Of Hydrocarbon Mixtures Patents (Class 568/910.5)
  • Publication number: 20030069457
    Abstract: A non-chrome, copper-containing catalyst, Cu—Al—O and method of preparing the same are provided wherein the Cu—Al—O catalyst is prepared by the co-precipitation of copper nitrate (Cu(NO3)2) and sodium aluminate (Na2Al2O4) solutions using sodium carbonate (Na2CO3) as a precipitant. The precipitate is filtered, washed to removed excess sodium, and dried. The dried product, to be used in a powder form, is calcined at a preferred temperature of approximately 700° to 900° C. for approximately 1 to 4 hours. The dry powder, to be tableted or extruded, is calcined at a temperature of approximately 400° to 700° C. The activity of the Cu—Al—O catalyst can be promoted in hydrogenolysis applications by the addition of various agents. The Cu—Al—O catalyst can be employed in applications in place of Cu/Cr, or other copper based catalysts.
    Type: Application
    Filed: July 16, 2002
    Publication date: April 10, 2003
    Inventor: Jianping Chen
  • Publication number: 20030055299
    Abstract: An improved catalyst based on cobalt and/or rhodium dissolved in a non-aqueous ionic solvent which is liquid at a temperature of less than 90° C. More particularly, the catalyst comprises at least one complex of cobalt and/or rhodium coordinated with at least one nitrogen-containing ligand and the non-aqueous ionic solvent comprises at least one quaternary ammonium and/or phosphonium cation and at least one inorganic anion.
    Type: Application
    Filed: July 12, 2002
    Publication date: March 20, 2003
    Applicant: Institut Francais du Petrole
    Inventors: Gerhard Hillebrand, Andre Hirschauer, Dominique Commereuc, Helene Olivier-Bourbigou, Lucien Saussine
  • Publication number: 20030040649
    Abstract: A crystalline titanosilicate catalyst which is usable as a catalyst in the oxidation reaction of a compound having a carbon-carbon double bond and at least one other functional group, a process for producing the catalyst, and a process for producing an oxidized compound by an oxidation reaction using the catalyst. It has been found that a crystalline titanosilicate having a structural code of MWW effectively functions as a catalyst in an oxidation reaction of a compound having a carbon-carbon double bond and at least one other functional group wherein the carbon-carbon double bond of the compound is oxidized by using a peroxide as an oxidizing agent, thereby to highly selectively provide an intended oxidized compound.
    Type: Application
    Filed: November 13, 2001
    Publication date: February 27, 2003
    Inventors: Wataru Oguchi, Katsuyuki Tsuji, Takashi Tatsumi, Peng Wu
  • Publication number: 20020183559
    Abstract: Catalytic processes have been developed for direct ambient air oxidative conversion of hydrocarbons to aldehydes and unsaturated alcohols. Aliphatic hydrocarbons including methane, hexanes, octanes, decanes, gasoline, diesel fuel, oils, solvents and other organic compounds have been oxidized by this catalytic process. The catalysts are based on molecular strings of di-, tri- and/or poly-groups of transition metal complexes. Laboratory results have demonstrated [iron(II)]2, [manganese(II)]2 and related families of catalysts to be effective for ambient air direct oxidative conversion of hydrocarbons to products in high yields at room temperature and above, while [cobalt(II)]3 was effective for air oxidative conversion of methane to formaldehyde and for other gaseous hydrocarbons to their corresponding aldehydes at elevated temperatures.
    Type: Application
    Filed: April 30, 2001
    Publication date: December 5, 2002
    Inventor: Melvin K. Carter
  • Publication number: 20020183567
    Abstract: A process for preparing branched olefins comprising 0.5% or less quaternary aliphatic carbon atoms, which process comprises dehydrogenating an isoparaffinic composition over a suitable catalyst which isoparaffinic composition comprises paraffins having a carbon number in the range of from 7 to 35, of which paraffins at least a portion of the molecules is branched, the average number of branches per paraffin molecule being at least 0.7 and the branching comprising methyl and optionally ethyl branches, and which isoparaffinic composition may be obtained by hydrocracking and hydroisomerization of a paraffinic wax; a method of using olefins for making an anionic surfactant, a nonionic surfactant or a cationic surfactant, in particular a surfactant sulfate or sulfonate, comprising converting the branched olefins into the surfactant; and an anionic surfactant, a nonionic surfactant or a cationic surfactant which is obtainable by the method of use.
    Type: Application
    Filed: February 14, 2002
    Publication date: December 5, 2002
    Inventors: Laurent Alain Michel Fenouil, Brendan Dermot Murray, Paul Marie Ayoub
  • Patent number: 6479707
    Abstract: The present invention provides a process for producing 2-butanone and 2-butanol under comparatively mild conditions with a decreased number of steps by direct oxidization of a hydrocarbon, which is cheaper than butenes, as a raw material using molecular oxygen such as air. The process for producing 2-butanone and 2-butanol comprises directly oxidizing n-butane using molecular oxygen in the presence of aluminum phosphate containing transition metal atoms and a selectivity-improving agent, as required.
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: November 12, 2002
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Hideki Omori, Kazuhiko Haba
  • Publication number: 20020165416
    Abstract: A process of the present invention produces an organic compound by allowing a compound containing an electron attractive group of following Formula (1): 1
    Type: Application
    Filed: November 9, 2001
    Publication date: November 7, 2002
    Inventors: Yasutaka Ishii, Takahiro Iwahama, Satoshi Sakaguchi, Tatsuya Nakano
  • Patent number: 6448454
    Abstract: Improved oxidation methods are provided wherein a reaction mixture comprising a substrate to be oxidized (e.g., phenols, alkenes) and an oxidation catalyst (typically dispersed in an organic solvent system) is supplemented with a compressed gas which expands the reaction mixture, thus accelerating the oxidation reaction. In preferred practice pressurized subcritical or supercritical carbon dioxide is used as the expanding gas, which is introduced into the reaction mixture together with an oxidizing agent. The inventive methods improve the substrate conversion and product selectivity by increasing the solubility of the oxidizing agent in the reaction mixture.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: September 10, 2002
    Assignee: The University of Kansas
    Inventors: Bala Subramaniam, Daryle H. Busch, Ghezai T. Musie, Ming Wei
  • Publication number: 20020103402
    Abstract: The invention discloses a method for converting alkane to oxygenate which comprises the following steps: (i) contacting an alkane-containing gas with non-metal, regenerable, electrophile ions in a concentrated sulfuric acid medium under conditions sufficient to provide electrophilicly activated alkane and reduced electrophile ions; (ii) contacting said electrophilicly activated alkane with sulfate to form a sulfate ester; (iii) exposing the sulfate ester to hydrolyzing conditions sufficient to convert it to oxygenate; and (iv) collecting the oxygenate.
    Type: Application
    Filed: January 30, 2001
    Publication date: August 1, 2002
    Inventors: Clarence D. Chang, Jose G. Santiesteban
  • Patent number: 6380444
    Abstract: A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds, titanium, titanium compounds, chromiun and chromium compounds.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: April 30, 2002
    Assignees: Statoil Research Centre
    Inventors: Niels J. Bjerrum, Gang Xiao, Hans Aage Hjuler
  • Publication number: 20020038057
    Abstract: Processes applying mesoporous titanium containing zeolite based catalysts for selective oxidation or epoxidation of hydrocarbons by peroxides.
    Type: Application
    Filed: September 21, 2001
    Publication date: March 28, 2002
    Applicant: Haldor Topsoe A/S
    Inventors: Iver Schmidt, Michael Brorson, Claus J.H. Jacobsen
  • Publication number: 20010006615
    Abstract: A process for the production of synthesis gas for obtaining compounds such as ammonia or methanol, in which hydrocarbons and steam are reacted first in a primary reforming section (11) and then—together with oxygen—in a secondary reforming section (12), thus obtaining CO, CO2, H2 and possibly N2 which are then fed to a carbon monoxide conversion section (13, 14), is distinguished by the fact of reacting hydrocarbons, steam and oxygen in an autothermal reforming section (20) provided in parallel with respect to other reforming sections (11, 12), and feeding the so produced CO, CO2, H2 and possibly N2 to the carbon monoxide conversion section (13, 14).
    Type: Application
    Filed: February 20, 2001
    Publication date: July 5, 2001
    Inventor: Marco Badano