membrane. The graft polymerization is preferably a radiation-induced graft polymerization. Solid reagents according to the present invention can be used in various organic synthetic reactions.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: June 24, 2008
    Assignee: Ebara Corporation
    Inventors: Makoto Komatsu, Kazuyoshi Takeda
  • Patent number: 7368505
    Abstract: This invention relates to methods of making graft copolymers, and articles having such graft copolymers. The methods may provide better control than in radicalization or photoinitiated polymerization techniques. For example, a graft copolymer can be prepared by reacting an alkoxide ion with a polymer. The alkoxide, in turn, can be provided by any suitable technique, for example, by reacting an alcohol with a base. In some embodiments of the invention, the graft copolymers may be a normally hydrophobic polymer, such as a polysulfone, that has been made more hydrophilic due to the attachment of hydrophilic side groups such as polyethylene glycol or polypropylene glycol. The copolymers of the invention have many uses, for example, in films or porous membranes.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: May 6, 2008
    Assignee: Massachusetts Institute of Technology
    Inventors: Anne M. Mayes, Jane Y. Park, Metin H. Acar, Ariya Akthakul
  • Publication number: 20080063923
    Abstract: High temperature polymer electrolyte membranes bearing pyridine and tetramethyl biphenyl moieties are provided. Preferred polymers can exhibit good mechanical properties, high thermal and oxidative stability and high doping ability with strong acids. Further provided are MEA on PEMFC type single cells.
    Type: Application
    Filed: May 24, 2007
    Publication date: March 13, 2008
    Applicant: Advent Technologies SA
    Inventors: Nora Gourdoupi, Nikolaos Triantafyllopoulos, Valadoula Deimede, Lefteris Pefkianakis, Maria Daletou, Stylianos Neophytides, Joannis Kallitsis
  • Publication number: 20080058428
    Abstract: A method for reducing undesirable odor of an anion exchange resins by preparing a composition comprising an admixture comprising an anion exchange resin having an undesirable odor and a cation exchange resin; and converting the mixture to form the composition.
    Type: Application
    Filed: August 7, 2007
    Publication date: March 6, 2008
    Inventor: Lyn Hughes
  • Publication number: 20080045616
    Abstract: The present invention discloses a method for fabricating a composite solid polymer electrolyte membrane, wherein a flushed and dried membrane is sulfonated with sulfuric acid; the sulfonated membrane is flushed and dried once more; a first polymer solution is mixed with a second polymer solution, which has been hydrolyzed and neutralized, to form a blended polymer solution; the sulfonated membrane is immersed into the blended polymer solution; a cross-linking agent and an initiator are sequentially added into the blended polymer solution to implement a polymerization reaction; after the polymerization reaction, the blended polymer solution-containing sulfonated membrane is placed on a plate and dried; after the drying, a composite solid polymer electrolyte membrane is thus completed. Thereby, the present invention can fabricate a high ionic conductivity and high mechanical strength composite solid polymer electrolyte membrane.
    Type: Application
    Filed: January 17, 2007
    Publication date: February 21, 2008
    Inventors: Gwo-Mei WU, Sheng-Jen Lin, Chun-Chen Yang, Jiun-Ming Chiu
  • Patent number: 7332530
    Abstract: The present invention relates to a proton-conducting polymer membrane comprising polymers containing sulfonic acid groups, obtainable by a process comprising the steps of A) mixing vinyl-containing sulfonic acid with one or more aromatic tetraamino compounds with one or more aromatic carboxylic acids, their esters, their acid halides or their acid anhydrides, containing at least two acid groups per carboxylic acid monomer, and/or mixing vinyl-containing sulfonic acid with one or more aromatic and/or heteroaromatic diaminocarboxylic acids, their esters, their acid halides or their acid anhydrides, B) heating the mixture obtainable according to step A) under inert gas to temperatures of up to 350° C., to form polyazole polymers, C) applying a layer to a support, using the mixture according to step A) and/or B), D) polymerizing the vinyl-containing sulfonic acid present in the sheetlike structure obtainable according to step C).
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: February 19, 2008
    Assignee: Celanese Ventures GmbH
    Inventors: Joachim Kiefer, Oemer Uensal, Gordon Calundann
  • Patent number: 7323109
    Abstract: This invention relates to a composition of matter comprising a functionalized mordant polymer comprising a cationic polymer having an adsorbed metal-ion sequestrant, wherein the metal-ion sequestrant has a stability constant greater than 1010 with iron (III). It further relates to an article comprising said composition and a method of removing target metal-ions from an environment comprising contacting the environment with said composition.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: January 29, 2008
    Assignee: Eastman Kodak Company
    Inventor: Joseph F. Bringley
  • Publication number: 20080015269
    Abstract: A salt is provided comprised of a polyionic conjugated polymer comprising a plurality of first charges; and a plurality of counterions, each of said plurality comprising a charged moiety electronically linked to at least one charge-distributing moiety, said charged moiety having a charge opposite in sign to that of the first charge. These polyionic conjugated polymers having different electronic and/or optical properties.
    Type: Application
    Filed: March 27, 2007
    Publication date: January 17, 2008
    Inventors: Guillermo C. Bazan, Renqiang Yang, Andres Garcia, Thuc-Quyen Nguyen, Hongbin Wu
  • Patent number: 7291312
    Abstract: An object of the present invention is to solve problems of conventional ozone-scavenging materials and to provide an ozone-scavenging material capable of effectively decomposing/removing ozone at low cost. To attain the above object, the present invention provides an ozone-scavenging material characterized in that a metal having ozone-decomposing ability or an oxide thereof is supported on an organic polymer base having a polymer side chain having an ion exchange group on the backbone of a polymer. Said ozone-scavenging material can be prepared by introducing a polymer side chain having an ion exchange group onto the backbone of an organic polymer base, bringing the resulting organic polymer material into contact with a salt of a metal having ozone-decomposing ability to support the ion of said metal on the ion exchange group, and then precipitating fine particles of said metal or an oxide of said metal on the organic polymer material by oxidation or reduction.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: November 6, 2007
    Assignee: Ebara Corporation
    Inventors: Seiji Iimura, Kazuyoshi Takeda, Kunio Fujiwara, Mari Katsumine
  • Patent number: 7279244
    Abstract: The object of this invention is to provide a solid polymer electrolyte which is excellent in durability and of low cost, and membranes, solutions for electrode catalyst coating, membrane/electrode assemblies and fuel cells which use the electrolyte. According to this invention, there can be provided a fuel cell which comprises an electrode assembly having an electrode catalyst membrane formed therein, said catalyst membrane comprising a polymer electrolyte membrane held between an anode on one side of the principal plane of the electrolyte membrane and a cathode on the other side of the principal lane thereof, current collecting plates provided each independently in close contact, to the anode side and the cathode side of the electrode assembly, and electroconductive separators having gas supply passages to the anode and to the cathode provided on the outside surfaces of the current collecting plates.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: October 9, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Morishima, Tomoichi Kamo, Toshiyuki Kobayashi, Kenji Yamaga, Tohru Koyama
  • Patent number: 7265159
    Abstract: Process for preparing monodisperse weakly basic or optionally strongly basic anion exchangers of the poly(meth)acrylamide type, the ion exchangers themselves and their use.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: September 4, 2007
    Assignee: Bayer Aktiengesellschaft
    Inventors: Reinhold Klipper, Olaf Halle, Claudia Schmid, Wolfgang Podszun, Rüdiger Seidel, Hans-Karl Soest
  • Patent number: 7261879
    Abstract: The present invention relates to iodinated resins. It relates in particular to a process for preparing a polyiodide-resin wherein an anion exchange resin is contacted with a material capable of donating a member absorbable by the resin so as to convert the resin to the polyiodide-resin. The absorbable member is selected from the group consisting of I2 and polyiodide ion having a valence of ?1. In the process, conversion of the anion exchange resin to the polyiodide-resin is effected at elevated temperature and/or elevated pressure, the elevated temperature being about 100° C. or higher, the elevated pressure being greater than atmospheric pressure. The present invention also relates to a substance comprising an iodine (impregnated) resin as produced by the above process.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: August 28, 2007
    Assignee: Triosyn Holding Inc.
    Inventor: Pierre Jean Messier
  • Patent number: 7169822
    Abstract: A polymeric actuator of simple structure, capable of being easily miniaturized, showing quick response and capable of generating large displacement. The polymeric actuator includes an ion-exchange resin product and metal electrodes. The ion-exchange resin product contains an alkylammonium. The metal electrodes are formed on the surface of the ion-exchange resin product and are insulated from each other. The polymeric actuator operates as an actuator by applying a potential difference between the metal electrodes when the ion-exchange resin product is in water-containing state to allow the ion-exchange resin product to undergo bending or deformation.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: January 30, 2007
    Assignees: Eamex Corporation, National Institute of Advanced Science and Technology
    Inventors: Keisuke Oguro, Kinji Asaka, Tatsuhiro Okada, Kazuo Onishi, Shingo Sewa
  • Patent number: 7163964
    Abstract: This invention presents an ion exchange media including a plurality of cation exchange zones and anion exchange zones in flow paths that are contained in a substantially nonporous resin transport framework. During electrodeionization and other potential applications the ion exchange media of the invention prevents unfavorable water splitting at resin-membrane interfaces and encourages water splitting at resin—resin interfaces where the water splitting may be constructively used to regenerate the resin.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: January 16, 2007
    Assignee: Aquatech International Corporation
    Inventors: Ravi Chidambaran, Pavan Raina, Devesh Sharma, Narendra Singh Bisht
  • Patent number: 7112614
    Abstract: A method is provided for obtaining crosslinked polymers, particularly fluorinated polymers having pendent sulfonic acid groups, by crosslinking through pendent groups which include a sulfonyl chloride group (—SO2Cl). The sulfonyl chloride group may be removed by application of electromagnetic radiation, typically in the ultraviolet band, or a radical initiator, leaving behind a radical which readily binds covalently to other polymer strands or to crosslinking agents to form crosslinks. Typically, the polymer is made by providing a polymer comprising pendent groups which include a group according to the formula —SO2F and converting at least a portion of the —SO2F groups to —SO2Cl. After crosslinking, the remaining —SO2F groups may be converted to sulfonic acid groups, yielding a crosslinked polymer electrolyte. Such crosslinked polymer electrolytes may be used to make polymer electrolyte membranes (PEM's) that may be used in electrolytic cells such as fuel cells.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: September 26, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Naiyong Jing, Steven J. Hamrock
  • Patent number: 7098252
    Abstract: The present invention relates to a method of preparing porous macroreticular polymers comprising polymerizing one or more monoethylenically unsaturated monomers in the presence of a silicone based porogen.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: August 29, 2006
    Assignee: Rohm and Haas Company
    Inventors: Biwang Jiang, Garth Rockwood Parker, Jr.
  • Patent number: 7094469
    Abstract: A porous or non-porous polymeric substrate having its surface modified with an immobilized fluorocarbon such as perfluorocarbon, polymeric composition is provided. The immobilized fluorocarbon is formed from a monomer having formula: [T—SO2Y—SO2T?]?M+ in which —T and T? are identical or different and comprise an organic radical bearing at least one active polymerization function such as an unsaturation or a ring that can be opened; —M+ comprises an inorganic cation.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: August 22, 2006
    Assignee: Mykrolis Corporation
    Inventor: Wilson Moya
  • Patent number: 7077964
    Abstract: The present invention relates to a process for preparing novel, monodisperse ion exchangers having chelating functional groups, and their use for adsorbing metal compounds, in particular, heavy metal compounds and noble metal compounds, and also for extracting alkaline-earth metals from saline solutions from alkali metal chloride electrolysis.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: July 18, 2006
    Assignee: Bayer Aktiengesellschaft
    Inventors: Reinhold Klipper, Werner Strüver, Ulrich Schnegg, Bruno Hees, Bernhard Lehmann, Holger Lütjens
  • Patent number: 7037949
    Abstract: A reactive liquid is coated on an ion exchange resin precursor membrane for the hydrolysis treatment. Preferably, a reactive liquid having a viscosity of not lower than 50 mPa·s or a small surface tension is used. Said precursor membrane is also subjected to the hydrolysis treatment under constraint, while the precursor membrane is maintained in a widened or a stretched state.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: May 2, 2006
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Naoto Miyake, Takuya Hasegawa
  • Patent number: 7022743
    Abstract: The object of this invention is to provide a solid polymer electrolyte which is excellent in durability and of low cost, and membranes, solutions for electrode catalyst coating, membrane/electrode assemblies and fuel cells which use the electrolyte. According to this invention, there can be provided a fuel cell which comprises an electrode assembly having an electrode catalyst membrane formed therein, said catalyst membrane comprising a polymer electrolyte membrane held between an anode on one side of the principal plane of the electrolyte membrane and a cathode on the other side of the principal lane thereof, current collecting plates provided each independently in close contact, to the anode side and the cathode side of the electrode assembly, and electroconductive separators having gas supply passages to the anode and to the cathode provided on the outside surfaces of the current collecting plates.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: April 4, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Morishima, Tomoichi Kamo, Toshiyuki Kobayashi, Kenji Yamaga, Tohru Koyama
  • Patent number: 7022744
    Abstract: A composition useful for separating lipoproteins, such as high density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein (VLDL) and modified lipoproteins with a high degree of accuracy by ion-exchange based procedures. The composition comprises an organic particle having a hydrophilic surface onto which ion-exchange groups are introduced and which is formulated so as to provide a high enough degree of hydrophilicity to prevent irreversible absorption of lipoproteins, but which is not so high as to block the pores of the ion exchange particles and prevent adequate retention and separation of lipoproteins. A method for making a composition for separating lipoproteins comprising seed polymerization of organic particles, hydrophilic treatment of the organic particles by introducing 0.
    Type: Grant
    Filed: April 10, 2003
    Date of Patent: April 4, 2006
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Jun Haginaka, Masaru Sano, Tsunehiko Kurata
  • Patent number: 7001929
    Abstract: The invention provides a proton conductive membrane excellent in heat resistance, which has sulfonic acid as ion exchange groups. The proton conductive membrane comprises a nitrogen-containing compound that can be mixed with water in arbitrary proportions and has a boiling point of not lower than 100. degree. C. and a proton conductive resin which has sulfonic acid ion-exchange groups, wherein the nitrogen-containing compound is contained in an amount of 0.5 to 10 parts by weight based on 100 parts by weight of the proton conductive resin.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: February 21, 2006
    Assignees: JSR Corporation, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Kohei Goto, Mayumi Kakuta, Fusazumi Masaka, Kiyonori Kita, Naoki Mitsuta, Masaru Iguchi, Hiroshi Soma, Nagayuki Kanaoka
  • Patent number: 6986960
    Abstract: A novel poly(arylene ether sulfone) having a sulfoalkoxy group, which has both of heat resistance and electroconductivity, is suitable as polymer electrolyte membranes used for high performance polymer electrolyte fuel cells, and does not use fluorine so that loads to the environment are small in the synthesis or disposal, a process of producing the same, and a polymer electrolyte membrane comprising the same. The poly(arylene ether sulfone) having a sulfoalkoxy group has a structural unit represented by the formula (1) mentioned hereinabove, and is produced by reacting a poly(arylene ether sulfone) having a hydroxyl group with a specific alkali metal compound and/or an organic base compound, followed by reacting with a specific sulfonating agent and then with a specific acid. A polymer electrolyte membrane is produced by film formation of the polymer.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: January 17, 2006
    Assignee: Tosoh Corporation
    Inventors: Motohiro Oguri, Ryuji Ikeda, Fumio Okisaki
  • Patent number: 6962968
    Abstract: Acid impurities, such as carboxylic acid-terminated polymers, are removed from macrocyclic oligoesters with ion exchange resins, resulting in macrocyclic oligoesters that are substantially free of acid impurities. The ion exchange resins can be regenerated anew and reused by washing the resins with various wash solutions. Macrocyclic oligoesters substantially free of acid impurities polymerize to much higher molecular weight polyesters than macrocyclic oligoesters containing acid impurities.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: November 8, 2005
    Assignee: Cyclics Corporation
    Inventors: Peter D. Phelps, Timothy A. Thompson
  • Patent number: 6930133
    Abstract: Low density polymeric beads made by polymerizing monomeric building blocks into large crosslinked polymer molecules in porous, spherical bead form by droplet or suspension polymerization in the presence of a porogen.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: August 16, 2005
    Inventors: Robert L. Albright, Richard Mapp
  • Patent number: 6919382
    Abstract: The invention provides novel solid supports comprising dihydroxyalkyl aminoalkyl and dihydroxyalkylaminobenzyl groups, and methods for making and using them. The supports are particularly useful for immobilizing and derivatizing functionalized boronic acids for use in solid phase synthesis, such as those used in combinatorial chemistries. The compositions and methods of the invention are also useful as scavenger solid supports, e.g., in solution-phase parallel synthesis of small molecule libraries, and for use in resin-to-resin transfer reactions via phase transfer of solid supported boronic acids under both aqueous and anhydrous conditions. The methods of the invention provide convergent solid-phase synthesis of symmetrically or unsymmetrically functionalized compounds, such as biphenyl compounds. Also provided are synthesizer devices, e.g., semiautomated parallel synthesizers.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: July 19, 2005
    Assignee: The Governors of the University of Alberta
    Inventor: Dennis G. Hall
  • Patent number: 6911483
    Abstract: The present invention is related to a new quaternary amino (QA) anion exchanger comprising QA derivatized, hydroxy (C2-C4) alkylated and cross-linked regenerated cellulose, in which the level of derivitization with the QA-groups is 1.4 milli-equivalents per dry gram (meq/g) or greater.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: June 28, 2005
    Assignee: Massey University
    Inventors: John Stephen Ayers, David Francis Elgar, Margaret Mary Agnes Egan
  • Patent number: 6875415
    Abstract: Provided are a preconditioned resin and methods of preparation thereof as well as methods for purifying hydrogen peroxide solutions. The method includes preconditioning an anion exchange resin, wherein an anion exchange resin bed is provided and carbon dioxide gas is passed through the resin bed.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: April 5, 2005
    Assignee: Air Liquide America, LP
    Inventors: Mary D. Havlicek, David L. Snyder, Joe G. Hoffman, Marshall E. Cummings
  • Patent number: 6869652
    Abstract: Disclosed are porous polymer/carrier solid phase reactants which consist of a polymer that consists of fine particles and is situated in the pore space of porous carrier materials. Reactive groups are bound to the polymer. Said groups act as reactants in organic-chemical syntheses. Said solid phase reactants can be produced as bulk material or tubes, plates or rods, can be built in pressure sealed housings and can be used in flow-through apparatuses or microtitration fields for the synthesis of organic products. Potential active agents can be produced at high speed by using the inventive porous polymer/carrier solid phase reactants that can be flown through convectively, whereby production requires only little isolation and cleaning.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: March 22, 2005
    Inventors: Ulrich Kunz, Andreas Kirschning, Ulrich Hoffmann
  • Patent number: 6864314
    Abstract: The present invention relates to a block polymeric material. Typically the block polymer comprises units capable of having an average cationic charge density of about 15 or less, preferably 5 or less, more preferably from about 0.05 to about 5, even more preferably from about 0.05 to about 2.77, even more preferably from about 0.1 to about 2.75, most preferably from about 0.75 to about 2.25 units per 100 daltons molecular weight at a pH of from about 4 to about 12. The polymeric material is a suds enhancer and a suds volume extender for personal care products such as soaps and shampoos. The compositions have increased effectiveness for preventing re-deposition of grease during hand and body washing. The polymers are also effective as a soil release agent in fabric cleaning compositions.
    Type: Grant
    Filed: October 30, 2000
    Date of Patent: March 8, 2005
    Inventors: Dominic Wai-Kwing Yeung, Vance Bergeron, Jean-Francois Bodet, Mark Robert Sivik, Bernard William Kluesener, William Michael Scheper
  • Patent number: 6828353
    Abstract: Ion-Exchange polymers for a polymer electrolyte membrane include a moiety of formula (I), and/or a moiety of formula (II), and/or a moiety of formula (III) wherein at least some of the units I, II and/or III are sulphonated. The phenyl moieties in units I, II, and III are independently optionally substituted and optionally cross-linked; m, r; s, t, v, w and z independently represent zero or a positive integer, E and E′ independently represent an oxygen or a sulphur atom or a direct link, G represents an oxygen or sulphur atom, a direct link or a —O—Ph—O— moiety where Ph represents a phenyl group and Ar is selected from one of the moieties (i) to (x) as set forth herein which is bonded via one or more of its phenyl moieties to adjacent moieties.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: December 7, 2004
    Assignee: Victrex Manufacturing Limited
    Inventors: Peter Charnock, David J. Kemmish, Philip A. Staniland, Brian Wilson
  • Patent number: 6790553
    Abstract: A method for producing a bridged polymer membrane includes the steps of: obtaining a liquid medium comprising a basic polymer having an amino group in a repeating unit, a bridging agent, and a solvent; shaping the liquid medium into a membrane configuration to obtain the shaped membrane; and bridging the basic polymer by the bridging agent in the shaped membrane. A fuel cell has the bridged polymer membrane. The mechanical strength of the polymer electrolyte membrane is improved.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: September 14, 2004
    Assignee: Celanese Ventures GmbH
    Inventor: Tetsu Yamamoto
  • Patent number: 6780893
    Abstract: A process for producing an anion exchange membrane, which comprises mixing from 25 to 95 mass % of a polymer having anion exchange groups or active groups convertible to anion exchange groups (hereinafter referred to as polymer 1), and from 5 to 75 mass % of a polymer having no anion exchange groups or no active groups convertible to anion exchange groups (hereinafter referred to as polymer 2), and forming the obtained composition into a membrane, said process including a step of cross-linking an aromatic ring of a repeating unit constituting polymer 1 with an aromatic ring of another repeating unit constituting polymer 1 or with a cross-linkable site of polymer 2, and in a case where polymer 1 is a polymer having active groups convertible to anion exchange groups, a step of converting the active groups to anion exchange groups.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: August 24, 2004
    Assignees: Asahi Glass Engineering Co., Ltd., Asahi Glass Company, Limited
    Inventors: Yoshio Sugaya, Hisao Kawazoe
  • Publication number: 20040082744
    Abstract: The present invention relates to a process for preparing novel, monodisperse ion exchangers having chelating functional groups, and their use for adsorbing metal compounds, in particular, heavy metal compounds and noble metal compounds, and also for extracting alkaline-earth metals from saline solutions from alkali metal chloride electrolysis.
    Type: Application
    Filed: October 17, 2003
    Publication date: April 29, 2004
    Inventors: Reinhold Klipper, Werner Struver, Ulrich Schnegg, Bruno Hees, Bernhard Lehmann, Holger Lutjens
  • Patent number: 6699913
    Abstract: The present invention relates to a process for preparing novel, monodisperse anion exchangers having strongly basic functional groups either in the center of the resin particle or in the shell of the resin particle, as well as to their use.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: March 2, 2004
    Assignee: Bayer Aktiengesellschaft
    Inventors: Reinhold Klipper, Ulrich Schnegg, Rüdiger Seidel, Hans-Karl Soest, Alfred Mitschker, Holger Lütjens
  • Patent number: 6696503
    Abstract: The present invention relates to a process for preparing crosslinked ion exchangers with a homogeneous network structure based on unsaturated aliphatic nitriles in the presence of film-forming protective colloids.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: February 24, 2004
    Assignee: Bayer Aktiengesellschaft
    Inventors: Michael Happ, Ralf-Jürgen Born, Reinhold Klipper, Ulrich Schnegg, Hans-Karl Soest, Wolfgang Zarges
  • Patent number: 6689820
    Abstract: An anion exchanger comprised of a fine particle having a cured polyethyleneimine surface layer formed on the fine particle surface. The cured polyethyleneimine surface layer is formed by the steps of: (1) dispersing a fine particle having a functional group capable of reacting with polyethyleneimine on the fine particle surface, in an aqueous solution of a crosslinking agent capable of crosslinking polyethyleneimine to prepare an aqueous dispersion of the fine particle; and then, (2) adding the polyethyleneimine and a catalyst for crosslinking the polyethyleneimine in the aqueous dispersion of the fine particle, and carrying a reaction of bonding the polyethyleneimine to the functional group on the fine particle surface and a reaction of crosslinking the polyethyleneimine with the crossslinking agent. The anion exchanger is used as a packing for chromatography.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: February 10, 2004
    Assignee: Tosoh Corporation
    Inventors: Kazuaki Muranaka, Teruhiko Tsuda
  • Patent number: 6680346
    Abstract: A phosphorus atom-containing fluorinated cation exchange membrane substantially constituted with the following repeating units (A) and (B), and a proton conduction type fuel cell using the membrane as a solid polymeric electrolyte are provided. One embodiment for the membrane is useful as a perfluoro cationic exchange membrane for use in electrolysis of sodium chloride even under severe electrolytic conditions of higher concentration, higher temperature and higher electric density. (in which m is 0 or 1, n is 2 or 3, X, Y represents H or C6H4SO3H and the ratio for the number of repeating units is (A)/(B)=1.5 to 15).
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: January 20, 2004
    Assignees: Mirane Corporation, Premelec Electrode Ltd.
    Inventor: Kyoji Kimoto
  • Patent number: 6649663
    Abstract: The present invention relates to a process for preparing novel, monodisperse ion exchangers having chelating functional groups, and their use for adsorbing metal compounds, in particular, heavy metal compounds and noble metal compounds, and also for extracting alkaline-earth metals from saline solutions from alkali metal chloride electrolysis.
    Type: Grant
    Filed: August 21, 2000
    Date of Patent: November 18, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Reinhold Klipper, Werner Strüver, Ulrich Schnegg, Bruno Hees, Bernhard Lehmann, Holger Lütjens
  • Publication number: 20030187080
    Abstract: The present invention relates to a method of preparing porous macroreticular polymers comprising polymerizing one or more monoethylenically unsaturated monomers in the presence of a silicone based porogen.
    Type: Application
    Filed: April 1, 2002
    Publication date: October 2, 2003
    Inventors: Biwang Jiang, Garth Rockwood Parker
  • Publication number: 20030187082
    Abstract: An inflatable device that includes a inflatable component and a base inflatable component. The inflatable component is releasably connected to the base inflatable component by a component connector. The component connector includes a base and a cap, wherein the cap releasably connected to the base.
    Type: Application
    Filed: August 12, 2002
    Publication date: October 2, 2003
    Applicant: Scherba Industries, Inc., an Ohio Corporation
    Inventor: Robert J. Scherba
  • Patent number: 6602497
    Abstract: A polyether copolymer characterized by strictly alternating poly(alkyleneoxide) and aromatic diol monomeric repeating units, wherein the combination of repeating units is effective to provide said polyether with a hydrophillic/hydrophobic ratio at which aqueous micelle self-assembly occurs.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: August 5, 2003
    Assignee: Rutgers, The State University
    Inventors: Joachim B. Kohn, Durgadas Bolikal, Francesca D'Acunzo
  • Publication number: 20030138395
    Abstract: The present invention relates to iodinated resins. It relates in particular to a process for preparing a polyiodide-resin wherein an anion exchange resin is contacted with a material capable of donating a member absorbable by the resin so as to convert the resin to the polyiodide-resin. The absorbable member is selected from the group consisting of I2 and polyiodide ion having a valence of −1. In the process, conversion of the anion exchange resin to the polyiodide-resin is effected at elevated temperature and/or elevated pressure, the elevated temperature being about 100° C. or higher, the elevated pressure being greater than atmospheric pressure. The present invention also relates to a substance comprising an iodine (impregnated) resin as produced by the above process.
    Type: Application
    Filed: September 10, 2002
    Publication date: July 24, 2003
    Inventor: Pierre Jean Messier
  • Patent number: 6582811
    Abstract: A method of purification of physiological liquids of organism has the step of passing a physiological liquid through a material which has a size, a shape, and a structure selected so as to remove toxic compounds from the physiological liquid and is composed of a partially chloromethylated porous highly crosslinked styrene or divinylbenzene copolymer which initially have surface exposed chloromethyl groups in which thereafter chlorine is replaced with an element which forms different surface exposed functional groups with a greater hydrophilicity and greater biocompatibility than that of the chloromethyl group.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: June 24, 2003
    Assignee: Renal Tech International LLC
    Inventors: Vedirn Davankov, Maria Tsyurupa, Ludmilla Pavlova, Dzidra Tur