Contacting With Aluminum Or Heavy Metal Material Patents (Class 528/485)
  • Patent number: 10214628
    Abstract: A novel plasticizer blend(s) useful for plastisol compositions, including organisols, having good solvating properties, good viscosity profiles and compatibility with other plasticizers and solvents traditionally used in plastisols, comprising benzoate ester plasticizer(s) and a compatibilizing plasticizer component. Methods for preparing a plastisol having low viscosity and good rheology characteristics and for rendering a benzoate ester plasticizer, or blends thereof, compatible with organic solvents traditionally used in plastisols, by incorporating the novel plasticizer blend(s), which do not require adjusting the solubility parameters of the solvents to accommodate the plasticizer, are disclosed.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: February 26, 2019
    Assignee: Emerald Kalama Chemical, LLC
    Inventors: William D. Arendt, Emily McBride, Rebecca Hanes
  • Patent number: 9938363
    Abstract: The invention relates to methods for isolating and obtaining polychloroprene solids, wherein an aqueous polychloroprene dispersion is brought in contact with steam containing coagulant, whereby the polychloroprene solid coagulates.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 10, 2018
    Assignee: ARLANXEO Deutschland GMBH
    Inventors: Thomas-Oliver Neuner, Heiner Stange, Rolf Josten, Rolf Feller, Mesut Fidan
  • Patent number: 9435912
    Abstract: A wholly organic coating consisting of one or more layers of Py-BBL that is transparent in the IR region of the spectrum which is also thermally and oxdatively stable. This is coated onto IR transparent windows, domes and or optical lenses, for enhanced IR and signal filtering.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: September 6, 2016
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: William W. Lai, Lee R. Cambrea, Alfred J. Baca
  • Patent number: 8785588
    Abstract: A tin-containing polyurethane resin having a melting temperature of 40 to 180° C., measured by DSC at a heating rate of 10 K/min and prepared by carrying out a condensation reaction between a diorganotin compound and carboxyl groups of a carboxyl-functional polyurethane resin, wherein the molar ratio between the tin and the carboxyl groups is 1:2-20; and liquid coating compositions containing solid particles of the tin-containing polyurethane resin.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: July 22, 2014
    Assignee: Axalta Coating Systems IP Co., LLC
    Inventor: Carmen Flosbach
  • Patent number: 8735537
    Abstract: The present application provides methods of producing polyanthracene including polymerization of anthracene monomers in the presence of oxidants and reaction solvents. The present application further provides polyanthracene produced by methods described herein that has higher solubility in organic solvents and better thermal stability and ablation resistance.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: May 27, 2014
    Assignee: Tongji University
    Inventors: Mei-rong Huang, Xin-gui Li, Shao-Jun Huang
  • Patent number: 8735533
    Abstract: This invention relates to polymeric violet anthraquinone colorants having at least one poly(oxyalkylene) chain attached to an anthraquinone structure. Such colorants exhibit bright violet shade, excellent compatibility with organic media or aqueous systems, good lightfastness, and excellent thermal stability. The water soluble poly(oxyalkylene) substituted polymeric violet anthraquinone colorants also possess high water solubility, high color strength, non-staining properties, and high pH stability. The processes and methods for making such polymeric violet anthraquinone colorants and their use for coloring consumer products are also provided.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: May 27, 2014
    Assignee: Milliken & Company
    Inventors: Xiaoyong Michael Hong, Robert L Mahaffey
  • Patent number: 8703902
    Abstract: Polymerizable ionic liquid monomers and their corresponding polymers (poly(ionic liquid)s) are created and found to exhibit high absorption of radio frequency electromagnetic radiation, particularly in the microwave and radar bands. These materials are useful for coating objects to make them less reflective of radio frequency radiation and for making objects that absorb radio frequency radiation and are of minimal reflectivity to radio frequency radiation. Free-radical and condensation polymerization approaches are used in the preparation of the poly(ionic liquids).
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: April 22, 2014
    Assignee: University of Wyoming
    Inventors: Maciej Radosz, Youqing Shen, Huadong Tang
  • Patent number: 8541542
    Abstract: The present invention relates to a process for reducing residuals content in a vinyl aromatic polymer, said residuals comprising essentially unpolymerized vinyl aromatic monomer, wherein the vinyl aromatic polymer in the molten state is brought in contact with a solid in powder capable to catalyze the alkylation of said residual vinyl aromatic monomer on the vinyl aromatic polymer. Advantage of the present invention is a sharp reduction of the unpolymerized vinyl aromatic monomer in the vinyl aromatic polymer without generating a new residual and without inducing a colored vinyl aromatic polymer. The present invention also relates to said vinyl aromatic polymer having a low residuals content.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: September 24, 2013
    Assignee: Total Research & Technology Feluy
    Inventors: Thomas-Maurice Roussel, Bruno Vuillemin, Francois Fajula
  • Patent number: 8530554
    Abstract: A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: September 10, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: Thomas M. McCleskey, Anthony K. Burrell, Quanxi Jia, Yuan Lin
  • Patent number: 8524858
    Abstract: Provided is a high temperature-resistant metal adhesive containing hyperbranched poly(triazole)s synthesized by in situ azide/alkyne click polymerization. Also provided is a method for preparing the same adhesives by in situ click polymerization of azide and alkyne monomers on metal substrates. The method is optimized to get high adhesive strength at room temperature or elevated temperatures by analyzing the effects of monomer ratio, curing temperature and time, and annealing temperature and time. The hyberbranched poly(triazole)s adhesive has comparable or better temperature resistance compared with known high temperature epoxy metal adhesives, and it is the first high temperature metal adhesive using hyperbranched poly(triazole)s prepared by in situ azide/alkyne click polymerization.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: September 3, 2013
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Benzhong Tang, Youhong Tang, Ka Wai Jim, Anjun Qin, Wing Yip Lam, Jie Li
  • Patent number: 8507398
    Abstract: Catalysts for metathesis reactions, in particular for the metathesis of nitrile rubber, are provided.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: August 13, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Ludek Meca, Lubica Triscikova, Heinz Berke, Kirsten Langfeld, Martin Schneider, Oskar Nuyken, Werner Obrecht
  • Patent number: 8436058
    Abstract: Embodiments of the present disclosure include a method for separating a product comprising a super absorbent polymer, a fiber and a plastic to separate the product into components thereof, the method comprising adding water to the product, and pressing the product in order to separate the product into components comprising a plastics component and a super absorbent polymer and fiber component. Other methods of the present disclosure include a method for producing a reusable plastic, reusable paper fiber stream and a reusable super absorbent polymer from the treatment of a product comprising a super absorbent polymer, a fiber and a plastic. Still other embodiments of the present disclosure include a method for the treatment of wet super absorbent polymer, comprising salt assisted dehydration.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: May 7, 2013
    Assignee: Knowaste International, LLC
    Inventor: David Grimes
  • Patent number: 8389673
    Abstract: An aryl composition includes aryl ether oligomers. These compositions may be prepared by reaction of one or more dihalobenzenes with one or more dihydroxybenzenes by an Ullman ether reaction. The oligomers may have two or more benzene rings and include terminal halogen, e.g., bromine (Br), or hydroxyl (OH) groups. These oligomers may be brominated to form flame retardant compositions for thermoplastic polymers.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 5, 2013
    Assignee: Chemtura Corporation
    Inventors: Larry D. Timberlake, Julia E. Holland
  • Patent number: 8362154
    Abstract: A novel process for the metathetic degradation of nitrile rubbers is provided which uses specific transition metal complex catalysts showing an increased activity.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: January 29, 2013
    Assignee: LANXESS Deutschland GmbH
    Inventors: Christopher Ong, Werner Obrecht, Oskar Nuyken, Julia Maria Muller
  • Patent number: 8350001
    Abstract: A method for removing a carbonization catalyst from a graphene sheet, the method includes contacting the carbonization catalyst with a salt solution, which is capable of oxidizing the carbonization catalyst.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: January 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaeyoung Choi, Keun Soo Kim, Byung Hee Hong
  • Patent number: 8324325
    Abstract: Process for preparing polyether alcohols by polymerization by means of double metal cyanide catalysts (DMC catalysts), characterized in that, before or during the polymerization, one or more, optionally mixed additives consisting of compounds having one or more hydridic hydrogen atoms bonded to one silicon atom are added to the reaction mixture.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: December 4, 2012
    Assignee: Evonik Goldschmidt GmbH
    Inventors: Wilfried Knott, Frank Schubert
  • Patent number: 8309618
    Abstract: The disclosure relates to methods and materials useful for depolymerizing a polymer. In one embodiment, for example, the disclosure provides a method for depolymerizing a polymer containing electrophilic linkages, wherein the method comprises contacting the polymer with a nucleophilic reagent in the presence of a guanidine-containing compound. The methods and materials of the disclosure find utility, for example, in the field of waste reclamation and recycling.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: November 13, 2012
    Assignees: International Business Machines Corporation, Stanford University
    Inventors: James Lupton Hedrick, Russell Clayton Pratt, Robert M. Waymouth
  • Patent number: 8143371
    Abstract: This invention relates to a process for preparing polytrimethylene ether glycols or copolymers thereof having a number-average molecular weight of at least about 250 g/mole by a polycondensation reaction using at least one acid catalyst.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: March 27, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Mark Andrew Harmer, Christian Hoffmann, Scott Christopher Jackson, Edward R. Murphy, Rupert Spence
  • Patent number: 8133969
    Abstract: A method for removing a carbonization catalyst from a graphene sheet, the method includes contacting the carbonization catalyst with a salt solution, which is capable of oxidizing the carbonization catalyst.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: March 13, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaeyoung Choi, Keun Soo Kim, Byung Hee Hong
  • Patent number: 8129498
    Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: March 6, 2012
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge
  • Patent number: 8097696
    Abstract: A method for preparing multi-arm poly(ethylene glycol) (PEG) chlorides from multi-arm PEG polyols is described. The method comprises a process, wherein the multi-arm PEG polyol is reacted with thionyl chloride to form the multi-arm PEG chloride.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: January 17, 2012
    Assignee: Actamax Surgical Materials, LLC
    Inventor: Henry Keith Chenault
  • Patent number: 8063174
    Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: November 22, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge
  • Patent number: 8053584
    Abstract: The present case relates to a process for the purification of lactide from a crude lactide vapor product stream which process comprises a rectification/condensation step leading to a lactide-enriched condensate.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: November 8, 2011
    Assignee: Tate & Lyle Public Limited Company
    Inventors: Johannes Meerdink, Nils Dan Anders Sädergard
  • Patent number: 8008418
    Abstract: It is an object of the present invention to provide a copolymer containing a metal coordination compound that has blue phosphorescence emission with excellent color purity and, furthermore, to provide a copolymer containing a metal coordination compound that has luminescence of various colors from blue to red and a long operating life. The present invention relates to a metal coordination compound-containing copolymer that contains a metal coordination compound monomer unit represented by any one of Formulae (1) to (12): and at least one type of monomer unit selected from the group consisting of a substituted or unsubstituted quinoline monomer unit, a substituted or unsubstituted arylene and/or heteroarylene monomer unit, a substituted or unsubstituted branched monomer unit, and a substituted or unsubstituted conjugated monomer unit.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: August 30, 2011
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Yoshii Morishita, Satoyuki Nomura, Yoshihiro Tsuda
  • Patent number: 7999066
    Abstract: The present invention relates to a precipitation process for removing transition metals from polymer solutions. Specifically, it comprises the removal of transition metal complexes which usually comprise copper from polymer solutions after a completed atom transfer radical polymerization.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: August 16, 2011
    Assignee: Evonik Roehm GmbH
    Inventors: Sven Balk, Gerd Loehden, Christine Miess, Christine Troemer, Monika Maerz
  • Patent number: 7989582
    Abstract: The present invention relates to a process for producing tetrahydrofuran polymer or tetrahydrofuran copolymer by using heteropolyacid catalyst, and more particularly, to a process for producing tetrahydrofuran polymer by using hydronium ion water having a pH of 5.5 or less as a reaction initiator in the initiation step.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: August 2, 2011
    Assignee: Hyosung Corporation
    Inventors: Eun-Ku Lee, Yong-Ho Baek, Joon-Seok Oh, No-Hyun Kim, Jae-Young Huh
  • Patent number: 7968674
    Abstract: A method for removing a carbonization catalyst from a graphene sheet, the method includes contacting the carbonization catalyst with a salt solution, which is capable of oxidizing the carbonization catalyst.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: June 28, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaeyoung Choi, Keun Soo Kim, Byung Hee Hong
  • Patent number: 7947801
    Abstract: A method of synthesizing a poly(9,9-disubstituted-fluorene) includes reacting a 9,9-disubstituted-fluorene with an alkyl lithium in the presence of a catalytic amount of a nickel amine complex. The 9,9-disubstituted-fluorene includes solubility-enhancing substituents in the 9-position and leaving groups in the 2-position and the 7-position. The product poly(9,9-disubstituted-fluorene)s are fluorescent conjugated polymers that are useful as, for example, blue light-emitting materials.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: May 24, 2011
    Assignee: The University of Massachusetts
    Inventors: Kenneth Raymond Carter, Sarav Bharat Jhaveri
  • Patent number: 7923518
    Abstract: The present application provides novel nitrile rubbers comprising repeating units of at least one ?,?-unsaturated nitrile, at least one conjugated diene and optionally one or more further copolymerizable monomers which nitrile rubbers are distinguished by a specific calcium content as well as a specific chlorine content and dispose of specific thio end groups. Additionally, an improved polymerization and work-up process is provided to produce the aforementioned nitrile rubbers.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: April 12, 2011
    Assignee: LANXESS Deutschland GmbH
    Inventor: Werner Obrecht
  • Patent number: 7897719
    Abstract: The present invention provides a catalyst comprising a mixture of at least one acid-activated sheet silicate with a transition metal oxide of groups 8 and/or 9 of the Periodic Table of the Elements and also a process for preparing polytetrahydrofuran, polytetrahydrofuran copolymers, diesters or monoesters of these polymers, in which tetrahydrofuran is polymerized in the presence of at least one telogen and/or comonomer over such a catalyst.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: March 1, 2011
    Assignee: BASF SE
    Inventors: Stephan Hatscher, Michael Hesse, Tobias Wabnitz, Stefan Kashammer, Rolf Pinkos
  • Patent number: 7868132
    Abstract: A method for preparing multi-arm poly(ethylene glycol) (PEG) amines from multi-arm PEG polyols is described. The method comprises a two step process, wherein the multi-arm PEG polyol is first reacted with thionyl chloride to form a multi-arm PEG chloride, which is subsequently reacted with aqueous or anhydrous ammonia to yield the multi-arm PEG amine.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: January 11, 2011
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Henry Keith Chenault
  • Patent number: 7847056
    Abstract: An object of the invention is to provide a fluorine-containing (meth)acrylate polymer readily at a low cost without using any special polymerization facilities. Thus, the invention provides a fluorine-containing (meth)acrylate polymer obtained by reacting a (meth)acrylate polymer with an alcohol containing a fluorine atom represented by General Formula 1: Rf(CH2)nOH??(1) wherein Rf is a fluoroalkyl group or a fluoroalkyl ether group of 1 to 15 carbon atoms containing at least one or more fluorine atoms and n is an integer of 0 to 10 as well as a method for producing the same.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: December 7, 2010
    Assignees: Kaneka Corporation
    Inventors: Etsuo Horii, Hirosuke Kawabata, Toshikazu Hirao, Akiya Ogawa, Xiaoliang Xu
  • Patent number: 7820305
    Abstract: The present invention relates to phosphorescent copolymers comprising trifunctional triplet emitters. The polymers according to the invention are highly soluble, readily accessible synthetically and more suitable for use in organic light-emitting diodes than are comparative materials in accordance with the prior art.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: October 26, 2010
    Assignee: Merck Patent GmbH
    Inventors: Niels Schulte, Susanne Heun, Ingrid Bach, Philipp Stössel, Kevin Treacher
  • Patent number: 7795376
    Abstract: A method of isolating a PHA, includes combining the PHA, a first solvent and a second solvent to form a combination, the first solvent being capable of forming an azeotrope with the second solvent; and heating the combination to form the azeotrope of the first and second solvents.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 14, 2010
    Assignee: Metabolix Inc.
    Inventors: Johan Van Walsem, Erik Anderson, John Licata
  • Patent number: 7772361
    Abstract: A PBI compound that includes imidazole nitrogens, at least a portion of which are substituted with an organic-inorganic hybrid moiety. At least 85% of the imidazole nitrogens may be substituted. The organic-inorganic hybrid moiety may be an organosilane moiety, for example, (R)Me2SiCH2—, where R is selected from among methyl, phenyl, vinyl, and allyl. The PBI compound may exhibit similar thermal properties in comparison to the unsubstituted PBI. The PBI compound may exhibit a solubility in an organic solvent greater than the solubility of the unsubstituted PBI. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may occur at about room temperature and/or at about atmospheric pressure. Substituting may use at least five equivalents in relation to the imidazole nitrogens to be substituted or, preferably, about fifteen equivalents.
    Type: Grant
    Filed: July 3, 2007
    Date of Patent: August 10, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Eric S. Peterson, Alan K. Wertsching, Christopher J. Orme, Thomas A. Luther, Michael G. Jones
  • Patent number: 7741428
    Abstract: A method for producing a borohydride is described that includes the steps of providing a source of borate; providing a material that chemically reduces the source of the borate to produce a borohydride; and reacting the source of the borate and the material by supplying heat at a temperature that substantially effects the production of the borohydride.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: June 22, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Patent number: 7683122
    Abstract: Disclosed are processes for preparing polyareneazole polymers including contacting a molar excess of a free base in water with a terephthalic acid salt to form an aqueous mixture, adjusting the pH to precipitate a monomer complex, contacting the monomer complex with metal powder, and polymerizing the monomer complex. Polyareneazoles, filaments and yarns are also disclosed.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: March 23, 2010
    Assignees: E. I. du Pont de Nemours and Company, Magellan Systems International, LLC
    Inventors: Doetze Jakob Sikkema, David J. Rodini, Qinghong Fu Adkins, Steven R. Allen, Georg Valentin Martin, Ralf Demuth, Michael Schelhaas
  • Patent number: 7622415
    Abstract: Provided are a polymerization catalyst composition for ethylene oxide which can give polyethylene oxide having a molecular weight lower than that of the prior art and a relatively narrow molecular weight distribution, and a process for the production of polyethylene oxide by the use of the catalyst composition. The catalyst composition makes it possible to produce polyethylene oxide having a molecular weight ranging from about 20,000 to 200,000 through direct polymerization in a high yield with economic advantage, and is characterized by comprising an organoaluminum compound and at least one member selected from among alkali metal alkoxides and alkali metal hydroxides. According to the process, polyethylene oxide having a molecular weight failing within the above range can be produced by the use of the catalyst composition under the same polymerication conditions as those of the prior art.
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: November 24, 2009
    Assignee: Meisei Chemical Works, Ltd.
    Inventor: Hideki Izumi
  • Patent number: 7576173
    Abstract: The present invention provides methods for isolating a PHA. The method comprises combining the PHA, a first solvent and a second solvent to form a combination, the first solvent and the second solvent being capable of forming an azeotrope with the second solvent; and heating the combination to substantially remove the first solvent from the combination. Alternatively, the method comprises combining the PHA, a first solvent, a second solvent and a third solvent to form a combination, the first solvent and the second solvent being capable of forming an azeotrope with the third solvent; and heating the combination to substantially remove the first solvent and the second solvent from the combination.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: August 18, 2009
    Assignee: Metabolix Inc.
    Inventors: Johan Van Walsem, Erik Anderson, John Licata
  • Patent number: 7511113
    Abstract: An aromatic ether oligomer or polyaromatic ether comprising the formula: O—Arn; wherein Ar is an independently selected divalent aromatic radical; formed by reacting a dihydroxyaromatic with a dihaloaromatic; and wherein the reaction is performed in the presence of a copper compound and cesium carbonate. The polyaromatic ether is formed when neither the dihydroxyaromatic nor the dihaloaromatic is present in an excess amount. The aromatic ether oligomer is formed by using an excess of either dihydroxyaromatic or dihaloaromatic. A phthalonitrile monomer comprising the formula: formed by reacting a 3- or 4-nitrophthalonitrile with a hydroxy-terminated aromatic ether oligomer. A thermoset formed by curing the phthalonitrile monomer. Processes for forming all the above.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: March 31, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Dawn D. Dominguez
  • Publication number: 20090062508
    Abstract: The present invention relates to a precipitation process for removing transition metals from polymer solutions. Specifically, it comprises the removal of transition metal complexes which usually comprise copper from polymer solutions after a completed atom transfer radical polymerization.
    Type: Application
    Filed: February 12, 2007
    Publication date: March 5, 2009
    Applicant: Evonik Roehm GmbH
    Inventors: Sven Balk, Gerd Loehden, Christine Miess, Christine Troemer, Monika Maerz
  • Patent number: 7456249
    Abstract: The present invention relates to a solid, acid catalyst for the preparation of polytetrahydrofuran, polytetrahydrofuran copolymers, diesters or monoesters of these polymers by polymerization of tetrahydrofuran in the presence of at least one telogen and/or comonomer, which has a BET surface area of at least 160 m2/g and an acid center density of at least 0.05 mmol/g for pKa values of from 1 to 6, to a process for preparing it and to a process for the polymerization of cyclic ethers over this catalyst.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: November 25, 2008
    Assignee: BASF SE
    Inventors: Stephan Schlitter, Martin Haubner, Michael Hesse, Stefan Kaeshammer, Rolf Pinkos, Christoph Sigwart
  • Patent number: 7452959
    Abstract: An aromatic ether oligomer or polyaromatic ether comprising the formula: O—Arn; wherein Ar is an independently selected divalent aromatic radical; formed by reacting a dihydroxyaromatic with a dihaloaromatic; and wherein the reaction is performed in the presence of a copper compound and cesium carbonate. The polyaromatic ether is formed when neither the dihydroxyaromatic nor the dihaloaromatic is present in an excess amount. The aromatic ether oligomer is formed by using an excess of either dihydroxyaromatic or dihaloaromatic. A phthalonitrile monomer comprising the formula: formed by reacting a 3- or 4-nitrophthalonitrile with a hydroxy-terminated aromatic ether oligomer. A thermoset formed by curing the phthalonitrile monomer. Processes for forming all the above.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: November 18, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Dawn D. Dominguez
  • Patent number: 7449542
    Abstract: A thienylene-arylene polymer comprised of a repeating segment containing at least one 2,5-thienylene unit selected from (I) and (II), and from about one to about three arylene units selected from (IIIa), (IIIb), and/or (IIIc) wherein R is an alkyl or an alkoxy; R? is halogen, alkyl, or alkoxy, and a and b represent the number of Rs.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: November 11, 2008
    Assignee: Xerox Corporation
    Inventors: Yiliang Wu, Ping Liu, Lu Jiang, Beng S. Ong
  • Patent number: 7439317
    Abstract: An amorphous polyester chip having superior processing ability is characterized by a moisture content of not more than 300 ppm and a fine particle content of not more than 500 ppm. A preferred embodiment is a copolymerized polyester chip comprising a main repeating unit consisting of ethylene terephthalate, and 1,4-dimethylene-cyclohexane terephthalate or neopentyl terephthalate, wherein the glycol component of the copolymerized polyester has a specific composition of 50 to 85 mol % of ethylene glycol, 12 to 45 mol % of 1,4-cyclohexanedimethanol or neopentyl glycol and 1.5 to 7.0 mol % of diethylene glycol. Such amorphous polyester chip can be obtained by cooling an amorphous polyester obtained by melt polymerization, cutting the polyester to give a chip, feeding the chip in a treatment tank, drying the chip and removing fine particles.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: October 21, 2008
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Keisuke Suzuki, Hiroki Fukuda, Hideki Shimizu, Tsuyoshi Matsunaga
  • Patent number: 7420027
    Abstract: A method for producing a borohydride is described and which includes the steps of providing a source of borate; providing a material which chemically reduces the source of the borate to produce a borohydride; and reacting the source of borate and the material by supplying heat at a temperature which substantially effects the production of the borohydride.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: September 2, 2008
    Assignee: Battelle Energy Alliance, LLC
    Inventor: Peter C. Kong
  • Patent number: 7381788
    Abstract: Provided is a continuous production method of a polyamide with stabilized polymerization degree and good quality, particularly an aromatic-containing polyamide.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: June 3, 2008
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Yasuhito Tsujii, Gaku Maruyama, Kaoru Ogawa, Yoshinori Takada, Kazuhisa Koishi, Kenta Susuki
  • Patent number: 7332565
    Abstract: A method for reducing the amount of residual monomer in aqueous polymer dispersions by aftertreatment with an initiator system comprises aftertreating the aqueous polymer dispersion with addition of an initiator system essentially comprising a) from 0.001 to 5% by weight, based on the total monomer amount used to prepare the polymer dispersion, of an inorganic salt of persulfuric acid, b) from 0.005 to 5% by weight, based on the total monomer amount used to prepare the polymer dispersion, of a methyl ketone, and c) optionally, catalytic amounts of a metal ion which is able to exist in a plurality of valence states.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: February 19, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Mubarik Mahmood Chowdhry, Wolfgang Gaschler
  • Patent number: 7309758
    Abstract: A PBI compound includes imidazole nitrogens at least a portion of which are substituted with a moiety containing a carbonyl group, the substituted imidazole nitrogens being bonded to carbon of the carbonyl group. At least 85% of the nitrogens may be substituted. The carbonyl-containing moiety may include RCO—, where R is alkoxy or haloalkyl. The PBI compound may exhibit a first temperature marking an onset of weight loss corresponding to reversion of the substituted PBI that is less than a second temperature marking an onset of decomposition of an otherwise identical PBI compound without the substituted moiety. The PBI compound may be included in separatory media. A substituted PBI synthesis method may include providing a parent PBI in a less than 5 wt % solvent solution. Substituting may use more than 5 equivalents in relation to the imidazole nitrogens to be substituted.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: December 18, 2007
    Assignee: Battelle Energy Alliance, LLC
    Inventors: John R. Klaehn, Eric S. Peterson, Christopher J. Orme, Michael G. Jones, Alan K. Wertsching, Thomas A. Luther, Tammy L. Trowbridge
  • Patent number: 7271236
    Abstract: A preparation method of a polyester resin includes: under predetermined depolymerization conditions, mixing a polyester resin, a resin dissolvent and a polycondensation catalyst to depolymerize the polyester resin and form a first reaction mixture; adding a first monomer to the first reaction mixture to form a second reaction mixture; under predetermined polymerization conditions, adding a second monomer to the second reaction mixture to polymerize the depolymerized polyester resin and form a third reaction mixture; and adding a neutralizing agent to neutralize the polymerized reaction product of the third reaction mixture.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: September 18, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-woo Kim, Kyung-yol Yon, Young-ho Lee, Seong-geun Oh