Carboxylic Acid Or Derivative Is A Reactant Patents (Class 528/173)
  • Patent number: 5714572
    Abstract: The present invention provides a polyimide resin composition comprising:(a) a polyamide resin comprising a repeating unit represented by the general formula (1): ##STR1## wherein X represents a tetravalent organic group represented by the formula (2): ##STR2## Y represents a divalent organic group comprising a divalent siloxane residual group represented by the formula (3): ##STR3## wherein m is an integer of 60 to 120; and a divalent aromatic group represented by the formula (4): ##STR4## wherein R.sup.1 represents a hydrogen atom or a fluorine atom; and (B) cyclohexanone. From this composition, polyimide resin films can be obtained by heating at a lower temperature for a short time, and the films obtained show good adhesion under moisture-resistant conditions.
    Type: Grant
    Filed: October 23, 1996
    Date of Patent: February 3, 1998
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Hideto Kato
  • Patent number: 5714566
    Abstract: Thermomechanical and thermo-oxidative stabilities in resin composites across the range of aerospace "engineering thermoplastic" resins are improved by forming four crosslinks at each addition polymerization site in the backbone of the resin using crosslinking functionalities of the general formula: ##STR1## in the oligomers, wherein Z= ##STR2## .beta.=the residue an organic radical selected from the group consisting of: ##STR3## --O--.O slashed.--COOH, --O--.O slashed.--COX, --X, --O.paren open-st.(R.sub.8 .paren close-st.OH, ##STR4## --O--.O slashed.--NH.sub.2 ; E= ##STR5## R.sub.8 =a divalent organic radical; X=halogen;Me=methylT=allyl or methallyl.G=--CH.sub.2 --, --S--, --CO--, --SO--, --O--, --CHR.sub.3 --, or --C(R.sub.3).sub.2 --;i=1 or 2;R.sub.3 =hydrogen, lower alkyl, lower alkoxy, aryl, or aryloxy; and.THETA.=--C.tbd.N; --O--C.tbd.N, --S--C.tbd.N, or --CR.sub.3 .dbd.C(R.sub.3).sub.2.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: February 3, 1998
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowtiz, Clyde H. Sheppard
  • Patent number: 5708127
    Abstract: The invention relates to a PMR type resin which comprises a mixture of:(a) nadic acid of Formula (Ia) or a derivative thereof ##STR1## (b) a diaminobisimide of Formula (Ib) ##STR2## (c) an aromatic tetracarboxylic acid of Formula (Ic) or a derivative thereof ##STR3## the components (a), (b) and (c) being present in the approximate molar proportions of 2:n:n-1 respectively.
    Type: Grant
    Filed: July 21, 1995
    Date of Patent: January 13, 1998
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Jonathan Howard Hodgkin, Robert Eibl
  • Patent number: 5708128
    Abstract: Novel thermoset polyimide and composite materials comprising the thermoset polyimides and a fibrous reinforcement are prepared according to this invention. The thermoset polyimides are obtained by heat-treating a linear polyamic acid or a linear polyimide prepared by using 4,4'-bis(3-aminophenoxy)biphenyl and pyromellitic dianhydride as essential monomers or by adding 4,4'-diaminodiphenyl ether or 3,3',4,4'-biphenyltetracarboxylic dianhydride to the essential monomers and by end-capping the molecular chain end with an aromatic dicarboxylic anhydride having a carbon-carbon triple bond. The thermoset polyimides have essential excellent properties of thermoplastic polyimide and additionally has enhanced heat resistance and improved mechanical properties. The thermoset polyimide can be used to provide various kinds of composite materials for aircraft matrices, electric and electronic appliances and others.
    Type: Grant
    Filed: June 24, 1996
    Date of Patent: January 13, 1998
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Hideaki Oikawa, Shoji Tamai, Masahiro Ohta, Akihiro Yamaguchi
  • Patent number: 5708122
    Abstract: Poly(ester-imides) containing t-butylhydroquinone and trimellitic anhydride as part of the repeat units, as well as other monomers, are useful as molding resins. The polymers have a high glass transition temperature and are particularly useful in applications requiring good wear resistance.
    Type: Grant
    Filed: April 19, 1996
    Date of Patent: January 13, 1998
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Robert Ralph Luise
  • Patent number: 5705598
    Abstract: High performance polyester sulfone oligomers are prepared for aerospace applications by condensing mono- or difunctional crosslinkable end caps (i.e. unsaturated hydrocarbons having one or two crosslinking sites) with dicarboxylic acid halides and dialcobols (i.e. diols). Multidimensional oligomers have an aromatic hub from which the polyester chains radiate. Blends of the linear and multidimensional oligomers can be made using compatible, non-crosslinking polymers. Prepregs and composites are formed from the oligomers or blends.
    Type: Grant
    Filed: December 23, 1987
    Date of Patent: January 6, 1998
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowitz, Clyde H. Sheppard
  • Patent number: 5696235
    Abstract: Novel polyimides which are soluble in various organic solvents and excellent in thermal resistance, processability are disclosed. The polyimides comprise repeating units represented by the following formula (1) and/or (2) and having a number average molecular weight of 4,000-200,000. ##STR1## wherein Ar is a divalent group represented by the following formula (2) or (3): ##STR2## wherein Y is --O--, --CO--, --S--, --SO.sub.2 -- or --C(CH.sub.3).sub.2 --, ##STR3## wherein R.sup.1, R.sup.2, R.sup.3 and R.sup.4 are each a C.sub.1-4 alkyl group or a C.sub.1-4 alkoxy group, Ra is a divalent group having 2-6 benzene rings, X.sup.1 represents NH, NR (wherein R is a C.sub.1-4 alkyl group or a C.sub.1-4 alkoxy group) or S, Rb is C.sub.2-20 alkylene group, ether group or dimethylsiloxane group, and X.sub.2 represents NH, NR (wherein R is a C.sub.1-4 alkyl group or a C.sub.
    Type: Grant
    Filed: May 17, 1996
    Date of Patent: December 9, 1997
    Assignee: Tomoegawa Paper Co., Ltd.
    Inventors: Osamu Oka, Takeshi Hashimoto, Takeshi Nishigaya
  • Patent number: 5693745
    Abstract: The present method provides a method for preparing the PI varnish which has the steps of: 1) preparing a mixed solution of 60-100% by weight aprotic solvent, and 0-40% by weight aromatic solvent; 2) adding into the mixed solution in a mole ratio of 1:9 two aromatic diamines; and 3) further adding in the mixed solution in a mole ratio of 1:5 two aromatic dianhydrides. Such PI has a suitable thermal expansion coefficient and characteristics different form those of the PI currently in use.
    Type: Grant
    Filed: February 8, 1996
    Date of Patent: December 2, 1997
    Assignee: Industrial Technology Research Institute
    Inventors: Lee-Ching Kuo, Jinn-Shing King, Wen-Yueh Hsu, Yu-Tai Tsai
  • Patent number: 5686558
    Abstract: The invention relates to a liquid crystal orientation film having a specific polymer, the main chain of the polymer formed of urea bonds and imide bonds, and a liquid crystal display element incorporating the film. The liquid crystal orientation film does not require high temperature heat treatment when prepared, allowing treatment below about 150.degree. C. Hence, the production of a liquid crystal display element using the liquid crystal orientation film is simplified. Furthermore, other element materials are protected, and the substrate used can be a plastic substrate lower in heat resistance than glass. Moreover, the liquid crystal orientation film is excellent in such properties as liquid crystal orienting capability, heat resistance, transparency, strength and adhesion to the substrate, and has an especially large and stable pre-tilt angle.
    Type: Grant
    Filed: March 29, 1995
    Date of Patent: November 11, 1997
    Assignee: Toray Industries, Inc.
    Inventors: Kazuo Kitamura, Satoshi Okawa
  • Patent number: 5686559
    Abstract: A poly(imide amic ester) having repeating unit of formula (I) and a process for the preparation thereof are provided, wherein formula (I) has the structure ##STR1## wherein Ar is, ##STR2## Ar' is, ##STR3## Ar" is ##STR4## R is selected from the group consisting of CH.sub.3, CH.sub.2 CH.sub.3, CH(CH.sub.3).sub.2, CH.sub.2 CH.sub.2 CH.sub.3, CH.sub.2 (CH(CH.sub.3).sub.2 and C(CH.sub.3).sub.3. Further, processes for the preparation of polyimide, polyimide film and polyimide fiber using the above poly(imide amic ester) are provided.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: November 11, 1997
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Suh Bong Rhee, Myong Hoon Lee, Ji Woong Park
  • Patent number: 5674968
    Abstract: A sulfonated dicarboxylic acid and a diaromatic carbonate are reacted by a solution process to form a sulfonated aromatic diester such as dipbenyl sodium 5-sulfoisophthalate. The sulfonated aromatic diester is reacted with an aromatic polymer precursor mixture such as bisphenol A and diphenyl carbonate, polymer or combination thereof, at a temperature above the melting point of the polymer or a member of the aromatic polymer precursor to form a randomly positioned sulfonated aromatic moiety in a polymer chain of a thermoplastic non-crosslinked aromatic polymer such as a linear polycarbonate.
    Type: Grant
    Filed: August 25, 1995
    Date of Patent: October 7, 1997
    Assignee: The Dow Chemical Company
    Inventors: Ray E. Drumright, Michael J. Mullins, William B. Marshall, Edvins L. Daiga
  • Patent number: 5670609
    Abstract: A polyimide alignment film based on pyromellitic dianhydride and a 2,2'-bis(perfluoroalkoxy)benzidine, as major components, for use in liquid crystal display devices.
    Type: Grant
    Filed: August 8, 1995
    Date of Patent: September 23, 1997
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Brian Carl Auman, Edgar Bohm
  • Patent number: 5668248
    Abstract: A photosensitive resin composition comprising, as its main ingredient, a poly(amic acid) resin constituted of a diamino compound represented by formula: ##STR1## and optionally used other diamino compound and a tetracarboxylic acid dianhydride as its constituent monomers and/or a poly(amic acid) ester resin obtained by esterifying said poly(amic acid) resin and/or a polyimide resin obtained by a dehydrating or alcohol-eliminating ring-closure reaction of said poly(amic acid) resin or poly(amic acid) ester resin has an excellent developability and a high film strength and can form a relief patter of low thermal expansion.
    Type: Grant
    Filed: August 22, 1995
    Date of Patent: September 16, 1997
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Hideo Hagiwara, Makoto Kaji, Hiroshi Nishizawa, Kenji Suzuki, Yasunori Kojima
  • Patent number: 5668247
    Abstract: The invention provides novel thermoplastic polyimide featuring solid adhesive property under low temperature, low hygroscopic coefficient, and solid resistivity to radioactive rays. The invention also provides novel polyamide acid which is substantially precursor of the thermoplastic polyimide, and also provides novel thermally fusible laminated film for covering conductive wires, featuring solid adhesive property under low temperature, solid resistivity to radioactive rays, and distinct suitability for covering superconductive wires in particular.The novel thermoplastic polyimide is represented by general formula (1) corresponding to the chemical structure shown below; ##STR1## wherein, Ar.sub.1, Ar.sub.2, Ar.sub.4, and Ar.sub.6, respectively designate divalent organic radical, whereas Ar.sub.3 and Ar.sub.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: September 16, 1997
    Assignee: Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
    Inventors: Hiroyuki Furutani, Kazuhisa Danno, Yoshifumi Okamoto, Junya Ida, Yoshihide Oonari, Hitoshi Nojiri, Hirosaku Nagano
  • Patent number: 5665855
    Abstract: Disclosed are polymers and copolymers containing at least one repeating unit of the formula ##STR1## in which X is O or NH; R is a single bond or a hydrocarbon chain; R' is a hydrocarbon chain containing one or two carbon atoms, and P is the residue of an oligomer HX--P--XH whose solution viscosity determined in meta-cresol at 30.degree. C. at concentrations of 0.5 g/dl is lower than 0.50 dl/g.sup.-1. Also disclosed is a process for obtaining the polymers and copolymers.
    Type: Grant
    Filed: July 23, 1993
    Date of Patent: September 9, 1997
    Assignee: Elf Atochem S.A.
    Inventors: Margarita Acevedo, Alain Fradet, Didier Judas
  • Patent number: 5665856
    Abstract: A diaminobenzene derivative of the formula (I): ##STR1## wherein each of P and Q which may be the same or different from each other, is a single bond, or a bivalent organic group selected from the group consisting of --O--, --COO-- and --CONH--, R.sub.1 is a C.sub.2-22 straight chain alkylene group, and R.sub.2 is a cyclic group selected from the group consisting of an aromatic ring, an aliphatic ring, a heterocyclic ring and substituted forms of such rings.
    Type: Grant
    Filed: April 25, 1995
    Date of Patent: September 9, 1997
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Takayasu Nihira, Yoshio Miyamoto, Hideyuki Endo, Toyohiko Abe
  • Patent number: 5654396
    Abstract: We achieve solvent resistance and extended use life for advanced polyimides by including at least some solvent-resistant linkages in the backbone in place of phenoxyphenyl sulfone linkages and using diPEPA or PEPA crosslinking end caps.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: August 5, 1997
    Assignee: The Boeing Company
    Inventors: Hyman R. Lubowitz, Clyde H. Sheppard
  • Patent number: 5648451
    Abstract: A process for producing a photosensitive resin, comprises reacting a diamine with a tetracarboxylic acid tetraester represented by the formula (1) at a temperature of 0.degree. to 50.degree. C. in an aprotic polar solvent: ##STR1## wherein R.sub.1 is a tetravalent organic group; R.sub.2 is a group represented by the formula: ##STR2## in which R.sub.5 is a divalent to hexavalent organic group, R.sub.6 is H or CH.sub.3 and p is an integer of 1 to 5; R.sub.3 is a group represented by --OCH.sub.3, --OC.sub.2 H.sub.5, --OC.sub.3 H.sub.7 or the formula: ##STR3## and R.sub.4 is a group of the formula: ##STR4## the tetracarboxylic acid tetraester of the formula (1) is obtained by subjecting to addition reaction a tetracarboxylic dianhydride, an alcohol compound represented by the formula R.sub.2 H in which R.sub.2 is as defined above and an alcohol compound represented by the formula R.sub.3 H in which R.sub.
    Type: Grant
    Filed: October 10, 1995
    Date of Patent: July 15, 1997
    Assignee: Sumitomo Bakelite Company Limited
    Inventors: Nobuyuki Sashida, Toshio Banba, Naoshige Takeda
  • Patent number: 5644022
    Abstract: Polyimide copolymers were prepared by reacting different ratios of 3,4'-oxydianiline (ODA) and 1,3-bis(3-aminophenoxy)benzene (APB) with 3,3',4,4'-biphenylcarboxylic dianhydride (BPDA), and terminating with an effective amount of a reactive endcapper. The reactive endcappers employed include 4-phenylethynyl phthalic anhydride (PEPA), 3-aminophenoxy-4'-phenylethynylbenzophenone (3-APEB), maleic anhydride (MA) and nadic anhydride (5-norbornene-2,3-dicarboxylic anhydride) (NA). Within a relatively narrow ratio of diamines, from .sup..about. 50% ODA/50% APB to .sup..about. 95% ODA/5% APB, the copolyimides prepared with BPDA and terminated with reactive endgroups have a unique combination of properties that make them very attractive for a number of applications. This unique combination of properties includes low pressure processing (200 psi and below), long term melt stability (several hours at 300.degree. C.
    Type: Grant
    Filed: February 14, 1995
    Date of Patent: July 1, 1997
    Assignee: The United States of America as represented by the Admninistrator of the National Aeronautics and Space Administration
    Inventor: Brian J. Jensen
  • Patent number: 5641548
    Abstract: In accordance with the present invention, there are provided blow molded articles which are composed of specific copolyesters or specific polyester resin compositions and which are highly oriented so that the stretch index as defined by the following equations becomes not less than 130 cm. ##EQU1## The blow molded articles thus provided are excellent in transparency and also excellent in moldability and gas barrier properties and, moreover, excellent also in economical efficiency.
    Type: Grant
    Filed: September 9, 1994
    Date of Patent: June 24, 1997
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Kazuhito Yamamoto, Hiroji Niimi, Yoji Yamamoto, Susumu Hatabu
  • Patent number: 5639850
    Abstract: A process for preparing a tough, soluble, aromatic, thermoplastic copolyimide is provided. The process comprises the steps of (a) providing 4,4'-oxydiphthalic anhydride to 3,4,3',4'-biphenyltetracarboxylic dianhydride at a mole ratio ranging from about 25 mole percent to 75 mole percent to 75 mole percent to about 25 mole percent; (b) adding 3,4'-oxydianiline to form a mixture; c) adding a polar aprotic or polar protic solvent to the mixture to form a solution having a percentage of solids capable of maintaining polymer solubility; (d) stirring the solution to allow it to react; (e) adding an azeotropic solvent to the solution and heating to remove water; (f) cooling the solution of step (e) to room temperature and recovering the tough, soluble, aromatic, thermoplastic copolyimide.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: June 17, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Robert G. Bryant
  • Patent number: 5637672
    Abstract: Polyamide esters which can be prepared from tetracarboxylic dianhydrides and can be converted into polyimides by alcohol cleavage with cyclization, characterized in that the radicals OR of the ester groups --COOR which are substituted during the polyimide formation are alkoxy radicals having 2 to 5 C atoms which are monosubstituted or polysubstituted by fluorine.Polyimides prepared therefrom are suitable as orientation layers in liquid-crystal display elements and in optical wave guides.
    Type: Grant
    Filed: April 18, 1991
    Date of Patent: June 10, 1997
    Assignee: Merck Patent Gesellschaft mit beschrankter Haftung
    Inventors: Bernhard Rieger, Ekkehard Bartmann, Eike Poetsch
  • Patent number: 5621067
    Abstract: Wholly aromatic polyamides and their shaped articles containing at least 85 mole percent of repeat units of m-phenylene isophthalamide: ##STR1## and repeat units of selected aromatic diamines and diacid chlorides exhibit improved flame resistance while retaining good thermal stability.
    Type: Grant
    Filed: March 30, 1995
    Date of Patent: April 15, 1997
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Chyueh Lin, Jen-Chang Yang, Ting-Hsiu Chen
  • Patent number: 5621068
    Abstract: A thermoplastic polyimide film comprising a thermoplastic polyimide polymer, a polyimide laminate, respectively being suited for use as cover-lay adhesive agent and a cover-lay film capable of exerting distinguished thermal resistant property, processability and adhesion property useful for the manufacture of flexible printed circuit boards, and yet, suited for use as the adhesive-agent layers of flexible copper-coated laminates and bilateral adhesive sheets; and a method of manufacturing the polyimide laminate. The thermoplastic polyimide polymer represented by the general formula (1) specified below: ##STR1## wherein Ar.sub.1, Ar.sub.2, Ar.sub.4 and Ar.sub.6, represents divalent organic radical, whereas Ar.sub.3 and Ar.sub.5 represent quadrivalent organic radical, wherein l, m amd n designate positive integer of 0 to 15, wherein the sum of 1 and m is 1 or more than 1, and wherein t designates positive integer of 1 or more than 1.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: April 15, 1997
    Assignee: Kanegafuchi Kagaku Kogyo Kabushiki Kaisha
    Inventors: Yoshifumi Okamoto, Hiroyuki Furutani, Kazuhisa Danno, Junya Ida, Hirosaku Nagano
  • Patent number: 5614607
    Abstract: The invention provides a method of preparing a polyimide by reacting together a dianhydride and a diisocyanate or equivalent, the polyimide having repeating units of the general formula (I): ##STR1## in which D is a group comprising one or more aromatic rings, to which the imide carbon atoms are directly bonded, andE is a group comprising one or more cycloaliphatic or aromatic rings, to which the imide nitrogen atoms are bonded directly or via an aliphatic group, provided that the imide nitrogen atoms are not bonded directly to an aromatic ring. Such polyimide is colourless or of low colour.
    Type: Grant
    Filed: March 30, 1995
    Date of Patent: March 25, 1997
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: John N. Hay, Barry Woodfine
  • Patent number: 5614606
    Abstract: Polyamic acids and corresponding polyimides are prepared by reacting polyfunctional amines, aromatic polyfunctional anhydrides or esters thereof, and allyl-nadic anhydride end capping agents, the resulting products exhibiting excellent properties and being suitable for the preparation of prepregs, composites, adhesives, coatings, and the like.
    Type: Grant
    Filed: December 31, 1986
    Date of Patent: March 25, 1997
    Assignee: Ciba-Geigy Corporation
    Inventors: Mohammad A. Chaudhari, John J. King, Byung Lee
  • Patent number: 5612450
    Abstract: A liquid crystal aligning agent comprising a polyamic acid containing an aliphatic and/or alicyclic hydrocarbon group and a polyimide containing an aliphatic and/or alicyclic hydrocarbon group; and a liquid crystal display device using the liquid crystal aligning agent. This liquid crystal aligning agent gives a liquid crystal aligning film which has good liquid crystal aligning property and in which pretilt angle can be changed by radiation with a small energy and which is suitable for domain-divided alignment type liquid crystal display having a wide view angle.
    Type: Grant
    Filed: May 16, 1995
    Date of Patent: March 18, 1997
    Assignees: Japan Synthetic Rubber Co., Ltd., Sharp Corporation
    Inventors: Shigeaki Mizushima, Noriko Watanabe, Hiroko Iwagoe, Seiji Makino, Sigeo Kawamura, Yusuke Tsuda, Nobuo Bessho
  • Patent number: 5612440
    Abstract: A polymeric orientating material for a liquid crystal display including a charged pair electrostatically bound to the main chain of the polymer, and a ferroelectric liquid crystal display adopting the same as an orientation. The ferroelectric liquid crystal display of the present invention has improved memory stability through fast reduction of the anti-electrical field formed when an external electrical field is applied.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: March 18, 1997
    Assignee: Samsung Display Devices Co., Ltd.
    Inventors: Jae-keun Park, Jong-cheon Lee
  • Patent number: 5610265
    Abstract: A rigid-rod aromatic polyimide having repeating units of the formula: ##STR1##
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: March 11, 1997
    Assignee: The United States of America as represented by The Secretary of the Air Force
    Inventor: Loon-Seng Tan
  • Patent number: 5608033
    Abstract: A liquid crystal alignment film made of a polyimide which has, on its side chain, a benzene or biphenyl ring substituted by a monovalent substituent having a positive value as the .sigma.p value under Hammett's rule.
    Type: Grant
    Filed: May 5, 1995
    Date of Patent: March 4, 1997
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Takayasu Nihira, Yoshio Miyamoto, Hideyuki Endo, Toyohiko Abe
  • Patent number: 5606014
    Abstract: Controlled molecular weight imide oligomers and co-oligomers containing pendent phenylethynyl groups (PEPIs) and endcapped with nonreactive or phenylethynyl groups have been prepared by the cyclodehydration of the precursor amide acid oligomers or co-oligomers containing pendent phenylethynyl groups and endcapped with nonreactive or phenylethynyl groups. The amine terminated amide acid oligomers or co-oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and diamine containing pendent phenylethynyl groups and subsequently endcapped with a phenylethynyl phthalic anhydride or monofunctional anhydride. The anhydride terminated amide acid oligomers and co-oligomers are prepared from the reaction of diamine(s) and diamine containing pendent phenylethynyl group(s) with an excess of dianhydride(s) and subsequently endcapped with a phenylethynyl amine or monofunctional amine. The polymerizations are carried out in polar aprotic solvents such as under nitrogen at room temperature.
    Type: Grant
    Filed: August 4, 1995
    Date of Patent: February 25, 1997
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: John W. Connell, Joseph G. Smith, Jr., Paul M. Hergenrother
  • Patent number: 5606013
    Abstract: Polyamic acids and corresponding polyimides are prepared by reacting phenylindane diamines, aromatic polyfunctional anhydrides or esters thereof, and nadic anhydride or allylnadic anhydride end capping agents, the resulting products exhibiting excellent properties and being suitable for the preparation of prepregs, composites, adhesives, coatings, and the like.
    Type: Grant
    Filed: December 31, 1986
    Date of Patent: February 25, 1997
    Assignee: Ciba-Geigy Corporation
    Inventors: Mohammad A. Chaudhari, John J. King, Byung Lee
  • Patent number: 5596073
    Abstract: The present invention relates to solutions which can be directly shaped in anhydrous dimethylalkyleneurea, based on a polyimide obtained from an aromatic dianhydride and an aromatic diisocyanate.It also relates to the process for the production of the above solutions, as well as to a process for spinning these solutions and to the yarns and fibres thus obtained.
    Type: Grant
    Filed: April 14, 1995
    Date of Patent: January 21, 1997
    Assignee: S.N.C. Kermel
    Inventors: Philippe Michaud, Jean Russo
  • Patent number: 5594093
    Abstract: A nonlinear optical polymer material comprising at least one polymer selected from the group consiting of polyimides, acrylic resins and benzocyclobutene resins containing, as a guest molecule, as a side chain, or in the main chain, a molecule or a chemical moiety having a basic structure of merocyanine dye represented by the formula (I): ##STR1## wherein R.sup.1, R.sup.2, R.sup.3, R.sup.4, and R.sup.5 independently represent hydrogen or an organic group, provided that R.sup.1 and R.sup.2 or R.sup.3 and R.sup.5 may independently combine together to form an organo ring structure, and n is an integer of 1 to 3.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: January 14, 1997
    Assignee: Fujitsu Limited
    Inventors: Wataru Sotoyama, Satoshi Tatsuura, Tetsuzo Yoshimura, Azuma Matsuura, Tomoaki Hayano
  • Patent number: 5587452
    Abstract: The invention relates to a polyamide-imide containing recurring units according to the formula ##STR1## where Y is an arylene group, andR and R' are alkylene groups, in which at least 50 mole % of R and/or R' is a butylene group.The polyamide-imides are semi-crystalline.They are suitable for injection moulding applications, structural moulded parts, films, coatings and fibres. They can preferably be used in fields of application where temperatures above 200.degree. C. occur.
    Type: Grant
    Filed: July 3, 1995
    Date of Patent: December 24, 1996
    Assignee: DSM N.V.
    Inventors: Cornelis E. Koning, Lilian M. J. Teuwen
  • Patent number: 5587435
    Abstract: A block copolymer resin containing structural units conforming to ##STR1## and a method for its preparation are disclosed. Accordingly, the block copolymer is prepared by reactive blending of an ester-containing polyether sulfone with a polyester. The block copolymer resin thus produced is characterized by its homogeneous morphology. The high level of its mechanical properties makes the resin suitable for a variety of applications.
    Type: Grant
    Filed: April 21, 1995
    Date of Patent: December 24, 1996
    Assignees: Bayer Corporation, Bayer Aktiengesellschaft
    Inventors: Aaron D. Meltzer, Alexander Karbach
  • Patent number: 5585457
    Abstract: Unimolecular micelies, generally referred to as cascade polymers, are constructed via the addition of successive layers, or tiers, of designed monomers, or building blocks, that possess a predetermined, branched superstructure consisting of connected physical matter inherently defining an internal void volume or void area within the molecular framework. Each of the branches define a flexible arm from a central core atom and terminate with a hydrodynamic reactive group. A method is described for manipulating such cascade polymers.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: December 17, 1996
    Assignee: University of South Florida
    Inventors: George R. Newkome, Charles N. Moorefield
  • Patent number: 5580950
    Abstract: A class of soluble polymers having a rigid rod backbone, which when used to cast films, undergo a self-orientation process whereby the polymer backbone becomes more or less aligned parallel to the film surface. This in-plane orientation results in a film that displays negative birefringence. The degree of in-plane orientation and thus, the magnitude of the negative birefringence is controlled by varying the backbone linearity and rigidity of the class of polymers which includes polyesters, polyamides, poly(amide-imides) and poly(ester-imides) through selection of substituents in the polymer backbone chain. By increasing the polymer backbone linearity and rigidity, the degree of in-plane orientation and associated negative birefringence can be increased, and that conversely, by decreasing the polymer backbone linearity and rigidity, the negative birefringence can be decreased.
    Type: Grant
    Filed: October 13, 1994
    Date of Patent: December 3, 1996
    Assignee: The University of Akron
    Inventors: Frank W. Harris, Stephen Z. D. Cheng
  • Patent number: 5578697
    Abstract: A polyimide precursor having a molecular structure obtained by polymerizing (a) 0.97 to 1.03 molar equivalent of a diamine component containing 0.40 molar equivalent or more of aromatic diamine compound represented by the general formula (DA1), and (b) an acid anhydride component containing (1-n.sub.1 /2) molar equivalent of a tetracarboxylic dianhydride and n.sub.1 molar equivalent of at least one selected from the group consisting of maleic anhydride and maleic derivative anhydride, wherein n.sub.1 ranges from 0.02 to 0.40.
    Type: Grant
    Filed: March 29, 1995
    Date of Patent: November 26, 1996
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Kawamonzen, Masayuki Oba, Yukihiro Mikogami, Shigeru Matake, Shuzi Hayase, Satoshi Mikoshiba
  • Patent number: 5578696
    Abstract: A heat-resistant adhesive film, an adhesion structure obtained using the same, and an adhesion method using the same are disclosed, the film comprising a polyisoimide resin containing at least 40 mol % of an isoimide unit represented by formula (I): ##STR1## wherein R.sub.1 represents a tetravalent aromatic or aliphatic residue; R.sub.2 represents a divalent aromatic or aliphatic residue; and the arrow represents a bond replaceable on isomerization, in the molecule thereof. The isoimide unit of the polyisoimide resin is easily converted to an imide unit on heating, e.g., hot pressing with an adherend, to provide a cover-lay film or a single-sided or double-sided base for printed circuit boards having excellent adhesion, heat resistance, dimensional precision, and workability.
    Type: Grant
    Filed: April 6, 1994
    Date of Patent: November 26, 1996
    Assignee: Nitto Denko Corporation
    Inventors: Amane Mochizuki, Kazumi Higashi, Masako Maeda
  • Patent number: 5571584
    Abstract: In accordance with the present invention, there are provided blow molded articles which are composed of specific copolyesters or specific polyester resin compositions and which are highly oriented so that the stretch index as defined by the following equations becomes not less than 130 cm. ##EQU1## The blow molded articles thus provided are excellent in transparency and also excellent in moldability and gas barrier properties and, moreover, excellent also in economical efficiency.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: November 5, 1996
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Kazuhito Yamamoto, Hiroji Niimi, Yoji Yamamoto, Susumu Hatabu
  • Patent number: 5569738
    Abstract: This invention relates to melt processable copolymer of etherimideimide/etherimide herein-after identified as PEII/PEI copolymer of following structural formula(I). ##STR1## wherein, R and R' are independently selected from the groups of ##STR2## Ar and Ar' are independently selected from the groups of ##STR3## (wherein, R1 is H or C1-C6 alkyl group,R2 is II or C1-C4 alkyl group, andR3 is --O--, --CO--, --SO--, --SO2--.); andn and m are independently an integer between 5 and 500.
    Type: Grant
    Filed: March 14, 1995
    Date of Patent: October 29, 1996
    Assignees: Korea Research Institute of Chemical Technology, Cheil Industries, Inc.
    Inventors: Kil Y. Choi, Jong C. Won, Young T. Hong, Sang S. Woo, Youn S. Don
  • Patent number: 5567800
    Abstract: Controlled molecular weight phenylethynyl terminated imide oligomers (PETIs) have been prepared by the cyclodehydration of precursor phenylethynyl terminated amic acid oligomers. Amino terminated amic acid oligomers are prepared from the reaction of dianhydride(s) with an excess of diamine(s) and subsequently endcapped with phenylethynyl phthalic anhydride(s) (PEPA). The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide under nitrogen at room temperature. The amic acid oligomers are subsequently cyclodehydrated either thermally or chemically to the corresponding imide oligomers. Direct preparation of PETIs from the reaction of dianhydride(s) with an excess of diamine(s) and endcapped with phenylethynyl phthalic anhydride(s) has been performed in m-cresol. Phenylethynyl phthalic anhydrides are synthesized by the palladium catalyzed reaction of phenylacetylene with bromo substituted phthalic anhydrides in triethylamine.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: October 22, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Paul M. Hergenrother, Joseph G. Smith, Jr.
  • Patent number: 5539080
    Abstract: A process is disclosed for making circuit elements by photolithography comprising depositing an antireflective polyimide or polyimide precursor layer on a substrate and heating the substrate at 200.degree. C. to 500.degree. to provide a functional integrated circuit element that includes an antireflective polyimide layer. The antireflective polyimide layer contains a sufficient concentration of at least one chromophore to give rise to an absorbance sufficient to attenuate actinic radiation at 405 or 436 nm. Preferred chromophores include those arising from perylenes, naphthalenes and anthraquinones. The chromophore may reside in a dye which is a component of the polyimide coating mixture or it may reside in a residue which is incorporated into the polyimide itself.
    Type: Grant
    Filed: April 19, 1995
    Date of Patent: July 23, 1996
    Assignee: International Business Machines Corporation
    Inventors: Dennis P. Hogan, Harold G. Linde, Ronald A. Warren
  • Patent number: 5532334
    Abstract: A process for preparing polyamideimide resins having high molecular weights as described wherein major problems of prior art processes such as low heat resistance and low melt flowability are improved. Polyamideimide resins having an intrinsic viscosity of 0.4 to 1.50 dl/g as measured on a solution of dimethylacetamide as a solvent at a concentration of 0.5 g/dl at 30.degree. C., are prepared by reacting an aromatic tricarboxylic acid anhydride with an aromatic diamine in N-methyl pyrrolidone solvent in the presence of a first catalyst selected from a group consisting of thionyl chloride, p-toluenesulphonly chloride, sulfuryl chloride, cyanuric chloride and phosphorus trichloride at a temperature of 50.degree. C. to 130.degree. C. over a period of 1 to 5 hours and further reacting the resultant reaction mixture in the presence of a second catalyst which is a compound of the formula (RO).sub.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: July 2, 1996
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kil-Yeong Choi, Dong-Hack Suh, Mi-Hie Yi, Young-Taik Hong, Jong-Chan Won
  • Patent number: 5521276
    Abstract: Polyamideimide resins having the formula (I) ##STR1## in which repeating units are bound in a head to tail or head to head manner,R is at least two divalent groups selected from the group consisting of ##STR2## (cis-, trans- conformational mixture) wherein one divalent group is ##STR3## group in a PAI molecule, produced by introducing isophorone diamine into the conventional aromatic polyamideimide resins.
    Type: Grant
    Filed: June 22, 1994
    Date of Patent: May 28, 1996
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Kil-Yeong Choi, Mi-Hie Yi, Jae-Heung Lee, Moon-Young Jin, Young-Taik Hong
  • Patent number: 5516875
    Abstract: This invention concerns positive-working photodefinable polyimide precursors which make use of chemical amplification based on photoacid catalyzed cleavage of acid labile-poly(amic acetal esters).
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: May 14, 1996
    Assignee: E. I. Du Pont de Nemours and Company
    Inventor: Howard E. Simmons, III
  • Patent number: 5508377
    Abstract: This invention relates to a novel polyimide or polyimide copolymer having excellent heat resistance and greatly improved processability, and has a novel aromatic diamino compound used for the polyimide, a preparation process thereof, a polyimide-based resin composition comprising the polyimide or polyimide copolymer and a fibrous reinforcement, a process for preparing the resin composition, an injection molded article of the resin composition.The polyimide comprise a requisite structural unit having one or more recurring structural units of the formula: ##STR1## wherein L is an oxygen atom, carbonyl, isopropylidene or hexafluoroisopropylidene, and X is ##STR2## and Ar is a tetravalent radical having 6 to 27 carbon atoms and being selected from the group consisting of a monoaromatic radical, condensed polyaromatic radical and noncondensed polyaromatic radical having aromatic radicals connected to each other with a direct bond or a bridge member.
    Type: Grant
    Filed: December 13, 1994
    Date of Patent: April 16, 1996
    Assignee: Mitsui Toatsu Chemicals, Inc.
    Inventors: Wataru Yamashita, Yuichi Okawa, Shoji Tamai, Akihiro Yamaguchi
  • Patent number: 5504182
    Abstract: Thermoplastically processable aromatic polyether amideThermoplastically processable aromatic polyether amide of the formula (I) ##STR1## in which the symbols Ar, Ar', Ar.sub.1, Ar.sub.2, R, R', Y, x, y and z have the following meanings:Ar is a divalent, substituted or unsubstituted, aromatic or heteroaromatic radical or a group--Ar*--Q--Ar*--in whichQ is a bond or an --O--, --C(CH.sub.3).sub.2, --CO--, --S--, --SO-- or --SO.sub.2 -- bridge and Ar* is an aromatic radical. The carbonyl groups of the Ar radical are on non-adjacent ring carbon atoms.A is up to three different radicals.Ar' has the meaning given for Ar or is an Ar--Z--Ar group.In this case, Z is a --C(CH.sub.3).sub.2 -- or --O--Ar*--O--bridge.Y is a --C(CH.sub.3).sub.2 --, --SO.sub.2 --, --S-- or a --C(CF.sub.3).sub.2 --bridge and has up to two different meanings in the same polymer.Ar.sub.1 and Ar.sub.2 are identical or different from one another and are each a substituted or unsubstituted para- or meta-arylene radical.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: April 2, 1996
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Harald Cherdron, Willi Kreuder, Arnold Schneller, Otto Herrmann-Schonherr
  • Patent number: 5503934
    Abstract: It is possible to manufacture articles out of thermoplastic materials and to metallize the articles at their surface. In this way one can manufacture reflectors and similar articles. Most thermoplastic materials require extra processing steps prior to the metallization like application of primers, chemical etching and the like.The invention is based on the discovery that a certain type of materials can be metallized without any extra processing steps. The materials involved are polyestercarbonates or blends of polyestercarbonates and polycarbonate. This is quite surprising since polycarbonates can not be metallized in good quality without extra processing steps prior to the metallization step.
    Type: Grant
    Filed: November 3, 1994
    Date of Patent: April 2, 1996
    Assignee: General Electric Company
    Inventors: Christianus J. J. Maas, Luca P. Fontana, Robertus E. de Jong, Michael B. Grimm