Cellular Polymer Containing An Isocyanurate Structure Patents (Class 521/902)
  • Patent number: 11932800
    Abstract: A composite foam is provided having silica aerogel particles dispersed in a closed cell polymeric foam. The silica aerogel particles are included in a volume fraction between 2 and 60%, and the composite foam has a thermal conductivity of 40 mW/m?K or less and a density of 60 kg/m3 or less. In another embodiment, a composite foam is provided having a perforated closed cell polymeric foam and 2-60% hydrophobic silica aerogel particles by volume with a particle size distribution of 1 to 50 ?m, where the composite foam has a thermal conductivity of 30 mW/m?K or less, a density of 20-45 kg/m3, and an air permeability of 20-40 cubic feet per minute.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: March 19, 2024
    Assignee: LUKLA INC.
    Inventors: Jeffrey Nash, Michael Glenn Markesbery, Rithvik Venna
  • Patent number: 11913563
    Abstract: Disclosed herein is a temperature actuated valve, including a stationary member and a movable member, wherein the stationary member is configured to receive the movable member. A first flow path is defined between an outer surface of the stationary member and an inner surface of a housing and a second flow path defined by and within the movable member. The temperature actuated valve further includes at least one temperature actuated member having a first end seated against a base of the stationary member and a second end seated against a base of the movable member. The temperature actuated valve further includes a bias member having a first end connected to the base of the stationary member and a second end connected to the base of the movable member, the at least one temperature actuated member configured to compress at a first temperature and expand at a second temperature.
    Type: Grant
    Filed: December 30, 2021
    Date of Patent: February 27, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Shivaram Chandrashekar, Pallab Karmakar, Amit Sahu, Kumaresan Nagarajan, Giridhar Kamesh
  • Patent number: 11718703
    Abstract: A rigid foam or composition allowing a rigid foam to be obtained made from polyurethane and/or polyisocyanurate. The rigid foam or composition includes polyols selected from polyester polyols and polyether polyols; the polyols include: 5 to 50% of a polyester polyol A by weight relative to the total weight of the polyols; and a polyol B selected from polyester polyols B and polyether polyols B. The polyester polyol A is of general formula Rx-Ry-Z-Ry?-Rx? in which Z is a C3 to C8 alcohol sugar chosen from glycerol, sorbitol, erythritol, xylitol, araditol, ribitol, dulcitol, mannitol and volemitol. Ry and Ry? are diesters of formula —OOC—Cn-COO— in which n is between 2 and 34, and Rx and Rx? are identical or different C2 to C12 monoalcohols.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: August 8, 2023
    Assignees: TEREOS STARCH & SWEETENERS BELGIUM, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, SOPREMA, UNIVERSITE DE STRASBOURG
    Inventors: Pierre Etienne Bindschendler, Alexandru Sarbu, Rémi Perrin, Pierre Furtwengler, Luc Avérous, Andréas Redl
  • Patent number: 11702499
    Abstract: A method of making an isocyanurate polymer is disclosed. An isocyanate including at least one of an aromatic isocyanate and an aliphatic isocyanate is provided. A trimerization catalyst including at least one of an amine catalyst, an organometallic compound, and an imidazole compound is provided. A reaction mixture that is substantially free of reactive hydrogen is formed by mixing less than about twenty percent by total weight of said reaction mixture of an epoxide with said isocyanate. The trimerization catalyst is mixed with the reaction mixture. The reaction mixture is cured to produce a polymer composition including a reaction product of two or more isocyanates.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: July 18, 2023
    Assignee: TRIMER TECHNOLOGIES LLC
    Inventor: Henry A. Sodano
  • Patent number: 8916620
    Abstract: A method for improving the thermal stability of polyurethane-modified polyisocyanurate (PU-PIR) foams is provided. Moreover, a process for producing the PU-PIR foams exhibiting improved thermal stability is provided. The foams have incorporated therein a high molecular weight ammonium polyphosphate (APP). APP is employed as a partial or complete substitute for flame retardants conventionally employed in PU-PIR foams. The foams of the invention exhibit excellent and improved thermal stability characteristics as compared to foams to which no APP has been added.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: December 23, 2014
    Assignee: Stepan Company
    Inventors: Warren A. Kaplan, Angelo R. Gabbianelli, David J. Norberg
  • Patent number: 8481606
    Abstract: The invention relates to the production and use of polyester polyols, formed from at least one carboxylic acid anhydride and ethylene glycol, wherein a specialized reaction control substantially suppresses the formation of 1,4-dioxane from diethylene glycol.
    Type: Grant
    Filed: October 24, 2009
    Date of Patent: July 9, 2013
    Assignee: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Erika Bauer, Johannes Van de Braak, Jürgen Schloβmacher
  • Patent number: 8106106
    Abstract: A method for producing polyisocyanurate insulation foams, the method comprising contacting an A-side stream of reactants that includes an isocyanate with a B-side stream of reactants that include a polyol and a blowing agent, where the blowing agent includes isopentane and n-pentane in a substantial absence of cyclopentane.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: January 31, 2012
    Assignee: Firestone Building Products Company, LLC
    Inventor: John B. Letts
  • Patent number: 7612120
    Abstract: A method for producing polyisocyanurate insulation foams, the method comprising contacting an A-side stream of reactants that includes an isocyanate with a B-side stream of reactants that include a polyol and a blowing agent, where the blowing agent includes isopentane and n-pentane in a substantial absence of cyclopentane.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: November 3, 2009
    Inventor: John B. Letts
  • Patent number: 7473716
    Abstract: Azeotrope-like compositions of 1,1,1,3,3-pentafluoropropane and at least one hydrocarbon selected from the group n-pentane, iso-pentane, cyclopentane, n-hexane and iso-hexane are provided. The compositions of the invention are useful in the preparation of polyurethane and polyisocyanurate foams.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: January 6, 2009
    Assignee: Honeywell International Inc.
    Inventors: Hilde Lund, legal representative, Robert Christian Parker, Ian Robert Shankland, Earl August Eugene Lund
  • Patent number: 7205374
    Abstract: A method of preparing an adhesive, the method comprising combining an isocyanate, a polyhydroxyl phenol-containing compound, a polyol, and a trimerization catalyst.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: April 17, 2007
    Assignee: BFS Diversified Products, LLC
    Inventors: John W. Fieldhouse, Joseph J. Kalwara, Edward G. Kane, John B. Letts
  • Patent number: 7160930
    Abstract: A composition and a method for producing primarily water blown polyurethane foams is provided. The composition uses isocyanate ratios greater than conventional foam system to provide a water blown polyurethane foam suitable for a wide variety of applications including spray roofing, insulation, etc. The preferred composition for preparing a polyurethane foam comprises an isocyanate component and a polyol component, wherein the polyol component preferably comprises a combination of Mannich polyol, polyester polyol, and polyether polyol. Preferably, the composition includes water to act as a blowing agent and a metal salt catalyst to assist in the reaction. Preferably, the isocyanate index is between about 1.2 and about 2.0. Additional catalysts, surfactants, flame retardants, and blowing agents may also be used depending upon the desired finished product.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: January 9, 2007
    Assignee: Baysystems North America LLC
    Inventors: Thomas A. Sparks, Philip D. Harkins, Ray J. Anderson
  • Patent number: 6586488
    Abstract: Azeotrope-like compositions of 1,1,1,3,3-pentafluoropropane and at least one hydrocarbon selected from the group n-pentane, iso-pentane, cyclopentane, n-hexane and iso-hexane are provided. The compositions of the invention are useful in the preparation of polyurethane and polyisocyanurate foams.
    Type: Grant
    Filed: June 10, 1997
    Date of Patent: July 1, 2003
    Assignee: AlliedSignal Inc.
    Inventor: Ian Robert Shankland
  • Patent number: 6541530
    Abstract: A urethane-modified polyisocyanurate foam obtained by reacting (A) a polyisocyanate compound component, (B) a polyol component, containing a modified phenolic resin obtained by adding 20 to 100 parts by weight of a polyhydric alcohol or its alkylene oxide adduct to 100 parts by weight of a benzylic ether type phenolic resin and heating under a reduced pressure, in an amount of at least 3 wt % to the total resin component, (C) water and (D) a foam stabilizer comprising a mixture of at least 2 silicone type surfactants having different surface tensions wherein a surfactant having a higher surface tension has a surface tension of higher than 22 dyne/cm and a surfactant having a lower surface tension has a surface tension of at most 22 dyne/cm, in the presence of (E) a urethane-forming catalyst and/or a trimerization catalyst.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: April 1, 2003
    Assignee: Hodogaya Chemical Co., Ltd.
    Inventors: Tsuyoshi Sato, Tsutomu Nakamura
  • Patent number: 6455605
    Abstract: The invention relates to a foamable composition comprising at least two parts. The first part comprises a polyol, a thixotropic gelling agent, a blowing agent, a urethane reaction catalyst and a isocyanurate reaction catalyst. The second part comprises at least one isocyanate. A foam mass can be prepared by combining the first part polyol component with the second part isocyanate component. The composition is foamable under water and exhibits, upon foaming under water, substantially the same wet foam density and dry foam density. The invention also relates to a method of repairing or reinforcing structural members having defects such as spike holes left after spike removal from railroad ties during road bed maintenance or repair by means of the foamable composition.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: September 24, 2002
    Assignee: H. B. Fuller Licensing & Financing Inc.
    Inventors: Albert M. Giorgini, James A. Hagquist
  • Patent number: 6423757
    Abstract: The invention discloses novel azeotrope-like mixtures of fluorinated compounds which are useful for heating and cooling as heat transfer agents and/or refrigerants. The azeotrope-like mixture comprises: (a) pentafluoropropane; and (b) a hydrofluorocarbon of the formula: CxFyHz, wherein x is 3, 4, 5, or 6 and y and z are each independently 1 or a positive whole number such that the result of y/(y+z) is greater than 0.67.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: July 23, 2002
    Assignee: Electric Power Research Institute, Inc.
    Inventors: David P. Wilson, Rajiv R. Singh, Rajat S. Basu, Ellen L. Swan, David Nalewajek
  • Publication number: 20010014703
    Abstract: Process for preparing rigid polyurethane or urethane-modified polyisocyanurate foams comprising the step of reacting an organic polyisocyanate with a polyfunctional isocyanate-reactive component in the presence of a blowing agent mixture comprising from 50 to 90% by weight of cyclopentane and from 10 to 50% by weight of a mixture comprising isopentane and/or n-pentane and isobutane and/or n-butane wherein the weight ratio of isopentane and/or n-pentane over isobutane and/or n-butane is between 5/95 and 95/5.
    Type: Application
    Filed: February 22, 1999
    Publication date: August 16, 2001
    Inventors: RIK DE VOS, WALTER BAZZO, GUY LEON JEAN GHISLAIN BIESMANS, LUC FERDINAND LEON COLMAN
  • Publication number: 20010003758
    Abstract: Rigid isocyanurate-modified polyurethane foams of index 180 to 380 made from a combination of aliphatic and aromatic polyester polyols.
    Type: Application
    Filed: June 10, 1997
    Publication date: June 14, 2001
    Inventors: VITTORIO BONAPERSONA, CRISTINA JAVARONE, FRANCO MAGNANI
  • Patent number: 6156814
    Abstract: The use of 3-[3-(dimethylamino)propyl]-propionamide (Formula I) and 3,3'-{[3-(dimethylamino)propyl]imino}bis-propanamide (Formula II) as catalysts in the production of polyurethanes.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: December 5, 2000
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Ning Chen, Richard Van Court Carr, Mark Leo Listemann, Richard Paul Underwood
  • Patent number: 6086784
    Abstract: Premixes intended for the preparation of polyurethane or polyisocyanurate foams comprising at least one polyol, at least one hydrofluoroalkane corresponding to the general formula CF.sub.3 --CR.sup.1 R.sup.2 --CF.sub.2 --R.sup.3, where R.sup.1 and R.sup.2 represent, independently, a hydrogen atom or an optionally fluorinated C.sub.1 -C.sub.3 alkyl group and where R.sup.3 represents a hydrogen atom or a methyl group, and at least one stabilizer chosen from nitroalkanee, diketones, alkaline-earth metal salts and brominated compounds.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: July 11, 2000
    Assignee: Solvay S.A.
    Inventors: Pierre Barthelemy, Annie Leroy
  • Patent number: 5990184
    Abstract: Process for making polyisocyanate based aerogels by trimerisation of an organic polyisocyanate in an organic solvent in the presence of a (co)polymer containing an isocyanate-reactive group, gellation and supercritically drying of the obtained sol-gel.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: November 23, 1999
    Assignee: Imperial Chemical Industries PLC
    Inventor: Guy Leon Jean Ghislain Biesmans
  • Patent number: 5847014
    Abstract: The present invention is directed to an isocyanate reactive mixture comprising from about 17 to about 85% by weight of one or more non-filled polyether polyols having a hydroxyl functionality of from 1.5 to 3 and molecular weights of from 1,500 to 8,000; from about 12 to about 80% by weight of one or more non-tertiary amine containing polyether polyols having a hydroxyl functionality of from 3 to 8 and a molecular weight of from 150 to 1,000; from about 0 to about 4% by weight of one or more primary or secondary diamines or amino alcohols and from 3 to about 12% by weight of water. The invention is also directed to a water-blown, energy absorbing foams made from the isocyanate reactive mixture.
    Type: Grant
    Filed: April 15, 1997
    Date of Patent: December 8, 1998
    Assignee: Bayer Corporation
    Inventors: Neil H. Nodelman, David D. Steppan, Mark A. Davolio, David F. Sounik, Alan D. Bushmire
  • Patent number: 5844014
    Abstract: Disclosed is a compressed, evacuated, open-cell polymer foam, the foam having an open cell content of about 70 percent or more prior to compression, the foam having a thickness of about 40 to about 90 percent of the initial thickness of the foam prior to compression, the foam having an absolute cell gas pressure of about 10 torr or less in its open cells, the foam having a density of about 16 to about 250 kilograms per cubic meter. Further disclosed is an evacuated insulation panel employing the foam.
    Type: Grant
    Filed: March 31, 1997
    Date of Patent: December 1, 1998
    Assignee: The Dow Chemical Company
    Inventor: Bruce A. Malone
  • Patent number: 5844012
    Abstract: A method for producing water-blown molded flexible polyurethane foam which comprises reacting and foaming in one step in a mold a reaction mixture comprising a polyol, an organic polyisocyanate, a urethane catalyst composition and water and a trimerization catalyst which is a quaternary ammonium salt or an alkali metal or alkaline earth metal salt of a Bronsted acid having a pKa of >1, characterized in that the trimerization catalyst is present in an amount from about 0.005 to 0.04 gram milliequivalents per 100 grams of polyol. The preferred trimerization catalyst is an alkali metal N-(2-hydroxyphenyl)methyl glycinate, especially an alkali metal N-(2-hydroxy-5-nonylphenyl)methyl-N-methyl glycinate.
    Type: Grant
    Filed: August 1, 1997
    Date of Patent: December 1, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Robert Gabriel Petrella, John Joseph Koch, Thomas William Bodnar
  • Patent number: 5824711
    Abstract: A method for preparing a polyurethane foam which comprises reacting an organic polyisocyanate and a polyol in the presence of a blowing agent, a cell stabilizer and a catalyst composition consisting essentially of the compound represented by the following formula I or II, or any blend of I and II.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: October 20, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael John Kimock, Mark Leo Listemann
  • Patent number: 5800729
    Abstract: The invention discloses novel azeotrope-like mixtures of fluorinated compounds which are useful for heating and cooling as heat transfer agents and/or refrigerants. The azeotrope-like mixture comprises: (a) pentafluoropropane; and (b) a hydrofluorocarbon of the formula: C.sub.x F.sub.y H.sub.z, wherein x is 3, 4, 5, or 6 and y and z are each independently 1 or a positive whole number such that the result of y/(y+z) is greater than 0.67.
    Type: Grant
    Filed: July 25, 1996
    Date of Patent: September 1, 1998
    Assignee: Electric Power Research
    Inventors: David P. Wilson, Rajiv R. Singh, Rajat S. Basu, Ellen L. Swan, David Nalewajek
  • Patent number: 5760097
    Abstract: The present invention relates to porous crosslinked polymeric microbeads having cavities joined by interconnecting pores wherein at least some of the cavities at the interior of each microbead communicate with the surface of the microbead. The present invention also relates to a process for producing a porous, crosslinked polymeric microbead as well as the product of this process. This process involves combining an oil phase with an aqueous discontinuous phase to form an emulsion, adding the emulsion to an aqueous suspension medium to form an oil-in-water suspension of dispersed emulsion droplets, and polymerizing the emulsion droplets to form microbeads. At least 10% of the microbeads produced in accordance with the present invention are substantially spherical or substantially ellipsoidal or a combination of the two.
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: June 2, 1998
    Assignee: Biopore Corporation
    Inventors: Nai-Hong Li, James R. Benson, Naotaka Kitagawa
  • Patent number: 5710191
    Abstract: A method for preparing a polyurethane foam which comprises reacting an organic polyisocyanate and a polyol in the presence of a blowing agent, a cell stabilizer and a catalyst composition comprising at least one compound of either of the following formulas IA and IB: ##STR1## where R is hydrogen, methyl or hydroxymethyl. The preferred catalysts comprise 3-hydroxymethyl quinuclidine, 3-methyl-3-hydroxymethyl quinuclidine and 4-hydroxymethyl quinuclidine.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: January 20, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Mark Leo Listemann, Kristen Elaine Minnich, Brian Eugene Farrell, Lisa Ann Mercando, Michael John Kimock, James Dudley Nichols
  • Patent number: 5693686
    Abstract: A polyisocyanate having an acid value of at least 0.01% HCl is used to produce polyisocyanate, polyisocyanurate and polyurethane urea foams with an HCFC blowing agent. The use of such a polyisocyanate is advantageous because the polyisocyanate does not cause significant decomposition of the HCFC blowing agent.
    Type: Grant
    Filed: February 10, 1994
    Date of Patent: December 2, 1997
    Assignee: Bayer Corporation
    Inventors: John F. Szabat, Charles E. Mortimer, Joseph M. Sutej, Jeanne L. Beaumont, Steven L. Schilling, Harold R. Parsons, Robert P. Yeater
  • Patent number: 5684057
    Abstract: There is now provided a polyisocyanate based rigid closed cell foam made by reacting an organic isocyanate with a polyol composition in the presence of a blowing agent, where the polyol composition contains at least:a) an aromatic amine initiated polyoxyalkylene polyether polyol having an hydroxyl number of 200 meq polyol/g KOH or more;b) an aliphatic amine initiated polyoxyalkylene polyether polyol having an hydroxyl number of 200 meq polyol/g KOH or more; andc) an aromatic polyester polyol having an hydroxyl number of 200 meq. polyol/g KOH or more.The blowing agent is selected from the group consisting of cyclopentane, HFC's, HCFC's, and mixtures thereof in an amount of 5.0 weight percent or more based on the weight of the polyol composition. Preferably, the blowing agent is soluble in the polyol composition without sacrificing, and advantageously improving, the thermal insulation and dimensional stability of the resulting polyurethane foam.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: November 4, 1997
    Assignee: BASF Corporation
    Inventors: Walter R. White, III, James A. Mullins, Thomas B. Lee, Keith McLellan, Ronald J. Wierzbicki
  • Patent number: 5679718
    Abstract: Disclosed is an evacuated and unevacuated microcellular foam containing an infrared attenuating agent (IAA). The evacuated foam has an average cell size of about 70 micrometers or less. The unevacuated foam has an average cell size of 1.0 micrometers or less. The IAA provide a greater proportional reduction in foam thermal conductivity in these foams than in foams of larger cell size. Further disclosed is a method of using the foams.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: October 21, 1997
    Assignee: The Dow Chemical Company
    Inventors: Kyung W. Suh, Michio Yamada, Creston D. Shmidt, Daniel D. Imeokparia
  • Patent number: 5677358
    Abstract: Azeotrope-like compositions of 1, 1, 1, 3, 3-pentafluoropropane and at least one hydrocarbon selected from the group n-pentane, iso-pentane, cyclopentane, n-hexane and iso-hexane are provided. The compositions of the invention are useful in the preparation of polyurethane and polyisocyanurate foams.
    Type: Grant
    Filed: October 7, 1996
    Date of Patent: October 14, 1997
    Assignee: AlliedSignal Inc.
    Inventors: Earl August Eugene Lund, deceased, Robert Christian Parker, Ian Robert Shankland
  • Patent number: 5677359
    Abstract: There is now provided a polyisocyanate based rigid closed cell foam made by reacting an organic isocyanate with a polyol composition in the presence of a blowing agent, where the polyol composition contains at least:a) an aromatic amine initiated polyoxyalkylene polyether polyol having an hydroxyl number of 200 meq polyol/g KOH or more;b) an aliphatic amine initiated polyoxyalkylene polyether polyol having an hydroxyl number of 200 meq polyol/g KOH or more; andc) an aromatic polyester polyol having an hydroxyl number of 200 meq. polyol/g KOH or more.The blowing agent is selected from the group consisting of cyclopentane, HFC's, HCFC's, and mixtures thereof in an amount of 5.0 weight percent or more based on the weight of the polyol composition. Preferably, the blowing agent is soluble in the polyol composition without sacrificing, and advantageously improving, the thermal insulation and dimensional stability of the resulting polyurethane foam.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: October 14, 1997
    Assignee: BASF Corporation
    Inventors: Walter R. White, III, James A. Mullins, Thomas B. Lee, Keith McLellan, Ronald J. Wierzbicki
  • Patent number: 5646196
    Abstract: Polyfluoroalkanes are used as propellants in sprayable compositions or in the the preparation of plastic foams and in the electrical industry as cleansing and degreasing agents.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: July 8, 1997
    Assignee: Bayer Aktiengesellschaft
    Inventors: Claus-Dieter Sommerfeld, Wilhelm Lamberts, Dietmar Bielefeldt, Albrecht Marhold, Michael Negele
  • Patent number: 5645928
    Abstract: Heat insulation panels made from plates and the modified polyisocyanurate foams provided by a reaction of a polyisocyanate with a polyol composition mixture comprising a polyol, water, a trimerization catalyst, a carbodiimide catalyst, and an aromatic compound used as a chain extender. An amount of the aromatic compound used in the preparation is 0.5 to 10.0% by weight with respect to a total weight of the polyisocyanate and the polyol mixture.
    Type: Grant
    Filed: June 22, 1995
    Date of Patent: July 8, 1997
    Assignees: Daido Steel Sheet Corporation, Nisshinbo Industries
    Inventors: Morihiro Matsumoto, Noboru Yoshida, Kiyotake Morimoto, Satoshi Nakamura
  • Patent number: 5627220
    Abstract: A process of the preparation of the modified polyisocyanurate foams provided by a reaction of a polyisocyanate with a polyol composition mixture comprising a polyol, water, a trimerization catalyst, a carbodiimide catalyst, and an aromatic compound used as a chain extender. An amount of the aromatic compound used in the preparation is 0.5 to 10.0% by weight with respect to a total weight of the polyisocyanate and the polyol mixture.
    Type: Grant
    Filed: June 22, 1995
    Date of Patent: May 6, 1997
    Assignees: Daido Steel Sheet Corporation, Nisshinbo Industries, Inc.
    Inventors: Morihiro Matsumoto, Noboru Yoshida, Kiyotake Morimoto, Satoshi Nakamura
  • Patent number: 5624970
    Abstract: Polyfluoroalkanes are used as propellants in sprayable compositions or in the preparation of plastic foams and in the electrical industry as cleansing and degreasing agents.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: April 29, 1997
    Assignee: Bayer Aktiengesellschaft
    Inventors: Claus-Dieter Sommerfeld, Wilhelm Lamberts, Dietmar Bielefeldt, Albrecht Marhold, Michael Negele
  • Patent number: 5562857
    Abstract: Azeotropic compositions made up of from about 65 to about 81% by weight of 1,1,1,3,3-pentafluoropropane and from about 19 to about 35% by weight of 2-methyl butane have been found to be particularly useful as blowing agents for the production of polyurethane foams.
    Type: Grant
    Filed: December 22, 1995
    Date of Patent: October 8, 1996
    Assignee: Bayer Corporation
    Inventors: Joachim Werner, Scott A. Kane, Charles E. Mortimer, Herman P. Doerge, Eric F. Boonstra
  • Patent number: 5563180
    Abstract: Rigid, closed cell polyisocyanurate foams are prepared by reacting together a polyisocyanate and a polyester polyol or a mixture of a polyester polyol and at least one other isocyanate-reactive compound in the presence of (a) a hydrogen-containing blowing agent or a mixture of a hydrogen-containing blowing agent and at least one co-blowing agent and (b) a catalyst mixture comprising (i) a carboxylate salt of an alkali metal or an alkaline earth metal or mixtures thereof, (ii) a quaternary ammonium carboxylate salt, and (iii) optionally a tertiary amine, wherein the mole ratio of carboxylate metal salt: tertiary amine is a value greater than about 2:1, and the total moles of quaternary ammonium carboxylate salt are less than the combined moles of the carboxylate metal salt and the tertiary amine.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: October 8, 1996
    Assignee: The Celotex Corporation
    Inventors: Michael J. Skowronski, Kenneth G. Trout
  • Patent number: 5561171
    Abstract: The present invention relates to foam compositions which are expanded with hydrohalocarbon blowing agents in the presence of catalysts which are capable of decreasing the amount of decomposition of the hydrohalocarbon blowing agents to haloalkenes during the polymerization. Thus, the present invention provides compositions comprising polyisocyanate, polyol, hydrohalocarbon blowing agent, surfactant, and catalyst for polymerization of the polyisocyanate and polyol wherein the catalyst is capable of decreasing the amount of decomposition of the hydrohalocarbon blowing agents to haloalkenes during polymerization of the polyisocyanate and the polyol.
    Type: Grant
    Filed: November 23, 1994
    Date of Patent: October 1, 1996
    Assignee: AlliedSignal, Inc.
    Inventors: Timothy R. Demmin, Robert C. Parker, Richard E. Eibeck, Gary M. Knopeck, Donna M. Ruszaj
  • Patent number: 5550168
    Abstract: A modified polyisocyanurate foam is produced by reacting an organic polyisocyanate, a polyol and water in the presence of three catalyst, i.e. two particular trimerization catalysts and a carbodiimidation catalyst. There can be produced, without using any evaporating type blowing agent, a modified polyisocyanurate foam which is suitably used for continuous production of laminate boards, siding boards, insulation boards, etc.
    Type: Grant
    Filed: June 20, 1994
    Date of Patent: August 27, 1996
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Satoshi Nakamura, Hirokatsu Shirahata
  • Patent number: 5514726
    Abstract: Polymeric foams with novel chemical compositions are prepared by the condensation of specially-synthesized precursors, which contain (in addition to carbon and hydrogen) one or more of the following elements: oxygen, fluorine, nitrogen (in structures with stable chemical bonds), silicon, boron, phosphorus (in high oxidation states), and certain metals (and/or their oxides and hydroxides). Upon mixing in the proper proportions and/or heating these precursors react rapidly to generate polymeric networks, consisting of heterocyclic crosslink centers, connected with heterochain segments; hydrogen is largely eliminated or replaced by fluorine. These structures possess inherent nonflammability and high thermoxidative stability. Foaming is effected by the gaseous by-products of the condensation reactions, as well as by the addition of foaming agents. The resulting foam products can be formulated to have a wide range of densities and flexibilities.
    Type: Grant
    Filed: September 15, 1992
    Date of Patent: May 7, 1996
    Inventors: Gus Nichols, C. D. Armeniades
  • Patent number: 5512603
    Abstract: A method for preparing a polyurethane foam which comprises reacting an organic polyisocyanate and a polyol in the presence of a blowing agent, cell stabilizer and a catalyst composition consisting essentially of a pyrrolizidine of the formula: ##STR1## where R.sub.1 and R.sub.2 independently are --H, --OH, ##STR2## or --NR.sub.4 R.sub.5, R.sub.3 is hydrogen, a C.sub.1 -C.sub.12 alkyl, C.sub.5 -C.sub.6 cycloalkyl, C.sub.6 -C.sub.10 aryl, or C.sub.7 -C.sub.11 arylalkyl group, andR.sub.4 and R.sub.5 independently represent H, a C.sub.1 -C.sub.12 alkyl group, C.sub.5 -C.sub.10 cycloalkyl, C.sub.6 -C.sub.10 aryl, or C.sub.7 -C.sub.11 arylalkyl group, provided that at least R.sub.1 or R.sub.2 is not hydrogen.
    Type: Grant
    Filed: February 22, 1994
    Date of Patent: April 30, 1996
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Richard V. C. Carr, Kevin R. Lassila, Mark L. Listemann, Lisa A. Mercando, Kristen E. Minnich, Ann C. L. Savoca, Amy L. Wressell
  • Patent number: 5496867
    Abstract: Polyfluoroalkanes are used as propellants in sprayable compositions or in the the preparation of plastic foams and in the electrical industry as cleansing and degreasing agents.
    Type: Grant
    Filed: November 30, 1992
    Date of Patent: March 5, 1996
    Assignee: Bayer Aktiengesellschaft
    Inventors: Calus-Dieter Sommerfeld, Wilhelm Lamberts, Dietmar Bielefeldt, Albrecht Marhold, Michael Negele
  • Patent number: 5496866
    Abstract: Polyfluoroalkanes are used as propellants in sprayable compositions or in the the preparation of plastic foams and in the electrical industry as cleansing and degreasing agents.
    Type: Grant
    Filed: January 24, 1990
    Date of Patent: March 5, 1996
    Assignee: Bayer Aktiengesellschaft
    Inventors: Claus-Dieter Sommerfeld, Wilhelm Lamberts, Dietmar Bielefeldt, Albrecht Marhold, Michael Negele
  • Patent number: 5491174
    Abstract: Novel catalyst compositions comprising complexes of tin(IV) salts and amine compounds are used to prepare polyurethanes, polyureas, polycarbodiimides and polyisocyanurates. The complexes, which preferably employ primary amines, allow delay of gelation until they dissociate under certain reaction conditions. The complexes can be prepared neat or in situ in an active hydrogen containing formulation component. The complexes serve to delay gelation of the formulation because they can be prepared to be relatively stable to moisture and will predictably dissociate upon heating, either as a result of the exothermic nature of the reaction being catalyzed or with application of an external heat source. The catalyst compositions are particularly useful for preparation of carpet underlay and in other applications requiring significant delay prior to gelation.
    Type: Grant
    Filed: April 7, 1995
    Date of Patent: February 13, 1996
    Assignee: The Dow Chemical Company
    Inventors: Laura A. Grier, Paul L. Neill, Ralph D. Priester, Larry W. Mobley, Kenneth W. Skaggs, Robert B. Turner
  • Patent number: 5472988
    Abstract: A process for producing polyisocyanurate foam which comprises reacting an organic polyisocyanate with a polyol and water in the presence of a halogen-free aliphatic phosphoric ester having a molecular weight of 140 to 270 and a trimerization catalyst. Polyisocyanurate foams having good adhesion to membrane such as paper, iron, aluminium, plywood and the like can be obtained without use of an volatile blowing agent such as CFCs, HCFCs and HFCs and even at low density according to the present process.
    Type: Grant
    Filed: August 9, 1994
    Date of Patent: December 5, 1995
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Satoshi Nakamura, Hirokatsu Shirahata
  • Patent number: 5459171
    Abstract: Compounds of the general formula ##STR1## in which n represents an integer from 2 to 6, preferably 2 or 3,m represents an integer from 1 to 6, preferably 1 to 3,R represents --C(CH.sub.3).sub.3 andX represents hydrogen or the group ##STR2## are used as core discoloration preventing agents in a process for the production of isocyanate-based foams.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: October 17, 1995
    Assignee: Bayer Aktiengesellschaft
    Inventors: Peter Haas, Sven Meyer-Ahrens, Gundolf Jacobs
  • Patent number: 5457138
    Abstract: A method of producing an open cell rigid polyurethane foam which comprises reacting a polymethylene polyphenylisocyanate prepolymer with a polyol at an NCO/OH equivalent ratio of 1.3 to 3.0 by use of a blowing agent substantially comprising water in the presence of a catalyst, a foam stabilizer and a cell opening agent.
    Type: Grant
    Filed: December 11, 1992
    Date of Patent: October 10, 1995
    Assignee: Takeda Chemical Industries, Ltd.
    Inventors: Kiyohiro Yuge, Hitoshi Muramatsu
  • Patent number: 5405885
    Abstract: The invention is a rigid polyurethane foam to which a base stock lubricating oil made of at least 55 weight percent paraffinic carbons and less than 10 weight percent aromatic carbons has been added as a hydrophobic agent protecting the polyurethane foam from reacting with environmental moisture. The foam is useful for deposit in railroad spike holes or any structural member having a cavity and where moisture within or on the cavity would otherwise react with the isocyanate to produce an uncontrollable foaming mass.
    Type: Grant
    Filed: April 22, 1992
    Date of Patent: April 11, 1995
    Assignee: BASF Corporation
    Inventors: Agus Sampara, Rob Hutchings, Tom Harris, Karl Dondorff, Kerry Bowman
  • Patent number: RE38201
    Abstract: The use of 3-[3-(dimethylamino)propyl]-propionamide (Formula I) and 3,3′-{[3-(dimethylamino)propyl]imino}bis-propanamide (Formula II) as catalysts in the production of polyurethanes. The use of 3-{[3-(dimethylamino)propyl]amino}-propionamide (Formula I) and 3,3′-{[3-(dimethylamino)propyl]imino}bis-propanamide (Formula II) as catalysts in the production of polyurethanes.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: July 22, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Ning Chen, Richard Van Court Carr, Mark Leo Listemann, Richard Paul Underwood