With Nitrogen-containing Reactant Patents (Class 528/211)
  • Patent number: 7956153
    Abstract: Sterically hindered phenol and phosphite based compounds represented by structural formula II: and their use as antioxidants in a wide range of materials including, but not limited to, food, plastics, elastomers, composites and petroleum based products is disclosed herein.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: June 7, 2011
    Assignee: Polnox Corporation
    Inventors: Ashok L. Cholli, Rajesh Kumar
  • Publication number: 20110121278
    Abstract: To provide a solution composition having a significantly high viscosity comprising one or more solvent(s) and one or more polymer(s) having a polystyrene-reduced Z-average molecular weight of 5.0×104 to 5.0×106, and the solution composition allows to easily obtain a film having a favorable film formability and high uniformity.
    Type: Application
    Filed: February 4, 2011
    Publication date: May 26, 2011
    Applicant: SUMITOMO CHEMICAL CO., LTD.
    Inventors: Tomoyuki SUZUKI, Kiyotoshi IIMURA, Katsumi AGATA
  • Publication number: 20110121338
    Abstract: A fluoro group-containing compound, a fluoro group-containing polymer, an organic light emitting device including the polymer, and a method of manufacturing the organic light emitting device are provided.
    Type: Application
    Filed: June 25, 2010
    Publication date: May 26, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jhun-mo Son, Won-jae Joo, Ho-suk Kang, Hye-yeon Yang
  • Patent number: 7935775
    Abstract: Disclosed are novel Mannich bases which are produced by using at least one phenolic compound of formula (I): formaldehyde, and at least one polyamine. Also disclosed is a two-step method for producing Mannich bases, by means of which low viscous Mannich bases are obtained.
    Type: Grant
    Filed: May 4, 2004
    Date of Patent: May 3, 2011
    Assignee: Sika Technology AG
    Inventors: Ulrich Gerber, Thomas Wigger
  • Patent number: 7910667
    Abstract: A heat curable epoxy composition comprising the contact product of an epoxy resin, an epoxy curing agent and an accelerator for the epoxy curing agent, the curing agent or the accelerator comprising the reaction product of (a) a phenolic resin and (b) a urea compound which is the reaction product of an isocyanate and an alkylated polyalkylenepolyamine having one primary or secondary amine and at least two tertiary amines of the general formula: where R1, R2, R3, R4 and R5 independently represent hydrogen, methyl or ethyl; n and m are independently integers from 1 to 6 and; X is an integer from 1 to 10.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: March 22, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gamini Ananda Vedage, Atteye Houssein Abdourazak
  • Publication number: 20110034661
    Abstract: Disclosed is a method for producing a polyphenylene ether, which comprises a step of preparing a polymerization solution composed of 10-25 parts by mass of a phenolic compound (M) and 75-90 parts by mass of an aromatic solvent (A) with the total of the compound and the solvent being 100 parts by mass, and 0.1-10 parts by mass of a catalyst (C) containing a metal salt; a step of performing an oxidative polymerization of the phenolic compound (M) by passing an oxygen-containing gas through the polymerization solution; a step of stopping the polymerization by mixing an aqueous chelating agent solution into the polymerization solution; a step of subjecting a diphenoquinone compound produced as a by-product to a quinone binding process or removal by reduction; and a step of obtaining a polyphenylene ether by separating the aqueous phase through liquid-liquid separation. In the method for producing a polyphenylene ether, 0.001-0.
    Type: Application
    Filed: April 16, 2009
    Publication date: February 10, 2011
    Applicant: ASAHI KASEI CHEMICALS CORPORATION
    Inventors: Mutsumi Maeda, Hiroaki Furukawa
  • Publication number: 20110009563
    Abstract: Copolymers comprising recurring units (A) of one or more of the general structural formulae -D-G-Arb-G-, -G-D-G-Arb- and/or -D-G- on one hand, and recurring units (B) of one or more of the general structural formulae —Ara-G-Arb-G-, -G-Ara-G-Arb- and/or —Ara-G- on the other hand, wherein D is a dibenzodiazocine-containing divalent group, Ara is a dibenzodiazocine-free divalent group containing a sulfone unit and/or a ketone unit, Arb is a dibenzodiazocine-free divalent group, and G is an ether or a thiether group. Preferably, recurring units (A) are of the general structural formula -D-G-Arb-G- and recurring units (B) are of the general structural formula —Ara-G-Arb-G-. Method for the preparation of the copolymers, compositions and articles made of the copolymers are also part of the invention.
    Type: Application
    Filed: February 10, 2009
    Publication date: January 13, 2011
    Applicant: SOLVAY ADVANCED POLYMERS, L.L.C.
    Inventor: Charles Hoppin
  • Publication number: 20110003962
    Abstract: A poly(2,6-dimethyl-1,4-phenylene ether) prepared using a morpholine-containing polymerization catalyst has a monomodal molecular weight distribution with a reduced content of very high molecular weight species. It also exhibits increased morpholine incorporation in the high molecular weight fraction. Compared to commercially available poly(2,6-dimethyl-1,4-phenylene ether) prepared using a di-n-butylamine-containing polymerization catalyst, the poly(2,6-dimethyl-1,4-phenylene ether) of the invention exhibits reduced odor. Compared to other poly(2,6-dimethyl-1,4-phenylene ether) prepared using a morpholine-containing polymerization catalyst, the poly(2,6-dimethyl-1,4-phenylene ether) of the invention exhibits improved molecular weight build during compounding and improved compatibilization with polyamides.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 6, 2011
    Inventors: Alvaro Carrillo, Stephen M. Farnell, Hua Guo
  • Patent number: 7842775
    Abstract: Featured are novel heterocycle substituted hydroquinones, aromatic copolymers and homopolymers bearing main and side chain polar pyridine units. These polymers exhibit good mechanical properties, high thermal and oxidative stability, high doping ability and high conductivity values. These novel polymers can be used in the preparation and application of MEA on PEMFC type single cells. The combination of the above mentioned properties indicate the potential of the newly prepared materials to be used as electrolytes in high temperature PEM fuel cells.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: November 30, 2010
    Assignee: Advent Technologies SA
    Inventors: Maria Geormezi, Nora Gourdoupi
  • Patent number: 7842734
    Abstract: The subject invention relates to the development and characterization of a new series of poly (arylene ether) copolymers containing pyridine and biphenyl or hydroquinone moieties. Preferred polymers can exhibit very good mechanical properties, high thermal and oxidative stability and high doping ability with strong acids. The invention further relates to the preparation and application of MEA on PEMFC type single cells.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: November 30, 2010
    Assignee: Advent Technologies SA
    Inventors: Maria Geormezi, Valadoula Deimede, Nora Gourdoupi, Joannis Kallitsis
  • Publication number: 20100259163
    Abstract: Provided are a high polymer compound comprising a repeating unit having a function of a dopant and a repeating unit having a function of a host, a material for organic electroluminescence containing the above high polymer compound and an organic electroluminescence device comprising an anode, a cathode and an organic compound layer comprising a layer interposed between the anode and the cathode, wherein a layer of the above organic compound layers is a light emitting layer, and the organic compound layer contains the material for organic electroluminescence described above. The above high polymer compound is useful as a light emitting material and can achieve a high polymer EL device which is excellent in device characteristics such as a lifetime, a luminous efficiency and the like.
    Type: Application
    Filed: December 4, 2008
    Publication date: October 14, 2010
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventors: Yumiko Mizuki, Mitsunori Ito
  • Patent number: 7795370
    Abstract: A tetracarboxylic acid compound of formula (1) or (2) wherein A represents a divalent group; X1, X2 and X3 respectively represent a hydrogen atom or the like; R1, R2, R3 and R4 respectively represent a carboxyl group or an acid anhydride group; n represents 1 or 2; and B represents a cyclic group.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: September 14, 2010
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Haruhiko Kusaka, Yuji Ohgomori, Masashi Yamanashi
  • Publication number: 20100227998
    Abstract: A structured organic film comprising a plurality of segments and a plurality of linkers arranged as a covalent organic framework, wherein the structured organic film may be a multi-segment thick structured organic film.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 9, 2010
    Applicant: XEROX CORPORATION
    Inventors: Matthew A. HEUFT, Adrien Pierre COTE, Kathy L. DE JONG
  • Patent number: 7786244
    Abstract: Featured are novel heterocycle substituted hydroquinones, aromatic copolymers and homopolymers bearing main and side chain polar pyridine units. These polymers exhibit good mechanical properties, high thermal and oxidative stability, high doping ability and high conductivity values. These novel polymers can be used in the preparation and application of MEA on PEMFC type single cells. The combination of the above mentioned properties indicate the potential of the newly prepared materials to be used as electrolytes in high temperature PEM fuel cells.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: August 31, 2010
    Assignee: Advent Technologies
    Inventors: Maria Geormezi, Nora Gourdoupi
  • Publication number: 20100203326
    Abstract: A prepreg, a prepreg laminate including the prepreg, a metal film laminate including the prepreg, and a printed wiring board including the prepreg. The prepreg includes a woven or non-woven fabric substrate; and an aromatic liquid-crystalline polyester amide copolymer, wherein the woven or non-woven fabric substrate is impregnated with the aromatic liquid-crystalline polyester amide copolymer. Therefore, the prepreg is not deformed or does not cause blisters. In addition, the prepreg has low dielectric properties in a high frequency range. Also, a metal film of the metal film laminate or the printed wiring board does not corrode.
    Type: Application
    Filed: May 21, 2008
    Publication date: August 12, 2010
    Inventor: Tae Jun OK
  • Publication number: 20100176376
    Abstract: A copolymer comprising a repeating unit of the following formula (1) and a repeating unit of the following formula (2): (wherein, a ring A and ring B represent each independently an aromatic ring optionally having a substituent. X is —O—, —S—, —S(?O)—, —S(?O)2—, —Si(R1)2—Si(R1)2—, —Si(R1)2—, —, —B(R1)—, —P(R1)—, —P(?O)(R1)—, —O—C(R1)2— or —N?C(R1)—, and R1 represents a substituent. When there are two or more R1s in the same formula, they may be the same or different.) (wherein, Y is —O—, —S— or —C(?O)—. Ar1 represents an aryl group optionally having a substituent or a monovalent heterocyclic group optionally having a substituent, and there is no substituent connected to atoms of the ring of Ar1, the atoms being adjacent an atom of Ar1 connected to a nitrogen atom in the formula. R3 represents a substituent, and n represents an integer of from 0 to 3. When there are two or more R2s in the formula, they may be the same or different.).
    Type: Application
    Filed: October 3, 2006
    Publication date: July 15, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY , LIMITED
    Inventors: Tomoyuki Suzuki, Takanobu Noguchi
  • Patent number: 7754843
    Abstract: New aromatic polyether type copolymers bearing main chain pyridine and side chain pyridine or pyrimidine units, which exhibit good mechanical properties, high thermal and oxidative stability, high doping ability and high conductivity values. The polymers are useful in the preparation and application of MEA on PEMFC type single cells. The polymers are, further, particularly suitable for use in high temperature PEM fuel cells.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: July 13, 2010
    Assignee: Advent Technologies
    Inventors: Nora Gourdoupi, Maria Geormezi
  • Patent number: 7754844
    Abstract: A polyarylene ether-based compound according to the present invention includes polymer components represented in general formula (1) and general formula (2): wherein Ar indicates a divalent aromatic group, Y indicates a sulfone group or a ketone group, X indicates H or a monovalent cation species, and Ar? indicates a divalent aromatic group.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: July 13, 2010
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Yoshimitsu Sakaguchi, Kota Kitamura, Shigenori Nagahara, Masahiro Yamashita, Junko Nakao
  • Publication number: 20100159347
    Abstract: A hyper-branched polymer having a degree of branching in the range of about 0.05 to about 1 includes a dendritic unit, a linear unit, and a terminal unit, wherein the hyper-branched polymer, an electrode for a fuel cell including the hyper-branched polymer, an electrolyte membrane for a fuel cell including the hyper-branched polymer, and a fuel cell including at least one of the electrode and the electrolyte membrane. Such a hyper-branched polymer included in a fuel cell provides excellent thermal resistance and phosphoric acid resistance and increase the performance of the fuel cell.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 24, 2010
    Applicants: Samsung Electronics Co., Ltd., SNU R&DB Foundation
    Inventors: Seong-woo CHOI, Cheol-hee Ahn, Jung-ock Park, Mi-jung Yim
  • Publication number: 20100140141
    Abstract: The present invention relates to demulsifying and dehydrating formulations of heavy crude oil based block copolymers amine bifunctionalized with low polydispersities. These formulations can contain solvents whose boiling point is in the range from 35 to 200° C., preferably: dichloromethane, chloroform, toluene, xylenes, turbosine, naphtha or mixtures thereof.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 10, 2010
    Applicant: INSTITUTO MEXICANO DEL PETROLEO
    Inventors: Gabriel Cendejas Santana, Eugenio Alejandro Flores Oropeza, Laura Verónica Castro Sotelo, Aristeo Estrada Buendia, Marcelo Lozada y Cassou, Flavio Salvador Vázquez Moreno
  • Publication number: 20100108954
    Abstract: Polymers comprising a backbone comprising at least one arylamine repeat moiety and at least one linking moiety, wherein the linking moiety does not comprise an aryl moiety. Ink formulations and organic electronic devices such as OLEDs or OPVs can be formed from the polymers and doped polymers. The polymers can be used in a hole injection layer, hole transport layer, a hole extraction layer, or as a host material in an emissive layer. Improved stability can be achieved in organic electronic devices such as OLEDs and OPVs.
    Type: Application
    Filed: October 26, 2009
    Publication date: May 6, 2010
    Inventors: Jessica Benson-Smith, Christopher T. Brown, Venkataramanan Seshadri, Jing Wang
  • Patent number: 7696298
    Abstract: Polymers and copolymers of formula I: in which m is typically 30 to 500 and n is 0 to 500; Ar is for example, 1,2-phenylene, 1,3-phenylene, 1,4-phenylene, or 2,6-pyridylene; Ar2 and Ar3 are selected from various bivalent aryl and heteroaryl groups; and X is for example, the bivalent SO2 or CO. have high temperature properties which make them useful as films, matrices in carbon fiber reinforced composites and high performance adhesives; processes for preparing the polymers and copolymers employ a novel C—N coupling reaction.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: April 13, 2010
    Inventors: Allan S. Hay, Sumiko Matsumura, Antisar R. Hlil
  • Publication number: 20100048857
    Abstract: The manufacture of polyetherquinoxalines may be accomplished by polymerization of quinoxaline and related monomers with a bisphenol under aromatic nucleophilic substitution reaction conditions. A method of manufacture includes contacting a substituted or unsubstituted quinoxaline having replaceable groups at the 2,3 positions with a bisphenol or a bisphenol derivative under aromatic nucleophilic substitution reaction conditions. The resulting polyetherquinoxalines contain quinoxaline groups joined by ether linkages at the 2 and 3 positions of the quinoxaline groups. In one example, the polyetherquinoxaline has a formula represented as wherein “n” is an integer from 1 to 10000, and R1, R2, R3, R4 are independently hydrogen, methyl, CF3, tert-butyl, benzoyl, benzenesulfonyl, a sulfonic acid salt, an aliphatic group, an alicyclic group, or an aryl group, and Ar is an aromatic radical.
    Type: Application
    Filed: August 19, 2009
    Publication date: February 25, 2010
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Haci Bayram Erdem, Frank Wayne Harris
  • Patent number: 7652125
    Abstract: A resin composition having high heat resistance and low dielectric constant after heat treatment, a varnish thereof and a semiconductor device using the same are provided by a resin composition including a compound having a structure represented by the general formula (1): wherein, “Ar” is an aromatic group; “a” is 0 or 1; R11 is an organic group having one or more carbon atoms and at least one is a group having an alicyclic structure; when “q” is an integer of 2 or more, R11s may be the same or different from each other; at least one of R1 to R5 and at least one of R6 to R10 on respective benzene rings are Ar-binding sites or R11-binding sites and the others of R1 to R5 and R6 to R10 are each hydrogen, a group having an alicyclic structure, an organic group having 1 to 10 carbon atoms, a hydroxyl group or a carboxyl group; when “a” is 0, at least one of R1 to R5 and R6 to R10 is a group having an alicyclic structure; “q” is an integer of 1 or more; and “X” is any of —O—, —NHCO—, —COHN—, —COO— and —OCO—.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: January 26, 2010
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Takashi Enoki, Atsushi Izumi, Yumiko Yamamoto, Takahiro Harada
  • Publication number: 20100016540
    Abstract: Ethers of aromatic acids are produced from halogenated aromatic acids in a reaction mixture containing a copper (I) or copper (II) source and a diketone ligand that coordinates to copper.
    Type: Application
    Filed: December 18, 2007
    Publication date: January 21, 2010
    Applicant: E. I. Du Pont De Nemours and Company
    Inventor: Joachim C. Ritter
  • Publication number: 20090306310
    Abstract: A library of functionalized dendritic macromolecules was prepared in extremely high yields using no protecting group strategies and with only minimal purification steps through the use of copper(I)-catalyzed 1,3-dipolar cycloaddition of azides and terminal acetylenes.
    Type: Application
    Filed: July 18, 2006
    Publication date: December 10, 2009
    Applicant: The Scripps Research Institute
    Inventors: Peng Wu, Valery Fokin, K. Barry Sharpless
  • Publication number: 20090179000
    Abstract: A method of manufacturing an inkjet printhead, in which a solvent included in a positive photoresist composition or in a non-photosensitive soluble polymer composition which is used to form a sacrificial layer has a different polarity from that of a solvent included in a negative photoresist composition that is used to form at least one of a channel forming layer and a nozzle layer.
    Type: Application
    Filed: June 24, 2008
    Publication date: July 16, 2009
    Applicants: Samsung Electronics Co., Ltd, Korea Advanced Institute of Science and Technology
    Inventors: Jong-jin Park, Su-min Kim, Jin-baek Kim, Yong-ung Ha, Yong-seop Yoon, Byung-ha Park
  • Publication number: 20090181260
    Abstract: An alkanolamine-modified phenolic resin formulation is formed by reacting a basic catalyst, formaldehyde, water and a benzene-ol to form an intermediate composition to which and an alkanolamine is subsequently added to reduce the presence of free formaldehyde. The alkanolamine-modified phenolic resin formulation can be employed to coat abrasive products having a relatively low free formaldehyde content.
    Type: Application
    Filed: December 3, 2008
    Publication date: July 16, 2009
    Applicants: Saint-Gobain Abrasive, Inc., Saint-Gobain Abrasifs
    Inventors: Jagmohan Verma, Adiseshaiah K. Seshu, Abdul Habid Pullichola, Olivier Pons Y. Moll, Philippe Espiard
  • Patent number: 7511113
    Abstract: An aromatic ether oligomer or polyaromatic ether comprising the formula: O—Arn; wherein Ar is an independently selected divalent aromatic radical; formed by reacting a dihydroxyaromatic with a dihaloaromatic; and wherein the reaction is performed in the presence of a copper compound and cesium carbonate. The polyaromatic ether is formed when neither the dihydroxyaromatic nor the dihaloaromatic is present in an excess amount. The aromatic ether oligomer is formed by using an excess of either dihydroxyaromatic or dihaloaromatic. A phthalonitrile monomer comprising the formula: formed by reacting a 3- or 4-nitrophthalonitrile with a hydroxy-terminated aromatic ether oligomer. A thermoset formed by curing the phthalonitrile monomer. Processes for forming all the above.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: March 31, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Dawn D. Dominguez
  • Patent number: 7507784
    Abstract: Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oligomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 24, 2009
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Theodorus J. Dingemans, Erik S. Weiser, Terry L. St. Clair
  • Publication number: 20090076241
    Abstract: Synthesis methods for creating polymeric compounds comprising dihydroxyphenyl derivatives (DHPD), or DHPp i.e. polymers modified with DHPD, with desired surface active effects are described. The polymer backbone of DHPp has structural or performance features that can be tailored to control physical properties of DHPp, allowing it to be useful for different applications i.e. tissue adhesives or sealants, adhesion promoting coatings, and antifouling coatings.
    Type: Application
    Filed: September 28, 2008
    Publication date: March 19, 2009
    Inventor: Bruce P. Lee
  • Publication number: 20090048362
    Abstract: A method of modifying liquid crystal polymers, which involves a step of irradiating a liquid crystal polymer with the laser beam having a pulse width of 10?12 seconds or less. Using the invention method, the physical strength of the liquid crystal polymers can be improved as compared with the conventional liquid crystal polymers.
    Type: Application
    Filed: January 31, 2007
    Publication date: February 19, 2009
    Inventors: Ryuzo Ueno, Kunikazu Asaka, Kazuyuki Hirao, Shingo Kanehira, Masaya Kitayama
  • Patent number: 7452959
    Abstract: An aromatic ether oligomer or polyaromatic ether comprising the formula: O—Arn; wherein Ar is an independently selected divalent aromatic radical; formed by reacting a dihydroxyaromatic with a dihaloaromatic; and wherein the reaction is performed in the presence of a copper compound and cesium carbonate. The polyaromatic ether is formed when neither the dihydroxyaromatic nor the dihaloaromatic is present in an excess amount. The aromatic ether oligomer is formed by using an excess of either dihydroxyaromatic or dihaloaromatic. A phthalonitrile monomer comprising the formula: formed by reacting a 3- or 4-nitrophthalonitrile with a hydroxy-terminated aromatic ether oligomer. A thermoset formed by curing the phthalonitrile monomer. Processes for forming all the above.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: November 18, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Dawn D. Dominguez
  • Publication number: 20080255335
    Abstract: A resin composition having high heat resistance and low dielectric constant after heat treatment, a varnish thereof and a semiconductor device using the same are provided by a resin composition including a compound having a structure represented by the general formula (1): wherein, “Ar” is an aromatic group; “a” is 0 or 1; R11 is an organic group having one or more carbon atoms and at least one is a group having an alicyclic structure; when “q” is an integer of 2 or more, R11s may be the same or different from each other; at least one of R1 to R5 and at least one of R6 to R10 on respective benzene rings are Ar-binding sites or R11-binding sites and the others of R1 to R5 and R6 to R10 are each hydrogen, a group having an alicyclic structure, an organic group having 1 to 10 carbon atoms, a hydroxyl group or a carboxyl group; when “a” is 0, at least one of R1 to R5 and R6 to R10 is a group having an alicyclic structure; “q” is an integer of 1 or more; and “X” is any of —O—, —NHCO—, —COHN—, —COO— and —OCO—
    Type: Application
    Filed: September 29, 2005
    Publication date: October 16, 2008
    Applicant: SUMITOMO BAKELITE COMPANY LTD.
    Inventors: Takashi Enoki, Atsushi Izumi, Yumiko Yamamoto, Takahiro Harada
  • Publication number: 20080206548
    Abstract: A benzoxazole resin precursor comprising a first repeating unit which is obtained by the reaction of a bisaminophenol compound and a dicarboxylic acid compound, at least one of which has the diamondoid structure; a benzoxazole resin precursor further comprising a second repeating unit which is obtained by the reaction of a bisaminophenol compound having no diamondoid structure and a dicarboxylic acid compound having no diamondoid structure; a polybenzoxazole resin obtained by the ring-closing reaction with dehydration of the above benzoxazole resin precursor; a resin film constituted with the benzoxazole resin precursor or the polybenzoxazole resin. A polybenzoxazole resin and a resin film having excellent heat resistance and a small permittivity and a semiconductor device using the resin film can be obtained from the benzoxazole resin precursor.
    Type: Application
    Filed: June 20, 2005
    Publication date: August 28, 2008
    Applicant: Sumitomo Bakelite Co., LTD
    Inventors: Takashi Enoki, Atsushi Izumi
  • Publication number: 20080112999
    Abstract: Described herein are N-substituted monomers and polymers, methods of making such monomers and polymers, and methods of using them in various applications, such as medical devices. In preferred embodiments, the medical device is a stent.
    Type: Application
    Filed: October 16, 2007
    Publication date: May 15, 2008
    Applicant: REVA Medical, Inc.
    Inventor: Ernest G. Baluca
  • Publication number: 20080113227
    Abstract: Featured are novel heterocycle substituted hydroquinones, aromatic copolymers and homopolymers bearing main and side chain polar pyridine units. These polymers exhibit good mechanical properties, high thermal and oxidative stability, high doping ability and high conductivity values. These novel polymers can be used in the preparation and application of MEA on PEMFC type single cells. The combination of the above mentioned properties indicate the potential of the newly prepared materials to be used as electrolytes in high temperature PEM fuel cells.
    Type: Application
    Filed: September 10, 2007
    Publication date: May 15, 2008
    Inventors: Maria Geormezi, Nora Gourdoupi
  • Patent number: 7307137
    Abstract: The present invention is directed to low dielectric polymers and to methods of producing these low dielectric constant polymers, dielectric materials and layers, and electronic components. In one aspect of the present invention, an isomeric mixture of thermosetting monomers, wherein the monomers have a core structure and a plurality of arms, is provided, and the isomeric mixture of thermosetting monomers is polymerized, wherein polymerization comprises a reaction of an ethynyl group that is located in at least one arm of a monomer.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: December 11, 2007
    Assignee: Honeywell International Inc.
    Inventors: Kreisler Lau, Feng Quan Liu, Paul Apen, Boris Korolev, Emma Brouk, Ruslan Zherebin, David Nalewajek, Roger Leung
  • Patent number: 7273919
    Abstract: High heat polyethersulfone compositions are provided which possess unexpectedly high glass transition temperatures. The polyethersulfone compositions comprise structural units derived from phthalimide bisphenols such as 3,3-bis(4 -hydroxyphenyl)-N-phenylphthalimide, and structural units derived from at least one biphenyl-bissulfone such as 4,4?-bis((4-chlorophenyl)sulfonyl)-1,1?-biphenyl. The novel polyethersulfone compositions may further comprise structural units derived from one or more biphenols such as 4,4?-biphenol, bisphenols such as BPA, or other electrophilic sulfone monomers, such as bis(4-chlorophenyl)sulfone. In one embodiment, the polyethersulfone composition of the present invention comprises structural groups derived exclusively from 3,3-bis(4-hydroxyphenyl)-N-phenylphthalimide, and 4,4?-bis((4-chlorophenyl)sulfonyl)-1,1?-biphenyl and exhibits a single glass transition of greater than 300° C.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: September 25, 2007
    Assignee: General Electric Company
    Inventors: Daniel Steiger, Farid Fouad Khouri, Daniel Joseph Brunelle, Amy Beth Koren
  • Patent number: 7132496
    Abstract: The invention relates to the following: a method for step-by-step alkylation of primary polymeric amines by step-by-step deprotonation with a metallo-organic base and a subsequent reaction with an alkyl halide; a method for modifying tertiary polymeric amines with other functional groups; polymers with secondary/tertiary amino groups and with quaternary ammonium groups; polymers with secondary/tertiary amino groups and other functional groups, especially cation exchanger groupings; membranes consisting of the above polymers, either non-crosslinked or ionically or covalently cross-linked; acid-base-blends/membranes, and a method for producing same, consisting of basic polymers with polymers containing sulphonic acid, phosphonic acid or carboxyl groups; the use of ion exchanger polymers as membranes in membrane processes, e.g.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: November 7, 2006
    Inventors: Jochen Kerres, W. Zhang, C. Tang
  • Patent number: 7049386
    Abstract: In a method of producing a low dielectric constant polymer, a thermosetting monomer is provided, wherein the thermosetting monomer has a cage compound or aryl core structure, and a plurality of arms that are covalently bound to the cage compound or core structure. In a subsequent step, the thermosetting monomer is incorporated into a polymer to form the low dielectric constant polymer, wherein the incorporation into the polymer comprises a chemical reaction of a triple bond that is located in at least one of the arms. Contemplated cage compounds and core structures include adamantane, diamantane, silicon, a phenyl group and a sexiphenylene group, while preferred arms include an arlyene, a branched arylene, and an arylene ether. The thermosetting monomers may advantageously be employed to produce low-k dielectric material in electronic devices, and the dielectric constant of the polymer can be controlled by varying the overall length of the arms.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: May 23, 2006
    Assignee: Honeywell International Inc.
    Inventors: Kreisler S. Lau, Feng Quan Liu, Boris A. Korolev, Emma Brouk, Ruslan Zherebin, David Nalewajek
  • Patent number: 7041779
    Abstract: A benzobisazole polymer having repeating units of the formula: wherein Q is and wherein Z is —O—, —S— or —NH—. A new method for preparing 1,5-naphthalenedicarboxylic acid from 1,5-diaminonaphthalene under relatively mild conditions in good yields is also described.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: May 9, 2006
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Thuy D. Dang, Narayanan Venkatasubramanian, Jar-Wha Lee, Soo-Young Park, Fred E. Arnold, Barry L. Farmer
  • Patent number: 6956100
    Abstract: An object of the present invention is to provide a polyamide resin composition from which the solvent is easily removed during film formation and which gives a film or adhesive layer reduced in residual solvent content. It is suitable for use especially as vanish. The composition and vanish are characterized by comprising as essential ingredients a phenolic hydroxyl group-having aromatic polyamide resin and a cycloalkanone as a solvent and preferably further containing a curable resin.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: October 18, 2005
    Assignee: Nippon Kayaku Kabushiki Kaisha
    Inventors: Masahiro Imaizumi, Toyofumi Asano, Masaki Shinmoto
  • Patent number: 6939940
    Abstract: Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and were end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The resulting reactive end-capped liquid crystal oligomers exhibit a variety of improved and preferred physical properties. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystal oligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oligomers are stable for up to an hour in the melt phase.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: September 6, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Theodorous J. Dingemans, Erik S. Weiser, Terry L. St. Clair
  • Patent number: 6864347
    Abstract: The present disclosure is in part directed to optical devices for modulating light comprising compounds which spontaneously align. The disclosure is also directed to electro-optic compounds wherein chromophore substituents are chemically bound to a chiral polymer. In one embodiment, the chiral polymer comprises a binaphthyl monomeric unit.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: March 8, 2005
    Assignee: KVH Industries, Inc.
    Inventors: Martin Kits van Heyningen, Thierry Verbiest, Andre Persoons, Celeste Samyn, Guy Koeckelberghs
  • Patent number: 6855776
    Abstract: Improved amine-terminated polybutadienes (ATPBs) having one or two terminal groups of the formula —CHRNH2 wherein R is C1-C20 alkyl, are prepared by aminating a secondary hydroxyl-terminated polybutadiene having no ether groups. The ATPBs may be hydrogenated or partially hydrogenated, either prior to or after the animation, to saturate or partially saturate the polymers. Preferred ATPBs are of the formula H2NCHR-(polybutadiene)-CHRNH2 wherein R is C1-C20 alkyl. Polyureas, polyurethanes, crosslinked epoxies, polyamides, and other derivatives with improved properties can be prepared from the ATPBs. The resultant derivatives are useful in liquid binders for braking systems, electric potting compositions, coatings, adhesives, sealants, and water proofing membranes, for example.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: February 15, 2005
    Assignee: Sartomer Technology Company, Inc.
    Inventors: Herbert Shin-I Chao, John Schmidhauser, Alain Robert Drexler, Nan Tian
  • Publication number: 20040262574
    Abstract: It is an object of the present invention to provide a novel triarylamine polymer which is excellent in solubility and film-forming property and has improved thermal stability; a simple process for its production; and an electronic element employing it.
    Type: Application
    Filed: April 9, 2004
    Publication date: December 30, 2004
    Inventors: Takao Suzuki, Masakazu Nishiyama, Hisao Eguchi
  • Patent number: 6818734
    Abstract: The present invention provides a polybenzazole article superior in light resistance, which contains a light-resisting agent that allows for a regular reflectance of the article of not more than 30% in not less than 30% of the wavelength region of from 450 nm to 700 nm and a production method thereof. The present invention provides a polybenzazole article having noticeably superior light resistance, which is preferable as industrial materials and fireman's garments, and a production method thereof.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: November 16, 2004
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Tetsuo Kodama, Yusuke Shimizu
  • Patent number: 6812290
    Abstract: A polyarylene copolymer which comprises (A) aromatic compound units having a main chain containing one or more electron-withdrawing groups therein and (B) aromatic compound units having a main chain containing no electron-withdrawing groups therein, and a proton-conductive membrane comprising the polyarylene copolymer having sulfonic acid groups.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: November 2, 2004
    Assignee: JSR Corporation
    Inventors: Kohei Goto, Yoshitaka Yamakawa, Mayumi Kakuta, Igor Rozhanskii
  • Patent number: 6803441
    Abstract: In a method of producing a low dielectric constant polymer, a thermosetting monomer is provided, wherein the thermosetting monomer has a cage compound or aryl core structure, and a plurality of arms that are covalently bound to the cage compound or core structure. In a subsequent step, the thermosetting monomer is incorporated into a polymer to form the low dielectric constant polymer, wherein the incorporation into the polymer comprises a chemical reaction of a triple bond that is located in at least one of the arms. Contemplated cage compounds and core structures include adamantane, diamantane, silicon, a phenyl group and a sexiphenylene group, while preferred arms include an arylene, a branched arylene, and an arylene ether. The thermosetting monomers may advantageously be employed to produce low-k dielectric material in electronic devices, and the dielectric constant of the polymer can be controlled by varying the overall length of the arms.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: October 12, 2004
    Assignee: Honeywell International Inc.
    Inventors: Kreisler Lau, Feng Quan Liu, Boris Korolev, Emma Brouk, Ruslan Zherebin, David Nalewajek