Of Cyano Patents (Class 564/490)
  • Patent number: 9695110
    Abstract: This disclosure describes a low temperature process for the preparation of dimethyl amines from nitriles via reductive amination. In some embodiments, the process proceeds under mild conditions with aqeuous dimethylamine and show an unexpected rate acceleration by the inclusion of an acid addition salt of the dimethylamine.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: July 4, 2017
    Assignee: Eastman Chemical Company
    Inventor: Neil Warren Boaz
  • Patent number: 9688807
    Abstract: A two-component curable epoxy resin system is disclosed. The resin system includes an epoxy resin component containing at least 80% by weight of a polyglycidyl ether of a polyphenol. The system also includes a hardener mixture containing mainly polyethylene tetraamines. The system includes one or more of i) alkali metal salts, ii) carboxylic acid-, carboxylic anhydride- or carboxylic acid ester-substituted phenol compounds, iii) an amino as a catalyst. The system has beneficial curing characteristics that make it useful for producing fiber-reinforced composites in a resin transfer molding process.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: June 27, 2017
    Assignee: Dow Global Technologies LLC
    Inventors: Sergio Grunder, Rainer Koeniger, Timothy A. Morley, Nebjosa Jelic, Martin Reimers, Peter Cate
  • Patent number: 9079823
    Abstract: A continuous method (P) for preparing diamine is described. The method includes reacting the corresponding alkene nitrile with the corresponding monoamine in order to form the corresponding aminonitrile. The monoamine can be introduced in molecular excess with respect to the alkene nitrile, wherein the unreacted monoamine is recirculated to the reaction; followed by reducing the aminonitrile produced by hydrogen in the presence of at least one alkali-metal hydroxide, water, and a hydrogenation catalyst; and purifying the diamine.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: July 14, 2015
    Assignee: RHODIA OPERATIONS
    Inventor: Philippe Leconte
  • Patent number: 9012638
    Abstract: A process for reacting formaldehyde cyanohydrin (FACH) with ethylenediamine (EDA) in a reactor with limited backmixing at a temperature in the range from 20 to 120° C., wherein the residence time in the reactor is 300 seconds or less.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 21, 2015
    Assignee: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Patent number: 8952156
    Abstract: A process is disclosed for separating the output from the reaction of EDDN or EDMN with hydrogen in the presence of THF, a catalyst, TETA or DETA, water, and optionally organic compounds having higher and lower boiling points than TETA or DETA. Hydrogen is removed, and the output is supplied to a distillation column DK1 in which an azeotrope, optionally comprising organic compounds with a boiling point lower than TETA or DETA, is removed from the top. A product comprising TETA or DETA is removed from the bottom and passed into a distillation column DK2, removing THF. A stream comprising TETA or DETA passes from the bottom of DK2. The DK1 azeotrope is condensed. Phase separation is induced by the addition of an organic solvent essentially immiscible with water, and the mixture is separated. The organic phase is recycled into DK1 and the water phase is discharged.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: February 10, 2015
    Assignee: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Patent number: 8946459
    Abstract: A process for reacting ethylenediamine-formaldehyde adduct (EDFA) and/or ethylene-diamine-monoformaldehyde adduct (EDMFA) with hydrogen cyanide (HCN) in a reactor with limited backmixing at a temperature in the range from 20 to 120° C., wherein the residence time in the reactor is 300 seconds or less.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: February 3, 2015
    Assignee: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Patent number: 8937147
    Abstract: Processes that make nitrogen-containing compounds include converting succinic acid (SA) or monoammonium succinate (MAS) derived from a diammonium succinate (DAS)- or MAS-containing fermentation broth to produce such compounds including diaminobutane (DAB), succinic dinitrile (SDN), succinic amino nitrile (SAN), succinamide (DAM), and related polymers.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: January 20, 2015
    Inventors: Olan S. Fruchey, Leo E. Manzer, Dilum Dunuwila, Brian T. Keen, Brooke A. Albin, Nye A. Clinton, Bernard D. Dombek
  • Publication number: 20140194643
    Abstract: The present invention relates to a continuous process for the preparation of an aminonitrile comprising the stages of: a) formation of the aminonitrile by reaction between an alkenyl nitrile, mixed with aminonitrile, and a monoamine introduced in molar excess with respect to the alkenyl nitrile; b) separation of the unreacted monoamine and the aminonitrile; c) reaction between the monoamine separated during stage b) and all or part of the alkenyl nitrile in order to form a mixture of aminonitrile and of unreacted alkenyl nitrile, with the alkenyl nitrile being introduced in molar excess with respect to the said monoamine; d) transfer of the mixture of aminonitrile and alkenyl nitrile resulting from stage c) to the reaction of stage a), and e) in the case where only a portion of the alkenyl nitrile is introduced during stage c), introduction of the remaining molar amount of alkenyl nitrile into the mixture of stage d).
    Type: Application
    Filed: July 7, 2011
    Publication date: July 10, 2014
    Applicants: SOLVAY (ZHANGJIAGANG) SPECIALTY CHEMICALS CO., LTD., RHODIA OPERATIONS
    Inventors: Zhongjie Lu, Shiquan Diao, Xinjun Zhang, Peijun Xu
  • Patent number: 8710269
    Abstract: The present invention relates to a process for preparing 3-dimethylaminopropylamine (DMAPA) by reacting 3-dimethylaminopropionitrile (DMAPN) with hydrogen in the presence of a catalyst, wherein the DMAPN used has a content of 2-(dimethylaminomethyl)glutaronitrile (DGN) of 300 ppm by weight or less, based on the DMAPN used. Furthermore, the present invention relates to mixtures of DMAPN and DGN, wherein the weight ratio of DMAPN to DGN is in the range from 1 000 000:5 to 1 000 000:250.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 29, 2014
    Assignee: BASF SE
    Inventors: Wolfgang Mägerlein, Jan Eberhardt, Johann-Peter Melder, Ulrich Köhler, Thilo Hahn, Mirko Kreitschmann, Dominik Herbrecht
  • Publication number: 20140048455
    Abstract: Compounds of the formulae: RO—X—NH2 (Ia); RO—X—NH3+Y? (Ib); RO—X—NH—Z—NH2 (IIa); and RO—X—NH—Z—NH3+Y? (IIb), in which X is an aliphatic alkylene group containing 2 to 6 carbon atoms; Z is an aliphatic alkylene group containing 2 to 6 carbon atoms; Y? is an anion; and R is an aliphatic iso C13H27? group with average branching degree ranging from 1.5 to 3.5. The compounds are particularly suitable as flotation collectors for enriching an iron mineral from a silicate-containing iron ore.
    Type: Application
    Filed: April 10, 2012
    Publication date: February 20, 2014
    Applicant: BASF SE
    Inventors: Christian Bittner, Bernhard Ulrich von Vacano, Alexsandro Berger, Roland Boehn, Guenter Oetter, Joerg Nieberle
  • Publication number: 20140021104
    Abstract: The invention relates to a process for enriching an iron mineral from a silicate containing iron ore by inverse flotation comprising the addition of a collector or collector composition comprising at least one of the compounds of formulae RO—X—NH2 (Ia); RO—X—NH3+Y? (Ib); RO—X—NH—Z—NH2 (IIa); and RO—X—NH—Z—NH3+Y? (IIb), in which X is a linear or branched aliphatic alkylene group containing 2 to 6 carbon atoms; Z is a linear or branched aliphatic alkylene group containing 2 to 6 carbon atoms; Y? is an anion; and R is an aliphatic group of the formula (I) C5H11CH(C3H7)CH2— (I) wherein the C5H11 moeity of the aliphatic group of the formula (I) comprises 70 to 99% by weight n-C5H11—, and 1 to 30% by weight C2H5CH(CH3)CH2— and/or CH3CH(CH3)CH2CH2—.
    Type: Application
    Filed: April 10, 2012
    Publication date: January 23, 2014
    Applicant: BASF SE
    Inventors: Christian Bittner, Joerg Nieberle, Bernhard Ulrich Von Vacano, Alexsandro Berger, Roland Boehn, Guenter Oetter
  • Publication number: 20140012045
    Abstract: A continuous method (P) for preparing diamine is described. The method includes reacting the corresponding alkene nitrile with the corresponding monoamine in order to form the corresponding aminonitrile. The monoamine can be introduced in molecular excess with respect to the alkene nitrile, wherein the unreacted monoamine is recirculated to the reaction; followed by reducing the aminonitrile produced by hydrogen in the presence of at least one alkali-metal hydroxide, water, and a hydrogenation catalyst; and purifying the diamine.
    Type: Application
    Filed: February 3, 2012
    Publication date: January 9, 2014
    Applicant: RHODIA OPERATIONS
    Inventor: Philippe Leconte
  • Publication number: 20130324694
    Abstract: Processes for producing nitrogen containing compounds include producing hexamethylenediamine (HMD), adiponitrile (ADN), adipamide (ADM) and derivatives thereof from adipic acid (AA) obtained from fermentation broths containing diammonium adipate (DAA) or monoammonium adipate (MAA).
    Type: Application
    Filed: June 10, 2011
    Publication date: December 5, 2013
    Applicant: BIOAMBER S.A.S.
    Inventors: Olan S. Fruchey, Leo E. Manzer, Dilum Dunuwila, Brian T. Keen, Brooke A. Albin, Nye A. Clinton, Bernard D. Dombek
  • Patent number: 8501979
    Abstract: A process for the preparation of compounds containing nitrile functions and, more specifically, compounds containing two nitrile functions, such as succinonitrile and adiponitrile, is described. A process for preparing dintrile compounds obtained by reacting ammonia with an aqueous solution of a dicarboxyl compound in the presence of a silicon orthophosphate catalyst is also described.
    Type: Grant
    Filed: November 26, 2009
    Date of Patent: August 6, 2013
    Assignee: Rhodia Operations
    Inventors: Roland Jacquot, Philippe Marion
  • Patent number: 8497399
    Abstract: A process for preparing a diamine from a corresponding aminoalkyl nitrile, which is prepared by reaction of a corresponding monoamine with a corresponding alkenyl nitrile in a continuous mode of operation, comprising the steps: a) introduction of the corresponding monoamine into a continuously conveyed reaction stream; b) introduction of the corresponding alkenyl nitrile into the reaction stream, with this already comprising the aminoalkyl nitrile on addition; c) reaction of the reaction stream in a first reaction region; d) at least partial transfer of the reaction stream into at least one second reaction region for further reaction; e) discharge of the reaction stream from the second reaction region after the reaction; f) introduction of the reaction stream discharged in step (a) into a reduction region; and g) reduction of the aminoalkyl nitrile present in the reaction stream to the corresponding diamine.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: July 30, 2013
    Assignee: BASF SE
    Inventors: Jan Eberhardt, Thilo Hahn, Johann-Peter Melder, Gerhard Fritz, Volkmar Menger, Thomas Hill
  • Publication number: 20130172519
    Abstract: Processes that make nitrogen-containing compounds include converting succinic acid (SA) or monoammonium succinate (MAS) derived from a diammonium succinate (DAS)- or MAS-containing fermentation broth to produce such compounds including diaminobutane (DAB), succinic dinitrile (SDN), succinic amino nitrile (SAN), succinamide (DAM), and related polymers.
    Type: Application
    Filed: May 18, 2011
    Publication date: July 4, 2013
    Applicant: BIOAMBER S.A.S.
    Inventors: Olan S. Fruchey, Leo E. Manzer, Dilum Dunuwila, Brian T. Keen, Brooke A. Albin, Nye A. Clinton, Bernard D. Dombek
  • Publication number: 20130144028
    Abstract: Processes include providing a clarified diammonium succinate (DAS)- or monoammonium succinate (MAS)- containing fermentation broth; distilling the broth of an overhead that includes water and ammonia, and a liquid bottoms that includes SA, and at least about 20 wt % water; cooling the bottoms to a temperature sufficient to cause the bottoms to separate into a liquid portion in contact with a solid portion that is substantially pure SA; separating the solid portion from the liquid portion; and converting the solid portion to produce nitrogen containing compounds such as diamino butane (DAB), succinic dinitrile (SDN), succinic amino nitrile (SAN) or succinamide (DAM) and downstream products.
    Type: Application
    Filed: May 17, 2011
    Publication date: June 6, 2013
    Inventors: Olan S. Fruchey, Leo E. Manzer, Dilum Dunuwila, Brian T. Keen, Brooke A. Albin, Nye A. Clinton, Bernard D. Dombek
  • Publication number: 20130090452
    Abstract: A process for reacting formaldehyde cyanohydrin (FACH) with ethylenediamine (EDA) in a reactor with limited backmixing at a temperature in the range from 20 to 120° C., wherein the residence time in the reactor is 300 seconds or less.
    Type: Application
    Filed: August 30, 2012
    Publication date: April 11, 2013
    Applicant: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Publication number: 20130090453
    Abstract: A process for preparing TETA and/or DETA by hydrogenating EDDN and/or EDMN with hydrogen in the presence of a catalyst, which comprises preparing EDDN and/or EDMN from FA, HCN and EDA in the presence of toluene as a solvent and performing the hydrogenation in suspension mode in the presence of THF.
    Type: Application
    Filed: August 31, 2012
    Publication date: April 11, 2013
    Applicant: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jõrg Pastre, Boris Buschhaus
  • Publication number: 20130085286
    Abstract: A process for preparing amines of the formula (II) R1—NH—CH2—CH2—NH2??(II) in which R1 is hydrogen or radicals of the formula x is integers from zero to two, by reacting nitriles of the formula (I) R2—NH—CH2—CN??(I) in which R2 is hydrogen or radicals of the formula and R3 is the NC— or H2N—CH2- radicals and x is integers from zero to two, with hydrogen in the presence of a catalyst in suspension mode or in a fixed bed, wherein the space velocity on the catalyst, based on the catalyst surface area, is 10?6 to 10?4 kg of nitrile of the formula (I) per m2 of catalyst surface area and hour, the catalyst surface area being determined by the BET method.
    Type: Application
    Filed: August 31, 2012
    Publication date: April 4, 2013
    Applicant: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jõrg Pastre, Boris Buschhaus
  • Publication number: 20130079492
    Abstract: A process for preparing EDDN and/or EDMN by conversion of FA, HCN and EDA, the reaction being effected in the presence of water, and, after the conversion, water being depleted from the reaction mixture in a distillation column, which comprises performing the distillation in the presence of an organic solvent which has a boiling point between water and EDDN and/or EDMN at the distillation pressure existing in the column or which forms a low-boiling azeotrope with water.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 28, 2013
    Applicant: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Publication number: 20130060002
    Abstract: A process is disclosed for separating the output from the reaction of EDDN or EDMN with hydrogen in the presence of THF, a catalyst, TETA or DETA, water, and optionally organic compounds having higher and lower boiling points than TETA or DETA. Hydrogen is removed, and the output is supplied to a distillation column DK1 in which an azeotrope, optionally comprising organic compounds with a boiling point lower than TETA or DETA, is removed from the top. A product comprising TETA or DETA is removed from the bottom and passed cinto a distillation column DK2, removing THF. A stream comprising TETA or DETA passes from the bottom of DK2. The DK1 azeotrope is condensed. Phase separation is induced by the addition of an organic solvent essentially immiscible with water, and the mixture is separated. The organic phase is recycled into DK1 and the water phase is discharged.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 7, 2013
    Applicant: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Publication number: 20130053537
    Abstract: A process for regenerating Raney catalysts by treating the catalyst with liquid ammonia with a water content of less than 5% by weight and with hydrogen having a partial pressure of 0.1 to 40 MPa in the temperature range from 50 to 350° C. for at least 0.1 hour.
    Type: Application
    Filed: August 30, 2012
    Publication date: February 28, 2013
    Applicant: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Publication number: 20130053538
    Abstract: A process for reacting ethylenediamine (EDA) with formaldehyde to give ethylenediamine-formaldehyde adduct (EDFA) and/or ethylenediamine-monoformaldehyde adduct (EDMFA), which comprises performing the reaction of FA with EDA at a temperature in the range from 20 to 70° C.
    Type: Application
    Filed: August 30, 2012
    Publication date: February 28, 2013
    Applicant: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Publication number: 20130053584
    Abstract: A process for reacting ethylenediamine-formaldehyde adduct (EDFA) and/or ethylene-diamine-monoformaldehyde adduct (EDMFA) with hydrogen cyanide (HCN) in a reactor with limited backmixing at a temperature in the range from 20 to 120° C., wherein the residence time in the reactor is 300 seconds or less.
    Type: Application
    Filed: August 30, 2012
    Publication date: February 28, 2013
    Applicant: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Publication number: 20130053536
    Abstract: A process for preparing EDDN and/or EDMN by a) conversion of FA, HCN and EDA, the conversion being effected in the presence of water, b) depleting water from the reaction mixture obtained in stage a), and c) treating the mixture from stage b) with an absorbent in the presence of an organic solvent, wherein the adsorbent is a solid acidic adsorbent.
    Type: Application
    Filed: August 30, 2012
    Publication date: February 28, 2013
    Applicant: BASF SE
    Inventors: Hermann Luyken, Sebastian Ahrens, Gordon Brasche, Jens Baldamus, Robert Baumann, Randolf Hugo, Stephanie Jaegli, Johann-Peter Melder, Jörg Pastre, Boris Buschhaus
  • Patent number: 8329955
    Abstract: Amino compounds are continuously prepared by hydrogenation of nitrile compounds in the presence of a catalyst, and more particularly diamines are prepared by the continuous hydrogenation of dinitrile compounds in the presence of a Raney metal catalyst and in the absence of an alcoholic solvent; the subject process includes extracting a portion of the catalyst present in the reaction medium, the extracted portion of the catalyst is submitted to a regeneration for providing a catalyst having a catalytic activity lower than that of a fresh catalyst but still high and the regenerated catalyst is recycled to the reaction medium together with fresh catalyst according to a predetermined ratio, whereby the consumption of catalyst is reduced per ton of amines produced.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: December 11, 2012
    Assignee: Rhodia Operations
    Inventors: Didier Letourneur, Philippe Leconte, Jean-Francis Spindler, Patrick Lermusiaux, Vincent Boschat
  • Publication number: 20120245389
    Abstract: The present invention relates to a process for hydrogenating organic nitriles by means of hydrogen in the presence of a catalyst in a reactor, where the shaped body catalyst is arranged in a fixed bed, wherein the shaped body in the shape of spheres or rods has in each case a diameter 3 mm or less, in the shape of tablets a height of 4 mm or less, and in the case of all other geometries in each case has an equivalent diameter L=1/a? of 0.70 mm or less, where a? is the external surface area per unit volume (mms2/mmp3), where: a ? = A p V p , where Ap is the external surface area of the catalyst particle (mms2) and Vp is the volume of the catalyst particle (mmp3). The present invention further relates to a process for preparing downstream products of isophoronediamine (IPDA) or N,N-dimethylaminopropylamine (DMAPA) from amines prepared according to the invention.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 27, 2012
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Christoph Müller, Wolfgang Mägerlein, Martin Ernst, Thomas Heidemann, Johann-Peter Melder, Lucia Königsmann, Milind Joshi, Oliver Bey, Bernd Stein
  • Publication number: 20120245390
    Abstract: The present invention relates to a process for hydrogenating nitriles by means of hydrogen in the presence of a catalyst in a reactor, where the catalyst is arranged in a fixed bed, wherein the cross-sectional loading in the reactor is in the range from 5 kg/(m2s) to 50 kg/(m2s). The present invention further relates to a process for preparing downstream products of isophoronediamine (IPDA) or N,N-dimethylaminopropylamine (DMAPA) from amines prepared according to the invention.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 27, 2012
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Christoph Müller, Wolfgang Mägerlein, Petr Kubanek, Thomas Heidemann, Johann-Peter Melder, Thomas Krug, Oliver Bey
  • Patent number: 8227642
    Abstract: A method for producing amines by the hydrogenation of nitrile compounds in the presence of a catalyst, notably a method for producing diamines by the continuous hydrogenation of dinitrile compounds in the presence of a Raney-metal catalyst, includes controlling the molar flow of nitrile compounds and the mass flow of catalyst in a hydrogenation piston reactor in order to minimize the occurrence of impurities and deterioration of the catalyst.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: July 24, 2012
    Inventors: Philippe Roccati, Didier Letourneur, Philippe Denis
  • Patent number: 8153845
    Abstract: The invention relates to a process for preparing an amino nitrile mixture comprising aminoacetonitrile (AAN) and from 5 to 70% by weight of iminodiacetonitrile (IDAN), which comprises heating crude AAN which is largely free of formaldehyde cyanohydrin (FACH-free) at a temperature of from 50 to 150° C.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: April 10, 2012
    Assignee: BASF SE
    Inventors: Alfred Oftring, Kirsten Dahmen, Thilo Hahn, Randolf Hugo, Katrin Baumann, Johann-Peter Melder
  • Publication number: 20120071694
    Abstract: A process for preparing a diamine from a corresponding aminoalkyl nitrile, which is prepared by reaction of a corresponding monoamine with a corresponding alkenyl nitrile in a continuous mode of operation, comprising the steps: a) introduction of the corresponding monoamine into a continuously conveyed reaction stream; b) introduction of the corresponding alkenyl nitrile into the reaction stream, with this already comprising the aminoalkyl nitrile on addition; c) reaction of the reaction stream in a first reaction region; d) at least partial transfer of the reaction stream into at least one second reaction region for further reaction; e) discharge of the reaction stream from the second reaction region after the reaction; f) introduction of the reaction stream discharged in step (a) into a reduction region; and g) reduction of the aminoalkyl nitrile present in the reaction stream to the corresponding diamine.
    Type: Application
    Filed: October 17, 2011
    Publication date: March 22, 2012
    Applicant: BASF SE
    Inventors: JAN EBERHARDT, Thilo Hahn, Johann-Peter Melder, Gerhard Fritz, Volkmar Menger, Thomas Hill
  • Publication number: 20120029225
    Abstract: The present invention relates to a process for preparing 3-dimethylaminopropylamine (DMAPA) by reacting 3-dimethylaminopropionitrile (DMAPN) with hydrogen in the presence of a catalyst, wherein the DMAPN used has a content of 2-(dimethylaminomethyl)glutaronitrile (DGN) of 300 ppm by weight or less, based on the DMAPN used. Furthermore, the present invention relates to mixtures of DMAPN and DGN, wherein the weight ratio of DMAPN to DGN is in the range from 1 000 000:5 to 1 000 000:250.
    Type: Application
    Filed: July 27, 2011
    Publication date: February 2, 2012
    Applicant: BASF SE
    Inventors: Wolfgang Mägerlein, Jan Eberhardt, Johann-Peter Melder, Ulrich Köhler, Thilo Hahn, Mirko Kreitschmann, Dominik Herbrecht
  • Publication number: 20110313188
    Abstract: The present invention relates to a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, wherein said catalyst comprises one or more elements selected from the group of the alkali metals, alkaline earth metals and rare earth metals. The invention further relates to processes for preparing the inventive catalyst and to the use of the inventive catalyst in a process for hydrogenating organic substances, especially for hydrogenating nitriles.
    Type: Application
    Filed: February 4, 2010
    Publication date: December 22, 2011
    Applicant: BASF SE
    Inventors: Christof Wilhelm Wigbers, Jochen Steiner, Martin Ernst, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder
  • Publication number: 20110313187
    Abstract: The present invention relates to a process for improving the catalytic properties of a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, by contacting the catalyst with one or more basic compounds selected from the group of the alkali metals, alkaline earth metals and rare earth metals. The invention further relates to a process for hydrogenating compounds which comprise at least one unsaturated carbon-carbon, carbon-nitrogen or carbon-oxygen bond in the presence of a catalyst comprising one or more elements selected from the group consisting of cobalt, nickel and copper, said catalyst being present in the form of a structured monolith, by contacting the catalyst with one or more basic compounds selected from the group of the alkali metals, alkaline earth metals and rare earth metals.
    Type: Application
    Filed: February 1, 2010
    Publication date: December 22, 2011
    Inventors: Christof Wilhelm Wigbers, Jochen Steiner, Martin Ernst, Bram Willem Hoffer, Ekkehard Schwab, Johann-Peter Melder
  • Patent number: 8063239
    Abstract: The present invention relates to a process for preparing an aminoalkyl nitrile by reaction of a corresponding monoamine with a corresponding alkenyl nitrile in a continuous mode of operation, which comprises the steps (a) introduction of the corresponding monoamine into a continuously conveyed reaction stream; (b) introduction of the corresponding alkenyl nitrite into the reaction stream, with this already comprising the aminoalkyl nitrile on addition; (c) reaction of the reaction stream in a first reaction region; and (d) at least partial transfer of the reaction stream into at least one second reaction region for further reaction. The invention further relates to a process for preparing a diamine from the aminoalkyl nitrile, suitable apparatuses for carrying out the processes and their corresponding use.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: November 22, 2011
    Assignee: BASF SE
    Inventors: Jan Eberhardt, Thilo Hahn, Johann-Peter Melder, Gerhard Fritz, Volkmar Menger, Thomas Hill
  • Publication number: 20110218362
    Abstract: A process for the fixed bed hydrogenation of unsaturated fatty nitriles to fatty amines with a fixed bed Raney-type Ni/Al, Co/Al or Ni/Co/Al catalyst in the liquid phase, the trickle phase or any type of fatty nitrile aerosol.
    Type: Application
    Filed: November 10, 2004
    Publication date: September 8, 2011
    Applicant: DEGUSSA GMBH
    Inventors: Daniel Ostgard, Roberta Olindo, Virginie Duprez, Stefan Röder, Monika Berweiler
  • Patent number: 7960591
    Abstract: The invention relates to a process for preparing triethylenetetramine (TETA), which comprises hydrogenating ethylenediaminediacetonitrile (EDDN) in the presence of a catalyst and a solvent.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: June 14, 2011
    Assignee: BASF SE
    Inventors: Kirsten Dahmen, Alfred Oftring, Randolf Hugo, Katrin Baumann, Thilo Hahn, Johann-Peter Melder
  • Patent number: 7960590
    Abstract: The invention relates to a process for preparing an ethylene amine mixture, which comprises the following steps: a) crude AAN which is largely free of formaldehyde cyanohydrin (largely FACH-free) is heated at a temperature of from 50 to 150° C. to give an amino nitrile mixture comprising aminoacetonitrile (AAN) and from 5 to 70% by weight of iminodiacetonitrile (DAN), b) hydrogenation of the amino nitrile mixture obtained in step a) in the presence of a catalyst. Ethylenediamine (EDA) and/or diethylenetriamine (DETA) and also, if appropriate, further ethylene amines can be isolated from the ethylene amine mixtures obtained.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: June 14, 2011
    Assignee: BASF SE
    Inventors: Kirsten Dahmen, Alfred Oftring, Randolf Hugo, Thilo Hahn, Katrin Baumann, Johann-Peter Melder
  • Patent number: 7939027
    Abstract: The present invention relates to a process for the industrial preparation of a diamine starting from a corresponding alkenyl nitrile comprising at least one C—C double bond, which comprises the steps (a) reaction of the alkenyl nitrile with a corresponding monoamine in a first reactor so that the monoamine adds exothermically onto the at least one double bond to form an aminoalkyl nitrile, with the monoamine and water being charged initially and the alkenyl nitrile being fed in; (b) evaporation of unreacted alkenyl nitrile and monoamine to increase the concentration of the aminoalkyl nitrile product in the bottoms of the first reactor; (c) transfer of the aminoalkyl nitrile bottom product from step (b) to a second reactor; (d) batchwise catalytic hydrogenation of the aminoalkyl nitrile transferred in step (c) to the diamine in the second reactor, with each batch being obtained by initially charging a catalyst suitable for the hydrogenation of nitriles to amines and also water, the desired diamine and a bas
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: May 10, 2011
    Assignee: BASF SE
    Inventors: Martin Ernst, Steffen Oehlenschläger, Frank Kuhnke, Karl-Heinz Roβ, Roland Deeg, Johann-Peter Melder
  • Patent number: 7915454
    Abstract: The invention relates to a process for preparing ethylenediamine by hydrogenation of aminoacetonitrile over a catalyst, wherein the hydrogenation is carried out in a solution comprising aminoacetonitrile, water in a proportion of from 0 to 60% by weight and a solvent and the aminoacetonitrile comprised in the solution is fed into the reaction vessel at a rate which is not greater than the rate at which the aminoacetonitrile reacts with hydrogen in the hydrogenation.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: March 29, 2011
    Assignee: BASF SE
    Inventors: Alfred Oftring, Kirsten Dahmen, Randolf Hugo, Thilo Hahn, Katrin Baumann, Johann-Peter Melder
  • Patent number: 7880035
    Abstract: The invention relates to a process for preparing an ethylene amine mixture, which comprises hydrogenating an amino nitrile mixture comprising at least 30% by weight of aminoacetonitrile (AAN) and at least 5% by weight of iminodiacetonitrile (IDAN) in the presence of a catalyst. Ethylenediamine (EDA) and/or diethylenetriamine (DETA) and, if appropriate, further ethylene amines can be isolated from the ethylene amine mixtures obtained.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 1, 2011
    Assignee: BASF SE
    Inventors: Alfred Oftring, Kirsten Dahmen, Thilo Hahn, Randolf Hugo, Katrin Baumann, Johann-Peter Melder
  • Patent number: 7880036
    Abstract: The invention relates to a process for preparing an ethylene amine mixture, which comprises hydrogenating an amino nitrile mixture comprising at least two ?-amino nitriles in an amount of at least 5% by weight in each case in the presence of a catalyst and, if appropriate, a solvent.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: February 1, 2011
    Assignee: BASF SE
    Inventors: Kirsten Dahmen, Alfred Oftring, Katrin Baumann, Randolf Hugo, Thilo Hahn, Johann-Peter Melder
  • Publication number: 20100297104
    Abstract: The present invention is in relation to a dendritic molecule having symmetrically sited branches having four or more generations of dendrimers wherein the branch points are tertiary amines linked together with oxygen atom of ether and the heteroatoms are separated by a substituted or non-substituted linear three methylene linker. In addition the invention also provides a process to prepare such dendritic macromolecules.
    Type: Application
    Filed: August 14, 2007
    Publication date: November 25, 2010
    Applicant: INDIAN INSTITUTE OF SCIENCE
    Inventors: Jayaraman Narayanaswamy, Jayamurugan Govindasamy
  • Patent number: 7767859
    Abstract: A method of producing a primary amine by the hydrogenation of a nitrile in the presence of a hydrogenation catalyst. The hydrogenation catalyst contains at least one metal selected from the group consisting of nickel, cobalt and iron. Before use in the hydrogenation of nitrile, the hydrogenation catalyst is pretreated with at least one treating agent selected from the group consisting of hydrocarbons, alcohols, ethers, esters and carbon monoxide at 150 to 500° C.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: August 3, 2010
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Kazuhiko Amakawa, Yoshiaki Yamamoto
  • Publication number: 20100137592
    Abstract: A process for the preparation of famciclovir a compound of Formula (I) and its intermediates.
    Type: Application
    Filed: June 2, 2008
    Publication date: June 3, 2010
    Inventors: Asif Parvez Sayyed, Murali Krishna Ankaraju, Ravinder Reddy Vennapureddy, Shankar Rama, Ramesh Dandala, Sivakumaran Meenakshisunderam
  • Patent number: 7723547
    Abstract: The present invention relates to a process for the industrial preparation of a diamine starting from a corresponding alkenyl nitrile comprising at least one C—C double bond, which comprises the steps (a) reaction of the alkenyl nitrile with a corresponding monoamine in a first reactor so that the monoamine adds exothermically onto the at least one double bond to form an aminoalkyl nitrile, with the monoamine and water being charged initially and the alkenyl nitrile being fed in; (b) evaporation of unreacted alkenyl nitrile and monoamine to increase the concentration of the aminoalkyl nitrile product in the bottoms of the first reactor; (c) transfer of the aminoalkyl nitrile bottom product from step (b) to a second reactor; (d) batchwise catalytic hydrogenation of the aminoalkyl nitrile transferred in step (c) to the diamine in the second reactor, with each batch being obtained by initially charging a catalyst suitable for the hydrogenation of nitriles to amines and also water, the desired diamine and a base,
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: May 25, 2010
    Assignee: BASF SE
    Inventors: Martin Ernst, Steffen Oehlenschläger, Frank Kuhnke, Karl-Heinz Roβ, Ronald Deeg, Johann-Peter Melder
  • Publication number: 20100121064
    Abstract: The invention relates to a process for preparing triethylenetetramine (TETA), which, comprises the following steps: a) reaction of ethylenediamine (EDA) with formaldehyde and hydrocyanic acid (HCN) in a molar ratio of EDA to formaldehyde to HCN of from 1:1.5:1.5 to 1:2:2 to give ethylenediaminediacetonitrile (EDDN), b) hydrogenation of the EDDN obtained in step a) in the presence of a catalyst and a solvent.
    Type: Application
    Filed: February 28, 2008
    Publication date: May 13, 2010
    Applicant: BASF SE
    Inventors: Kirsten Dahmen, Alfred Oftring, Katrin Baumann, Randolf Hugo, Thilo Hahn, Johann-Peter Melder
  • Publication number: 20100121109
    Abstract: The invention relates to a process for preparing an ethylene amine mixture, which comprises the following steps: a) crude AAN which is largely free of formaldehyde cyanohydrin (largely FACH-free) is heated at a temperature of from 50 to 150° C. to give an amino nitrile mixture comprising aminoacetonitrile (AAN) and from 5 to 70% by weight of iminodiacetonitrile (DAN), b) hydrogenation of the amino nitrile mixture obtained in step a) in the presence of a catalyst. Ethylenediamine (EDA) and/or diethylenetriamine (DETA) and also, if appropriate, further ethylene amines can be isolated from the ethylene amine mixtures obtained.
    Type: Application
    Filed: February 28, 2008
    Publication date: May 13, 2010
    Applicant: BASF SE
    Inventors: Kirsten Dahmen, Alfred Oftring, Randolf Hugo, Thilo Hahn, Katrin Baumenn, Johann-Peter Melder
  • Publication number: 20100105952
    Abstract: The present invention relates to a process for the industrial preparation of a diamine starting from a corresponding alkenyl nitrile comprising at least one C—C double bond, which comprises the steps (a) reaction of the alkenyl nitrile with a corresponding monoamine in a first reactor so that the monoamine adds exothermically onto the at least one double bond to form an aminoalkyl nitrile, with the monoamine and water being charged initially and the alkenyl nitrile being fed in; (b) evaporation of unreacted alkenyl nitrile and monoamine to increase the concentration of the aminoalkyl nitrile product in the bottoms of the first reactor; (c) transfer of the aminoalkyl nitrile bottom product from step (b) to a second reactor; (d) batchwise catalytic hydrogenation of the aminoalkyl nitrile transferred in step (c) to the diamine in the second reactor, with each batch being obtained by initially charging a catalyst suitable for the hydrogenation of nitriles to amines and also water, the desired diamine and a bas
    Type: Application
    Filed: January 6, 2010
    Publication date: April 29, 2010
    Applicant: BASF SE Patents, Trademarks and Licences
    Inventors: Martin Ernst, Steffen Oehlenschläger, Frank Kuhnke, Karl-Heinz Roß, Roland Deeg, Johann-Peter Melder