Catalyst Utilized Patents (Class 564/479)
  • Patent number: 8278489
    Abstract: Processes for preparing an amine, which processes comprise: reacting a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones, and mixtures thereof, with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of a zirconium dioxide-, copper- and nickel-containing catalyst; wherein the catalyst comprises a catalytically active composition which comprises, before reduction with hydrogen, oxygen compounds of zirconium, copper, nickel and tin, and 0.5 to 8.0% by weight of an oxygen compound of cobalt, calculated as CoO, and wherein the catalytically active composition does not comprise any ruthenium.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: October 2, 2012
    Assignee: BASF SE
    Inventors: Petr Kubanek, Wolfgang Mägerlein, Ekkehard Schwab, Johann-Peter Melder, Manfred Julius
  • Publication number: 20120232294
    Abstract: Process for preparing alkanolamines which have a primary amino group (—NH2) and a hydroxyl group (—OH) by alcohol amination of diols having two hydroxyl groups (—OH) by means of ammonia with elimination of water, wherein the reaction is carried out homogeneously catalyzed in the presence of at least one complex catalyst comprising at least one element selected from groups 8, 9 and 10 of the Periodic Table and also at least one donor ligand.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: BASF SE
    Inventors: Thomas SCHAUB, Boris Buschhaus, Marion Kristina Brinks, Mathias Schelwies, Rocco Paciello, Johann-Peter Melder, Martin Merger
  • Publication number: 20120232293
    Abstract: Process for preparing primary amines which have at least one functional group of the formula (—CH2—NH2) and at least one further primary amino group by alcohol amination of starting materials having at least one functional group of the formula (—CH2—OH) and at least one further functional group (—X), where (—X) is selected from among hydroxyl groups and primary amino groups, by means of ammonia with elimination of water, wherein the reaction is carried out homogeneously catalyzed in the presence of at least one complex catalyst comprising at least one element selected from groups 8, 9 and 10 of the Periodic Table and also at least one donor ligand.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: BASF SE
    Inventors: Thomas SCHAUB, Boris Buschhaus, Marion Kristina Brinks, Mathias Schelwies, Rocco Paciello, Johann-Peter Melder, Martin Merger
  • Publication number: 20120232292
    Abstract: Process for the preparation of primary amines which have at least one functional group of the formula (—CH2—NH2) by alcohol amination of starting materials which have at least one functional group of the formula (—CH2—OH), with ammonia, with the elimination of water, where the alcohol amination is carried out under homogeneous catalysis in the presence of at least one complex catalyst which comprises at least one element selected from groups 8 and 9 of the Periodic Table of the Elements, and also at least one phosphorus donor ligand of the general formula (I).
    Type: Application
    Filed: March 8, 2012
    Publication date: September 13, 2012
    Applicant: BASF SE
    Inventors: Thomas SCHAUB, Boris BUSCHHAUS, Marion Kristina BRINKS, Mathias SCHELWIES, Rocco PACIELLO, Johann-Peter MELDER, Martin MERGER
  • Patent number: 8247611
    Abstract: The present invention relates to a process for producing an aliphatic amine, comprising the step of contacting a linear or branched, or cyclic aliphatic alcohol having 6 to 22 carbon atoms with ammonia and hydrogen in the presence of a catalyst formed by supporting at least (A) a ruthenium component produced by hydrolysis of a ruthenium compound on a carrier, or by further supporting, in addition to the component (A), a specific second metal component or a specific third metal component on the carrier. According to the process of the present invention, an aliphatic primary amine can be produced from an aliphatic alcohol with a high catalytic activity and a high selectivity.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 21, 2012
    Assignee: KAO Corporation
    Inventors: Tetsuaki Fukushima, Masaharu Jono, Michio Terasaka
  • Patent number: 8246793
    Abstract: Processes for the continuous fractional distillation of a mixture comprising morpholine (MO), monoaminodiglycol (ADG), ammonia and water from a reaction of diethylene glycol (DEG) with ammonia, the process comprising: (i) separating off ammonia from the mixture at a top of a first distillation column K10; (ii) feeding a bottom fraction from the first distillation column to a second distillation column K20, wherein water and an organic product are separated off at a top of the second distillation column at a top temperature of 45 to 198° C. and a pressure in the range from 0.1 to 15 bar; (iii) feeding a bottom fraction from the second distillation column to a third distillation column K30, wherein morpholine and an organic product having a boiling point of <140° C. (1.013 bar) are separated off at a point selected from a top and a side offtake of the third distillation column, and monoaminodiglycol and an organic product having a boiling point of >190° C. (1.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: August 21, 2012
    Assignee: BASF SE
    Inventors: Helmut Schmidtke, Oliver Buβmann, Ralph Versch, Udo Rheude, Uwe Leyk, Manfred Julius, Martin Rudloff, Erhard Henkes
  • Patent number: 8197646
    Abstract: Process for the continuous fractional distillation of mixtures including morpholine (MO), monoaminodiglycol (ADG), ammonia and water obtained by reaction of diethylene glycol (DEG) with ammonia, which includes separating off ammonia at the top of a first distillation column K10, feeding the bottoms from K10 to a second distillation column K20 in which water and organic products are separated off at the top at a temperature at the top in the range from 45 to 198° C. and a pressure in the range from 0.1 to 15 bar, feeding the bottoms from K20 to a third distillation column K30 in which MO and organic products having a boiling point of <140° C. (1.013 bar) are separated off at the top or at a side offtake and ADG and organic products having a boiling point of >190° C. (1.013 bar) are separated off at the bottom, feeding the MO including stream which is separated off at the top or at a side offtake of the column K30 to a fourth column K40 in which organic products having a boiling point of ?128° C. (1.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: June 12, 2012
    Assignee: BASF SE
    Inventors: Helmut Schmidtke, Oliver Buβmann, Ralph Versch, Udo Rheude, Uwe Leyk, Manfred Julius, Martin Rudloff, Erhard Henkes
  • Publication number: 20120123167
    Abstract: A reaction apparatus which is used for conducting a gas-liquid chemical reaction in a state that a liquid is in a continuous phase, wherein its reactor has therein a shear type stirring impeller for dispersing a raw reaction gas or a carrier gas and a film-formed catalyst, which apparatus is capable of producing a target reaction product; and a process for producing a tertiary amine in such reaction apparatus.
    Type: Application
    Filed: January 19, 2012
    Publication date: May 17, 2012
    Applicant: KAO CORPORATION
    Inventors: Atsushi Hirota, Toru Nishimura
  • Patent number: 8173568
    Abstract: The invention provides a method of using an alcohol and a primary or secondary amine as the starting material to produce the corresponding secondary amine easily at a high yield and a catalyst used therein. The invention relates to a film-type catalyst for production of a tertiary amine, which is used in producing a tertiary amine from an alcohol and a primary or secondary amine as the starting material, and a process for producing a tertiary amine, which includes reacting an alcohol with a primary or secondary amine in the presence of the film-type catalyst.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: May 8, 2012
    Assignee: Kao Corporation
    Inventors: Toru Nishimura, Shoji Hasegawa, Osamu Tabata, Kunio Matsui
  • Patent number: 8134030
    Abstract: A process for preparing a primary amine with a tertiary alpha-carbon atom by reacting a tertiary alcohol with ammonia in the presence of a heterogeneous catalyst, by performing the reaction in the presence of a non-microporous, non-zeolitic aluminosilicate as a catalyst, where the aluminosilicate has a molar Al/Si ratio in the range from 0.1 to 30.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: March 13, 2012
    Assignee: BASF SE
    Inventors: Marcus Sigl, Thomas Heidemann
  • Patent number: 8124808
    Abstract: A method of transalkoxylation of nucleophilic compounds in which an alkoxylated and a nucleophilic compound are combined in a suitable vessel and reacted in the presence of a heterogeneous catalyst under conditions capable of transferring at least one hydroxyalkyl group from the alkoxylated compound to the nucleophilic compound. The method is especially useful in the transalkoxylation of alkanolamines to transfer a hydroxyalkyl group from an alkanolamine having a greater number of hydroxyalkyl groups to an alkanolamine having a lesser number of hydroxyalkyl groups.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: February 28, 2012
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventors: Stephen W. King, William C. Hoffman
  • Patent number: 8119843
    Abstract: A reaction apparatus which is used for conducting a gas-liquid chemical reaction in a state that a liquid is in a continuous phase, wherein its reactor has therein a shear type stirring impeller for dispersing a raw reaction gas or a carrier gas and a film-formed catalyst, which apparatus is capable of producing a target reaction product; and a process for producing a tertiary amine in such reaction apparatus.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: February 21, 2012
    Assignee: Kao Corporation
    Inventors: Atsushi Hirota, Toru Nishimura
  • Publication number: 20120004464
    Abstract: Process for preparing tri-n-propylamine (TPA), wherein di-n-propylamine (DPA) is reacted in the presence of hydrogen and a copper-comprising heterogeneous catalyst. An integrated process for preparing TPA, which comprises the following operations: I) reaction of n-propanol with ammonia in a reactor in the presence of an amination catalyst and optionally hydrogen to form a mixture of mono-n-propylamine, DPA and TPA, II) separation of unreacted ammonia, unreacted n-propanol and possibly hydrogen from the reaction product mixture and recirculation of at least the ammonia and propanol to the reactor in I) and also separation of the n-propylamine mixture by distillation and isolation of the TPA, III) reaction of the DPA obtained in the separation by distillation in II) in a reactor in the presence of hydrogen and a copper-comprising heterogeneous catalyst to form TPA and IV) feeding of the reactor output from III) to operation II).
    Type: Application
    Filed: June 30, 2011
    Publication date: January 5, 2012
    Applicant: BASF SE
    Inventors: Kevin Huyghe, Steven Brughmans, Falk Simon, Johann-Peter Melder, Peter Raatz
  • Publication number: 20120004465
    Abstract: A process for the preparation of an isomorphously substituted layered silicate comprising (1) providing a mixture containing silica or a precursor thereof, at least one structure directing agent (SDA) allowing for the crystallization of the layered silicate, and water; (2) heating the mixture obtained according to (1) under hydrothermal conditions; (3) adding at least one source at least one element suitable for isomorphous substitution; (4) heating the mixture obtained according to (3) under hydrothermal conditions.
    Type: Application
    Filed: March 3, 2010
    Publication date: January 5, 2012
    Applicants: Tokyo Institute of Technology, BASF SE
    Inventors: Bilge Yilmaz, Ulrich Müller, Meike Pfaff, Feng-Shou Xiao, Hermann Gies, Dirk de Vos, Xinhe Bao, Weiping Zhang, Takashi Tatsumi
  • Patent number: 8071814
    Abstract: The invention provides a process for preparing polyetheramines of the formula (1), R2 (NR1R3)n, in which n is a number from 1 to 20, R2 represents an organic radical that contains between 2 and 600 oxalkylene groups, and R1 and R3 are alike or different and represent hydrogen or an organic radical having 1 to 400 carbon atoms, by combining a compound of the formula (2), H(NR1R3), with a compound of the formula (3), R2 (OH)n, in the presence of hydrogen with a metal-containing catalyst whose metal content, based on the dry, reduced catalyst excluding any support material that may be present, is composed either of at least 80% by mass of cobalt or, in the case of Raney catalysts, of at least 80% by mass of metals from the group consisting of cobalt and aluminium, the catalyst containing less than 5% by mass of copper.
    Type: Grant
    Filed: July 7, 2007
    Date of Patent: December 6, 2011
    Assignee: Clariant Finance (BVI) Limited
    Inventors: Dirk Buehring, Andreas Gallas, Klaus Raab, Franz-Xaver Scherl, Olaf Wachsen
  • Publication number: 20110294977
    Abstract: The invention relates to a process for the preparation of polyalkylenepolyamines by catalyzed alcohol amination, in which (i) aliphatic aminoalcohols are reacted with one another or (ii) aliphatic diamines or polyamines are reacted with aliphatic diols or polyols with the elimination of water in the presence of a catalyst.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Applicant: BASF SE
    Inventors: Thomas SCHAUB, Boris BUSCHHAUS, Johann-Peter MELDER, Rocco PACIELLO, Stephan HUEFFER, Helmut WITTELER
  • Patent number: 8063252
    Abstract: Processes comprising: (i) providing a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones and mixtures thereof; and (ii) reacting the reactant with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of a catalyst comprising a zirconium dioxide- and nickel-containing catalytically active composition, to form an amine; wherein the catalytically active composition, prior to reduction with hydrogen, comprises oxygen compounds of zirconium, copper, nickel and cobalt, and one or more oxygen compounds of one or more metals selected from the group consisting of Pb, Bi, Sn, Sb and In.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: November 22, 2011
    Assignee: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Patent number: 7999138
    Abstract: A process is disclosed for the production of olefins including ethylene, propylene, and butanes from methyl amine. The process comprises a reaction whereby methyl amine produces the olefin and ammonia by pyrolysis. The reaction is carried out in the gas phase at a temperature in the range of 400° C. to 700° C.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: August 16, 2011
    Inventor: John E. Stauffer
  • Publication number: 20110184210
    Abstract: In the continuous process for preparing alkylamines by reacting C1-4-alkanols with ammonia in the gas phase in the presence of a shape-selective fixed-bed catalyst in a cooled reactor, the shape-selective fixed-bed catalyst is present in a single contiguous fixed bed in the reactor and tubes through which coolants are passed run within the fixed bed to regulate the temperature of the fixed bed.
    Type: Application
    Filed: April 7, 2011
    Publication date: July 28, 2011
    Applicant: BASF SE
    Inventors: Marco Bosch, Roderich Röttger, Bernd Stein, Thomas Krug, Johann-Peter Melder, Theodor Weber
  • Publication number: 20110172430
    Abstract: Process for the continuous preparation of an amine by reaction of a primary or secondary alcohol, aldehyde and/or ketone with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary and secondary amines at a temperature in the range from 60 to 300° C. in the presence of a catalyst comprising copper oxide and aluminum oxide, wherein the reaction takes place in the gas phase and the catalytically active composition of the catalyst before reduction with hydrogen comprises PS from 20 to 75% by weight of aluminum oxide (Al2O3), from 20 to 75% by weight of oxygen-comprising compounds of copper, calculated as CuO, from 0 to 2% by weight of oxygen-comprising compounds of sodium, calculated as Na2O, and less than 5% by weight of oxygen-comprising compounds of nickel, calculated as NiO, and the shaped catalyst body has a pellet shape having a diameter in the range from 1 to 4 mm and a height in the range from 1 to 4 mm.
    Type: Application
    Filed: September 9, 2009
    Publication date: July 14, 2011
    Inventors: Martin Ernst, Bernd Stein, Steffen Maas, Jörg Pastre, Thorsten Johann, Johann-Peter Melder
  • Publication number: 20110137029
    Abstract: A process for preparing an amine by reacting a primary or secondary alcohol, aldehyde and/or ketone with hydrogen and a nitrogen compound selected from the group of ammonia and primary and secondary amines, in the presence of a supported copper-, nickel- and cobalt-containing catalyst, wherein the catalytically active material of the catalyst, before the reduction thereof with hydrogen, comprises oxygen compounds of aluminum, of copper, of nickel, of cobalt and of tin, and in the range from 0.2 to 5.0% by weight of oxygen compounds of yttrium, of lanthanum, of cerium and/or of hafnium, each calculated as Y2O3, La2O3, Ce2O3 and Hf2O3 respectively, and catalysts as defined above.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 9, 2011
    Applicant: BASF SE
    Inventors: PETR KUBANEK, Wolfgang Mägerlein, Johann-Peter Melder, Thomas Heidemann
  • Patent number: 7951974
    Abstract: In the continuous process for preparing alkylamines by reacting C1-4-alkanols with ammonia in the gas phase in the presence of a shape-selective fixed-bed catalyst in a cooled reactor, the shape-selective fixed-bed catalyst is present in a single contiguous fixed bed in the reactor and tubes through which coolants are passed run within the fixed bed to regulate the temperature of the fixed bed.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: May 31, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Marco Bosch, Roderich Röttger, Bernd Stein, Thomas Krug, Johann-Peter Melder, Theodor Weber
  • Patent number: 7947853
    Abstract: The present invention relates to a process for producing an aliphatic primary amine or an aliphatic secondary amine from an aliphatic alcohol with a high catalytic activity and a high selectivity. In the process for producing an aliphatic amine according to the present invention, a linear, branched, or cyclic aliphatic alcohol having 6 to 22 carbon atoms is contacted with ammonia and hydrogen in the presence of a catalyst formed by supporting a ruthenium component on at least one material selected from the group consisting of (B) a zirconia-containing composite oxide and (C) zirconia surface-treated with a metal by hydrolysis of (A) a ruthenium compound.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: May 24, 2011
    Assignee: Kao Corporation
    Inventors: Yuuta Suzuki, Yasuyuki Mimura, Tetsuaki Fukushima
  • Publication number: 20110092741
    Abstract: The present invention generally relates to a process for preparing a 1,2-ethylenediamine; 1,2-propylenediamine; or a mixture thereof by way of a catalyzed reductive amination reaction employing hydrogen, a reductive amination catalyst, (C3-C40)polyhydric alcohol having at least three hydroxy groups on consecutive carbon atoms thereof, and primary amine, the catalyzed reductive amination reaction employing reaction conditions that are effective for reductively aminating at least two of the hydroxy groups of the (C3-C40)polyhydric alcohol and reductively eliminating at least one other of the hydroxy groups of the (C3-C40)polyhydric alcohol in such a way so as to give a 1,2-ethylenediamine; 1,2-propylenediamine; or a mixture thereof.
    Type: Application
    Filed: August 5, 2010
    Publication date: April 21, 2011
    Inventors: Michael J. Fazio, Erich J. Molitor
  • Publication number: 20110015439
    Abstract: The present invention relates to a process to prepare ethylene amines by the amination of ethylene oxide, ethylene glycol or ethanolamine in the presence of a catalyst, comprising a step wherein methylamine and/or ethylamine are removed from the reaction effluents.
    Type: Application
    Filed: December 29, 2008
    Publication date: January 20, 2011
    Applicant: AKZO NOBLE N.V.
    Inventors: Martin Stefan Hanson, Leif Kenny Christian Gustafson, Johan Lif, Boris Kuzmanovic, Ulf Schröder
  • Publication number: 20110009671
    Abstract: A process for preparing a primary amine with a tertiary alpha-carbon atom by reacting a tertiary alcohol with ammonia in the presence of a heterogeneous catalyst, by performing the reaction in the presence of a non-microporous, non-zeolitic aluminosilicate as a catalyst, where the aluminosilicate has a molar Al/Si ratio in the range from 0.1 to 30.
    Type: Application
    Filed: October 14, 2008
    Publication date: January 13, 2011
    Applicant: BASF SE
    Inventors: Marcus Sigl, Thomas Heidemann
  • Publication number: 20100305363
    Abstract: A reaction apparatus which is used for conducting a gas-liquid chemical reaction in a state that a liquid is in a continuous phase, wherein its reactor has therein a shear type stirring impeller for dispersing a raw reaction gas or a carrier gas and a film-formed catalyst, which apparatus is capable of producing a target reaction product; and a process for producing a tertiary amine in such reaction apparatus.
    Type: Application
    Filed: August 9, 2010
    Publication date: December 2, 2010
    Applicant: Kao Corporation
    Inventors: Atsushi HIROTA, Toru Nishimura
  • Publication number: 20100298608
    Abstract: Disclosed is a process for producing a tertiary amine from a primary or secondary amine and alcohol as corresponding starting materials, which includes step (i) of dehydrogenating an alcohol to obtain an aldehyde, step (ii) of reacting the aldehyde with a primary or secondary amine to obtain a primary or secondary amine adduct, and step (iii) of hydrogenating the primary or secondary amine adduct to obtain a tertiary amine, wherein step (ii) is carried out independently of the other steps.
    Type: Application
    Filed: December 26, 2006
    Publication date: November 25, 2010
    Applicant: KAO CORPORATION
    Inventors: Shoji Hasegawa, Toru Nishimura, Atsushi Hirota
  • Patent number: 7825281
    Abstract: A process for preparing electronics-grade 2,2?-aminoethyoxyethanol by reacting diethylene glycol with ammonia in the presence of a catalyst in a reactor to give a reaction mixture from which a crude 2,2?-aminoethoxyethanol stream is separated off and is purified further by distillation in a pure column, wherein a sidestream comprising electronics-grade 2,2?-aminoethoxyethanol is taken off from the pure column as a result of the diethylene glycol being passed through a filter which ensures a degree of removal of at least 99% for solid particles having a maximum particle size of ?1.5 ?m before the diethylene glycol is fed into the reactor, is proposed.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: November 2, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Helmut Schmidtke, Martin Rudloff
  • Publication number: 20100240894
    Abstract: The present invention relates to a process for preparing amines by reacting glycerol with hydrogen and an aminating agent from the group of ammonia and primary and secondary amines in the presence of a catalyst at a temperature of from 100° C. to 400° C. and a pressure of from 0.01 to 40 MPa (from 0.1 to 400 bar). Preference is given to using glycerol based on renewable raw materials. The catalyst preferably comprises one metal or a plurality of metals or one or more oxygen compounds of the metals of groups 8 and/or 9 and/or 10 and/or 11 of the Periodic Table of the Elements. The invention further relates to the use of the reaction products as an additive in cement or concrete production and in other fields of use. This invention further provides the compounds 1,2,3-triaminopropane, 2-aminomethyl-6-methylpiperazine, 2,5-bis(aminomethyl)piperazine and 2,6-bis(aminomethyl)piperazine.
    Type: Application
    Filed: August 15, 2008
    Publication date: September 23, 2010
    Applicant: BASF SE
    Inventors: Martin Ernst, Bram Willem Hoffer, Johann-Peter Melder
  • Publication number: 20100210877
    Abstract: In the continuous process for preparing alkylamines by reacting C1-4-alkanols with ammonia in the gas phase in the presence of a shape-selective fixed-bed catalyst in a cooled reactor, the shape-selective fixed-bed catalyst is present in a single contiguous fixed bed in the reactor and tubes through which coolants are passed run within the fixed bed to regulate the temperature of the fixed bed.
    Type: Application
    Filed: April 30, 2010
    Publication date: August 19, 2010
    Applicant: BASF Aktiengesellschaft
    Inventors: Marco Bosch, Roderich Röttger, Bernd Stein, Thomas Krug, Johann-Peter Melder, Theodor Weber
  • Publication number: 20100204519
    Abstract: An object of the present invention is to provide an aliphatic amine alkylene oxide adduct which has a satisfactory color when used as a detergent, has a sufficiently sharp molecular weight distribution, and is highly pure and less odorous. The present invention is an aliphatic amine alkylene oxide adduct formed by adding m pieces of (A1O) and n pieces of (A2O) [wherein A1O and A2O each independently represent an oxyethylene group and/or an oxypropylene group] to an ethylene oxide 2-mole adduct of a primary amine having a saturated or unsaturated hydrocarbon group having 4 to 24 carbon atoms, the aliphatic amine alkylene oxide adduct having a color which, as expressed by the Gardner color scale, satisfies the following expression (1) or (2): In the case where 1?m+n?15 Gardner color scale?0.5×(m+n+2)?1.
    Type: Application
    Filed: September 18, 2008
    Publication date: August 12, 2010
    Applicant: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventor: Seiji Yamashita
  • Patent number: 7754922
    Abstract: Processes comprising: (i) providing a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones and mixtures thereof; and (ii) reacting the reactant with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of a catalyst comprising a zirconium dioxide- and nickel-containing catalytically active composition, to form an amine; wherein the catalytically active composition, prior to reduction with hydrogen, comprises oxygen compounds of zirconium, copper, nickel and cobalt, and one or more oxygen compounds of molybdenum in an amount of 5.5 to 12% by weight, calculated as MoO3.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: July 13, 2010
    Assignee: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Patent number: 7754921
    Abstract: Shaped body comprising an aluminosilicate and aluminum oxide, wherein the shaped body has a molar Al/Si ratio in the range from 10 to 30 and an at least bimodal pore distribution for pores having a diameter of greater than 1 nm, with the volume of the pores of the shaped body having a diameter of greater than 10 nm corresponding to at least 40% of the total pore volume of the shaped body, process for producing it and process for the continuous preparation of methylamines by reaction of methanol and/or dimethyl ether with ammonia in the presence of a heterogeneous catalyst, wherein the abovementioned shaped bodies are used as catalyst.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: July 13, 2010
    Assignee: BASF SE
    Inventors: Marco Bosch, Roderich Röttger, Jan Eberhardt, Thomas Krug, Manfred Julius, Karl-Heínz Roβ, Theodor Weber
  • Patent number: 7714169
    Abstract: In the continuous process for preparing alkylamines by reacting C1-4-alkanols with ammonia in the gas phase in the presence of a shape-selective fixed-bed catalyst in a cooled reactor, the shape-selective fixed-bed catalyst is present in a single contiguous fixed bed in the reactor and tubes through which coolants are passed run within the fixed bed to regulate the temperature of the fixed bed.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: May 11, 2010
    Assignee: BASF SE
    Inventors: Marco Bosch, Roderich Röttger, Bernd Stein, Thomas Krug, Johann-Peter Melder, Theodor Weber
  • Patent number: 7696385
    Abstract: The invention relates to a method for producing amines of formula (1), wherein R3 is an organic group containing from 2 to 600 alkoxy groups and R1 and R3 groups are similar or different and represent a hydrogen atom or an organic group containing from 1 to 400 carbon atoms. The inventive method consists in bringing a compound of formula (2) into contact a compound of formula (3) in the presence of hydrogen with a metal-containing catalyst, wherein the metal content in cobalt is equal to or greater than 80% by weight.
    Type: Grant
    Filed: June 10, 2006
    Date of Patent: April 13, 2010
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Dirk Buehring, Andreas Gallas, Martin Glos, Klaus Raab, Franz-Xaver Scherl, Olaf Wachsen
  • Patent number: 7678955
    Abstract: A composite material comprises: (a) a porous crystalline inorganic oxide material comprising a first framework structure defining a first set of uniformly distributed pores having an average cross-sectional dimension of from 0.3 to less than 2 nanometers and comprising a second framework structure defining a second set of uniformly distributed pores having an average cross-sectional dimension of from 2 to 200 nanometers and (b) a co-catalyst within the second set of pores of the porous crystalline inorganic oxide material (a).
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: March 16, 2010
    Assignee: ExxonMobil Chemical Patents Inc
    Inventors: Luc R. M. Martens, Sebastien P. B. Kremer
  • Publication number: 20100029988
    Abstract: The present invention relates to a process for producing an aliphatic primary amine or an aliphatic secondary amine from an aliphatic alcohol with a high catalytic activity and a high selectivity. In the process for producing an aliphatic amine according to the present invention, a linear, branched, or cyclic aliphatic alcohol having 6 to 22 carbon atoms is contacted with ammonia and hydrogen in the presence of a catalyst formed by supporting a ruthenium component on at least one material selected from the group consisting of (B) a zirconia-containing composite oxide and (C) zirconia surface-treated with a metal by hydrolysis of (A) a ruthenium compound.
    Type: Application
    Filed: November 5, 2007
    Publication date: February 4, 2010
    Applicant: KAO CORPORATION
    Inventors: Yuuta Suzuki, Yasuyuki Mimura, Tetsuaki Fukushima
  • Publication number: 20100029989
    Abstract: A process for preparing electronics-grade 2,2?-aminoethyoxyethanol by reacting diethylene glycol with ammonia in the presence of a catalyst in a reactor to give a reaction mixture from which a crude 2,2?-aminoethoxyethanol stream is separated off and is purified further by distillation in a pure column, wherein a sidestream comprising electronics-grade 2,2?-aminoethoxyethanol is taken off from the pure column as a result of the diethylene glycol being passed through a filter which ensures a degree of removal of at least 99% for solid particles having a maximum particle size of ?1.5 ?m before the diethylene glycol is fed into the reactor, is proposed.
    Type: Application
    Filed: September 21, 2007
    Publication date: February 4, 2010
    Applicant: BASF SE
    Inventors: Helmut Schmidtke, Martin Rudloff
  • Patent number: 7651968
    Abstract: A process for producing a shaped body comprising a microporous material and at least one silicon-comprising binder, which comprises the steps (I) preparation of a mixture comprising the microporous material, the binder and a lubricant, (II) mixing and densification of the mixture, (III) shaping of the densified mixture to give a shaped body and (IV) calcination of the shaped body, wherein a silicone resin having a softening point of ?30° C. is used as binder, shaped bodies which can be produced by this process, their use as catalyst, in particular in organic synthesis and very particularly preferably in a process for preparing methylamines.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 26, 2010
    Assignee: BASF SE
    Inventors: Marco Bosch, Jan Eberhardt, Roderich Röttger
  • Patent number: 7642382
    Abstract: Processes comprising: (a) providing a first reactant comprising a bioethanol; and (b) reacting the first reactant with a second reactant comprising a component selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of hydrogen and a catalytically effective amount of a heterogeneous hydrogenation/dehydrogenation catalyst to form an ethylamine; wherein the catalyst has been activated at a temperature of 100 to 500° C. for at least 25 minutes; wherein prior to activation the catalyst comprises: (i) 20 to 65% by weight of a support material comprising one or both of zirconium dioxide (ZrO2) and aluminum oxide (Al2O3), (ii) 1 to 30% by weight of oxygen-comprising compounds of copper, calculated as CuO, and (iii) 21 to 70% by weight of oxygen-comprising compounds of nickel, calculated as NiO; and wherein after activation the catalyst has a CO uptake capacity of >110 ?mol of CO/g of the catalyst.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: January 5, 2010
    Assignee: BASF SE
    Inventors: Till Gerlach, Frank Haese, Anton Meier, Johann-Peter Melder, Heinz Rütter
  • Patent number: 7615666
    Abstract: The present invention relates to a process for producing a tertiary amine from its corresponding primary or secondary amine and alcohol as the raw materials by using a film type catalyst. Disclosed is a process for producing a tertiary amine from an alcohol and a primary or secondary amine, which including conducting the reaction, while circulating a reaction solution at least 3 times/hour in a reactor loaded with a film type catalyst in an external circulating line ancillary to a tank.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: November 10, 2009
    Assignee: Kao Corporation
    Inventors: Toru Nishimura, Atsushi Hirota, Shoji Hasegawa
  • Publication number: 20090275781
    Abstract: Processes comprising: (i) providing a reactant selected from the group consisting of primary alcohols, secondary alcohols, aldehydes, ketones and mixtures thereof, and (ii) reacting the reactant with hydrogen and a nitrogen compound selected from the group consisting of ammonia, primary amines, secondary amines and mixtures thereof, in the presence of a catalyst comprising a zirconium dioxide- and nickel-containing catalytically active composition, to form an amine; wherein the catalytically active composition, prior to reduction with hydrogen, comprises oxygen compounds of zirconium, copper, nickel and cobalt, and one or more oxygen compounds of molybdenum in an amount of 5.5 to 12% by weight, calculated as MoO3.
    Type: Application
    Filed: July 4, 2007
    Publication date: November 5, 2009
    Applicant: BASF SE
    Inventors: Petr Kubanek, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder, Holger Evers, Till Gerlach
  • Patent number: 7601875
    Abstract: Preparation of ethyleneamines by reacting monoethanolamine (MEOA) with ammonia in the presence of a catalyst in a reactor (1) and separating the resulting reaction product, where ethylenediamine (EDA) obtained in the separation is reacted in a separate reactor (2) in the presence of a catalyst to give diethylenetriamine (DETA), and the resulting reaction product is passed to the separation of the reaction product resulting from reactor 1.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: October 13, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Matthias Frauenkron, Holger Evers, Johann-Peter Melder, Roderich Röttger, Markus Siegert, Till Gerlack, Jan Nouwen, Thomas Krug
  • Patent number: 7582583
    Abstract: Process for producing a shaped body comprising a microporous material and at least one silicon-containing binder, which comprises the steps (I) preparing a mixture comprising the microporous material, the binder, a make-up aid and a solvent, (II) mixing and densifying the mixture, (III) shaping the densified mixture to give a shaped body, (IV) drying the shaped body and (V) calcining the dried shaped body, wherein the binder used is an organosilicon compound, shaped bodies which can be produced by this process, their use as catalyst, in particular in organic synthesis and very particularly preferably in a process for preparing triethylenediamine (TEDA).
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: September 1, 2009
    Assignee: BASF SE
    Inventors: Marco Bosch, Matthias Frauenkron, Milan Kostur, Otto Hofstadt
  • Patent number: 7563933
    Abstract: Process for preparing an ethylamine by reacting ethanol with ammonia, a primary amine or a secondary amine in the presence of hydrogen and a heterogeneous catalyst, in which a biochemically prepared ethanol (bioethanol) in which the concentration of sulfur and/or sulfur-containing compounds has been reduced beforehand by bringing it into contact with an adsorbent is used.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: July 21, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Anton Meier, Johann-Peter Melder, Till Gerlach, Frank Haese
  • Publication number: 20090177013
    Abstract: The invention relates to a method for producing amines of formula (1), wherein R3 is an organic group containing from 2 to 600 alkoxy groups and R1 and R3 groups are similar or different and represent a hydrogen atom or an organic group containing from 1 to 400 carbon atoms. The inventive method consists in bringing a compound of formula (2) into contact a compound of formula (3) in the presence of hydrogen with a metal-containing catalyst, wherein the metal content in cobalt is equal to or greater than 80% by weight.
    Type: Application
    Filed: June 10, 2006
    Publication date: July 9, 2009
    Inventors: Dirk Buehring, Andreas Gallas, Martin Glos, Klaus Raab, Franz-Xaver Scherl, Olaf Wachsen
  • Patent number: 7547805
    Abstract: The present invention relates to a process for the production of severely sterically hindered amino-ether alcohols using a catalyst based on the combination of one or more catalytically active metals supported in a dispersed form on one or more ordered mesoporous materials as support.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: June 16, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Andrzej Malek, Christine Nicole Elia, Adeana Richelle Bishop, Edmund John Mozeleski, Michael Siskin
  • Patent number: 7518020
    Abstract: The invention relates to a process for preparing methylamines by gas-phase reaction of methanol and ammonia as starting materials at a pressure in the range from 15 to 30 bar in the presence of heterogeneous catalyst. The starting materials are vaporized in one or more heat exchangers (1, 2, 3), superheated to produce a feed gas stream and subsequently fed into a reactor (4), with the mixing of the starting materials being able to be carried out in the feed stream to one of the heat exchangers (1, 2, 3) or at any desired position in a heat exchanger (1, 2, 3). A product gas stream comprising monomethylamine, dimethylamine and trimethylamine and also reaction by-products is taken off from the reactor (4). To control the reactor inlet temperature of the starting materials to a temperature in the range from 360° C. to 370° C., all or some of the feed gas stream or the product gas stream is passed through an adjustable valve (5) in order to vary the pressure and thus the condensation temperature.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: April 14, 2009
    Assignee: BASF SE
    Inventors: Werner Reutemann, Rolf Wambsganβ, Frank Poplow, Theodor Weber, Karl-Heinz Roβ, Manfred Julius
  • Patent number: 7514585
    Abstract: The present invention relates to a process for producing an aliphatic amine, including the step of contacting a linear or branched, or cyclic aliphatic alcohol with ammonia and hydrogen in the presence of a catalyst containing (A) nickel, copper and zirconium components, and (B) at least one metal component selected from the group consisting of elements belonging to Group 3 of the Periodic Table, elements belonging to Group 5 of the Periodic Table and platinum group elements. According to the process of the present invention, an aliphatic primary amine can be produced from an aliphatic alcohol with a high selectivity.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: April 7, 2009
    Assignee: Kao Corporation
    Inventors: Tetsuaki Fukushima, Masaharu Jono, Michio Terasaka